欢迎访问作物学报,今天是

作物学报 ›› 2017, Vol. 43 ›› Issue (07): 1087-1095.doi: 10.3724/SP.J.1006.2017.01087

• 研究简报 • 上一篇    下一篇

利用90k芯片技术进行小麦穗部性状QTL定位

武炳瑾,简俊涛,张德强,马文洁,冯洁,崔紫霞,张传量,孙道杰*   

  1. 西北农林科技大学农学院 陕西杨凌 712100
  • 收稿日期:2016-09-11 修回日期:2017-03-01 出版日期:2017-07-12 网络出版日期:2017-04-06
  • 通讯作者: 孙道杰, E-mail: chinawheat@hotmail.com
  • 基金资助:

    本研究由国家重点基础研究计划(973计划)项目(2014CB138100), 陕西省自然科学基金项目(2015JM3094)和陕西省重点科技创新团队项目(2014KCT-25)资助。

QTL Mapping for Spike Traits of Wheat Using 90k Chip Technology

WU Bing-Jin,JIAN Jun-Tao,ZHANG De-Qiang,MA Wen-Jie,FENG Jie,CUI Zi-Xia,ZHANG Chuan-Liang,SUN Dao-Jie*   

  1. College of Agronomy, Northwest A&F University, Yangling 712100, China
  • Received:2016-09-11 Revised:2017-03-01 Published:2017-07-12 Published online:2017-04-06
  • Contact: Sun Daojie, E-mail: chinawheat@hotmail.com
  • Supported by:

    This study was supported by the National Key Basic Research Program of China (2014CB138100), the Natural Science Foundation of Shaanxi Province (2015JM3094), and the Key Scientific and Technological Innovation Team of Shaanxi Province (2014KCT-25).

摘要:

小麦穗部性状与产量密切相关,挖掘穗部性状基因及其关联分子标记具有重要意义。本研究以周8425B?小偃81衍生的RIL群体(F8)为材料,利用90k芯片标记构建的高密度遗传图谱对3个环境下的穗长、小穗数、不育小穗数、穗粒数、千粒重进行QTL定位。共检测到19条染色体上的71个QTL,变异解释率(PVE)范围为2.10%~45.25%,其中37个位点为主效QTL (PVE>10%)。QSl.nafu-6A.2 (穗长)、QSl.nafu-7A (穗长)、QSsn.nafu-2A.1 (小穗数)、QSsn.nafu-2D (小穗数)和QGns.nafu-2B (穗粒数)在多个环境中被检测到,且LOD>10,PVE>20%。位于同一个基因簇中的QSl.nafu-6A.2 (穗长)、QGns.nafu-6A (穗粒数)和QTgw.nafu-6A (千粒重)在多个环境中被检测到,且与已报道的相关位点位置相同或相近,在分子标记辅助育种中具有较大参考价值。

关键词: 小麦, 穗部性状, 90k基因芯片, QTL定位

Abstract:

Spike traits are important to grain yield in wheat. Molecular markers associated with genes/QTLs controlling spike traits are highly valuable to marker-assisted breeding. A recombinant inbred line (F8) population derived from Zhou 8425B ? Xiaoyan 81 were evaluated in three environments, and QTLs for spike length, spikelet number per spike, sterile spikelet number, grain number per spike and thousand-grain weigh were mapped into a high-density genetic map built by 90k chip. A total of 71 QTLs were located on 19 chromosomes, and the phenotype variation explained (PVE) by a single locus ranged from 2.10% to 45.25%. Thirty-seven loci were considered as main-effect QTLs owing to the PVE larger than 10%. QTLs QSl.nafu-6A.2 for spike length, QSl.nafu-7A for spike length, QSsn.nafu-2A.1 for sterile spikelet number, QSsn.nafu-2D for sterile spikelet number and QGns.nafu-2B for grain number per spike were identified repeatedly in different environments with the LOD value higher than 10 and PVE larger than 20%. QSl.nafu-6A.2 for spike length, QGns.nafu-6A for grain number per spike and QTgw.nafu-6A for thousand-grain weight were mapped in a cluster on chromosome 6A and might be applicable in marker-assisted selection because they have been detected in multiple environments and close to the loci reported.

Key words: Triticum aestivum, Spike-related traits, 90k gene chip, QTL mapping

[1] Huang X Q, Kempf H, Canal M W, Roder M S. Advanced backcross QTL analysis in progenies derived from a cross between a German elite winter wheat variety and a synthetic wheat (Triticum aestivum L.). Theor Appl Genet, 2004, 109: 933–943 [2] Ma Z Q, Zhao D M, Zhang C Q, Zhang Z Z, Xue S L, Lin F, Kong Z X, Tian D G, Luo Q Y. Molecular genetic analysis of five spike-related traits in wheat using RIL and immortalized F2 populations. Mol Genet Genomics, 2007, 277: 31–42 [3] Deng S, Wu X, Wu Y, Zhou R., Wang H, Jia J, Liu S. Characterization and precise mapping of a QTL increasing spike number with pleiotropic effects in wheat. Theor Appl Genet, 2011, 122: 281–289 [4] Cui F, Zhao C H, Ding A M, Li J, Wang L, Li X F, Bao Y G, Li J M, Wang H G. Construction of an integrative linkage map and QTL mapping of grain yield-related traits using three related wheat RIL populations. Theor Appl Genet, 2014, 127: 659–675 [5] Cui F, Ding A M, Li J, Zhao C H, Wang L, Wang X Q, Qi X L, Li X F, Li G Y, Gao J R, Wang H G. QTL detection of seven spike-related traits and their genetic correlations in wheat using two related RIL populations. Euphytica, 2012, 186: 177–192 [6] 卢翔, 张锦鹏, 王化俊, 杨欣明, 李秀全, 李立会. 小麦-冰草衍生后代3558-2穗部相关性状的遗传分析和QTL定位. 植物遗传资源学报, 2011, 12: 86–91 Lu X, Zhang J P, Wang H J, Yang X M, Li X Q, Li L H. Genetic analysis and QTL mapping of wheat spike traits in a derivative line 3558-2 from wheat × Agropyron cristatum offspring. Plant Genet Resour, 2011, 12: 86–91 (in Chinese with English abstract) [7] Wang J, Liu W, Wang H, Li H, Wu J, Yang X, Li X, Gao A. QTL mapping of yield-related traits in the wheat germplasm 3228. Euphytica, 2011, 177: 277–292 [8] Li S, Jia J, Wei X, Zhang X, Li L, Chen H, Fan Y, Sun H, Zhao X, Lei T, Xu Y, Jiang F, Wang H, Li L. An intervarietal genetic map and QTL analysis for yield traits in wheat. Mol Breed, 2007, 20: 167–178 [9] Wang S, Wong D, Forrest K, Allen A, Chao S, Huang BE, Maccaferri M, Salvi S, Milner S G, Cattivelli L, Mastrangelo A M, Whan A, Stephen S, Barker G, Wieseke R, Plieske J; International Wheat Genome Sequencing Consortium, Lillemo M, Mather D, Appels R, Dolferus R, Brown-Guedira G, Korol A, Akhunova AR, Feuillet C, Salse J, Morgante M, Pozniak C, Luo M C, Dvorak J, Morell M, Dubcovsky J, Ganal M, Tuberosa R, Lawley C, Mikoulitch I, Cavanagh C, Edwards KJ, Hayden M, Akhunov E. Characterization of polyploid wheat genomic diversity using a high-density 90000 single nucleotide polymorphism array. Plant Biotechnol J, 2014, 12: 787–796 [10] 李立会. 小麦种植资源描述规范和数据标准. 北京: 中国农业出版社, 2006. pp 8–45 Li L H. Descriptors and Data Standard for Wheat (Triticunm aestivum L.). Beijing: Chinese Agricultural Science and Technology Press, 2006. pp 8–45 (in Chinese) [11] 王建康. 数量性状基因的完备区间作图方法. 作物学报, 2009, 35: 239–245 Wang J K. Inclusive composite interval mapping of quantitative trait genes. Acta Agron Sin, 2009, 35: 239–245 (in Chinese with English abstract) [12] You G X, Zhang X Y, Wang L F. An estimation of the minimum number of SSR loci needed to reveal genetic relationships in wheat varieties: information from 96 random accessions with maximized genetic diversity. Mol Breed, 2004, 14: 397–406 [13] Alamerew S, Chebotar S, Huang X, R?der M, B?rner A. Genetic diversity in Ethiopian hexaploid and tetraploid wheat germplasm assessed by microsatellite markers. Genet Resour Crop Evol, 2004, 51: 559–567 [14] 郝晨阳, 王兰芬, 张学勇, 游光霞, 董玉琛, 贾继增, 刘旭, 尚励武, 刘三才, 曹永生. 我国育成小麦品种的遗传多样性演变. 中国科学: 生命科学, 2005, 35: 408–415 Hao C Y, Wang L F, Zhang X Y, You G X, Dong Y C, Jia J Z, Liu X, Shang L W, Liu S C, Cao Y S. Changes of genetic diversity of wheat varieties released in China. Sci China: Life Sci, 2005, 35: 408–415 (in Chinese with English abstract) [15] Roussel V, Koenig J, Beckert M, Balfourier F. Molecular diversity in French bread wheat accessions related to temporal trends and breeding programmes. Theor Appl Genet, 2004, 108: 920–930 [16] 贾继增, 张正斌. 小麦21条染色体RFLP作图位点遗传多样性分析. 中国科学: 生命科学, 2001, 31: 13–21 Jia J Z, Zhang Z B. Genetic diversity analysis of 21 chromosomes of wheat with RFLP marker. Sci China: Life Sci, 2001, 31: 13–21 [17] Jia J, Zhao S, Kong X. Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature, 2013, 496: 91–95 [18] 吴秋红, 陈娇娇, 陈永兴, 周升辉, 傅琳, 张德云, 肖尧, 王国鑫, 王振忠, 王立新, 韩俊, 袁成国, 尤明山, 刘志勇. 燕大1817/北农6号重组自交系群体穗部性状的QTL定位. 作物学报, 2015, 41: 349–358 Wu Q H, Chen J J, Chen Y X, Zhou S H, Fu L, Zhang D Y, Xiao Y, Wang G X, Wang Z Z, Wang L X, Han J, Yuan C G, You M S, Liu Z Y. Mapping quantitative trait loci related to spike traits using a RILs population of Yanda 1817 × Beinong 6 in wheat (Triticum aestivum L.). Acta Agron Sin, 2015, 41: 349–358 (in Chinese with English abstract) [19] 高尚, 莫洪君, 石浩然, 王智强, 林宇, 武方琨, 邓梅, 刘亚西, 魏育明, 郑有良. 利用SNP基因芯片技术进行小麦遗传图谱构建及重要农艺性状QTL分析. 应用与环境生物学报, 2016, 22: 85–94 Gao S, Mo H J, Shi H R, Wang Z Q, Lin Y, Wu F K, Deng M, Liu Y X, Wei Y M, Zheng Y L. Construction of wheat genetic map and QTL analysis of main agronomic traits using SNP genotyping chips technology. Chin J Appl Environ Biol, 2016, 22: 85–94 (in Chinese with English abstract) [20] Li C, Bai G, Carver B F, Chao S. Wang Z. Mapping quantitative trait loci for plant adaptation and morphology traits in wheat using single nucleotide polymorphisms. Euphytica, 2016, 208: 299–312 [21] 刘凯, 邓志英, 李青芳, 张莹, 孙彩铃, 田纪春, 陈建省. 利用高密度SNP遗传图谱定位小麦穗部性状基因. 作物学报, 2016, 42: 820–831 Liu K, Deng Z Y, Li Q F, Zhang Y, Sun C L, Tian J C, Chen J S. Mapping QTLs for wheat panicle traits with high density SNP genetic map. Acta Agron Sin, 2016, 42: 820–831 (in Chinese with English abstract) [22] Cui F, Ding A M, Li J, Zhao C H, Wang L, Wang X Q, Qi X L, Li X F, Li G Y, Gao J R, Wang H G. QTL detection of seven spike-related traits and their genetic correlations in wheat using two related RIL populations. Euphytica, 2012, 186: 177–192 [23] Li C, Bai G, Carver B F. Single nucleotide polymorphism markers linked to QTL for wheat yield traits. Euphytica, 2015, 206: 1–13 [24] Kato K, Miura H, Sawada S. Mapping QTLs controlling grain yield and its components on chromosome 5A of wheat. Theor Appl Genet, 2000, 10l: 1114–112l [25] 张坤普, 徐宪斌, 田纪春. 小麦籽粒产量及穗部相关性状的QTL 定位. 作物学报, 2009, 35: 270–278 Zhang K P, Xu X B, Tian J C. QTL Mapping for grain yield and spike related traits in common wheat. Acta Agron Sin, 2009, 35: 270–278 (in Chinese with English abstract) [26] 丁安明, 李君, 崔法, 赵春华, 马航运, 王洪刚. 利用小麦关联RIL 群体定位产量相关性状QTL. 作物学报, 2011, 37: 1511–1524 Ding A M, Li J, Cui F, Zhao C H, Ma H Y, Wang H G. QTL mapping for yield related traits using two associated RIL populations of wheat. Acta Agron Sin, 2011, 37: 1511–1524 (in Chinese with English abstract)

[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[4] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[5] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[6] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[7] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[8] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[9] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[10] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[11] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[12] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[13] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[14] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[15] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!