欢迎访问作物学报,今天是

作物学报 ›› 2017, Vol. 43 ›› Issue (08): 1149-1160.doi: 10.3724/SP.J.1006.2017.01149

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

普通菜豆籽粒大小与形状的QTL定位

耿庆河,王兰芬,武晶,王述民*   

  1. 中国农业科学院作物科学研究所,北京 100081
  • 收稿日期:2016-12-21 修回日期:2017-04-20 出版日期:2017-08-12 网络出版日期:2017-04-27
  • 通讯作者: 王述民, E-mail: wangshumin@caas.cn
  • 基金资助:
    本研究由国家自然科学基金项目(31471559), 国家现代农业产业技术体系建设专项(CARS-09)和国家科技支撑计划项目(2013BAD01B03-18a)资助。

QTL Mapping for Seed Size and Shape in Common Bean

GENG Qing-He,WANG Lan-Fen,WU Jing,WANG Shu-Min*   

  1. Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2016-12-21 Revised:2017-04-20 Published:2017-08-12 Published online:2017-04-27
  • Contact: Wang Shumin, E-mail: wangshumin@caas.cn
  • Supported by:
    This study was supported by the National Natural Science Foundation of China (3141559), the China Agriculture Research System (CARS-09), and the National Key Technology R&D Program of China (2013BAD01B05-2-4).

摘要: 普通菜豆是世界上最重要的食用豆类作物之一,其籽粒大小和形状与产量及外观品质密切相关。本研究以来自安第斯基因库的大粒品种龙270709和来自中美基因库的小粒品种F5910配置杂交组合,获得的F2分离群体分别在哈尔滨大田与北京昌平温室种植,对百粒重、粒长、粒宽、粒厚、长宽比和长厚比6个籽粒性状进行了相关性分析和QTL定位。相关性分析表明,百粒重与粒长、粒宽、粒厚、长宽比、长厚比5个衡量籽粒大小和形状的性状均显著正相关。利用基于完备区间作图方法的IciMapping 4.1进行QTL定位,哈尔滨环境下定位到38个与百粒重、粒长、粒宽、粒厚、长宽比、长厚比相关的QTL,表型贡献率介于2.39%~17.37%之间,分布在除第1染色体外的其余10条染色体上;北京昌平环境下定位到21个上述性状的QTL,表型贡献率介于5.92%~22.53%之间,分布在第1、第3、第6、第7、第8、第9和第11染色体上。其中,百粒重QTLSW7与SW7’,SW6.1与SW6’,粒长QTLSL6.1与SL6.1’,粒厚QTLSH11与SH11’在2个环境下的标记区间重叠或者重合,SW7、SW6.1、SL6.1、SW6’和SL6.1’的表型贡献率在10%以上。

关键词: 普通菜豆, 籽粒大小, 粒形, 数量性状位点(QTL)

Abstract: Common bean is one of the most important food legumes worldwide. Seed size and shape have a great effect on yield and seed quality. This research used a F2 population derived from a cross of Andean cultivar Long 270709 ? Mesoamerican cultivar F5910 planted in Harbin, Heilongjiang and Beijing respectively to analyze the correlation among seed weight, seed length, seed width, seed height, seed length-to-width ratio and seed length-to-height ratio, and to detect QTL related to these traits. The correlation analysis showed that seed weight had a significant correlation with other traits related to seed size and shape. Software IciMapping 4.1 based on inclusive composite interval mapping was used to identify the additive QTL for seed size and shape. A total of 38 QTL were detected on 10 chromosomes except the first chromosome in Harbin environment with the PVE between 2.39% and 17.37%. A total of 21 QTL were detected on seven chromosomes (Chr.1, Chr.3, Chr.6, Chr.7, Chr.8, Chr.9, Chr.11) in Beijing environment with the PVE between 5.92% and 22.53%. Among them, four pairs of QTL were detected on the same marker interval, including seed weight QTL SW7 and SW7’, seed weight QTL SW6.1 and SW6’, seed length QTL SL6.1 and SL6.1’, and seed height QTL SH11 and SH11’. The PVE of SW7, SW6.1, SL6.1, SW6’, and SL6.1’ was larger than 10%.

Key words: Common bean, Seed size, Seed shape, Quantitative trait locus (QTL)

[1] 张赤红, 曹永生, 宗绪晓, 王志刚, 王述民. 普通菜豆种质资源形态多样性鉴定与分类研究. 中国农业科学, 2005, 38: 27~32 Zhang C H, Cao Y S, Zong X X, Wang Z G, Wang S M. Morphological diversity and classification of common bean (Phaseolus vulgaris L.) germplasm resource in China. Sci Agric Sin, 2005, 38: 27–32 (in Chinese with English abstract) [2] Pérez-Vega E, Pa?eda A, Rodríguez-Suárez C, Campa A, Giraldez R, Ferreira J J. Mapping of QTLs for morpho-agronomic and seed quality traits in a RIL population of common bean (Phaseolus vulgaris L.). Theor Appl Genet, 2010, 120: 1367–1380 [3] Schmutz J, Mcclean P E, Mamidi S, Wu G A, Cannon S B, Grimwood J, Jenkins J, Shu S Q, Song Q J, Chavarro C, Torres-Torres M, Geffroy V, oghaddam S M, Gao D Y, Abernathy B, Barry K, Blair M, Brick M A, Chovatia M, Gepts P, Goodstein D M, Gonzales M, Hellsten U, Hyte D L, Jia G F, Kelly J D, Kudrna D, Lee R, Richard M M S, Miklas P N, Osorno J M, Rodrigues J, Thareau V, Urrea C A, Wang M, Yu Y, Zhang M, Wing R A, Cregan P B, Rokhsar D S, Jackson S A. A reference genome for common bean and genome-wide analysis of dual domestications. Nat Genet, 2014, 46: 707–713 [4] Fan C C, Xing Y Z, Mao H L, Lu T T, Han B, Xu C G, Li X H, Zhang Q F. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet, 2006, 112: 1164–1171 [5] Song X J, Huang W, Shi M, Zhu M Z, Lin H X. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet, 2007, 39: 623–630 [6] Shomura A, Izawa T, Ebana K, Ebitani T, Kanegae H, Konishi S, Yano M. Deletion in a gene associated with grain size increased yields during rice domestication. Nat Genet, 2008, 40: 1023–1028 [7] Weng J F, Gu S H, Wan X Y, Gao H, Guo T, Su N, Lei C L, Zhang X, Cheng Z J, Guo X P, Wang J L, Jiang L, Zhai H Q, Wan J M. Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight. Cell Res, 2008, 18: 1199–1209 [8] Wang E T, Wang J J, Zhu X D, Hao W, Wang L Y, Li Q, Zhang L X, He W, Lu B R, Lin H X, Ma H, Zhang G Q, He Z H. Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nat Genet, 2008, 40: 1370–1374 [9] Li Y B, Fan C C, Xing Y Z, Jiang Y H, Luo L J, Sun L, Shao D, Xu C J. Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nat Genet, 2011, 43: 1266–1269 [10] Wang S K, Wu K, Yuan Q B, Liu X Y, Liu Z B, Lin X Y, Zeng R Z, Zhu H T. Control of grain size, shape and quality by OsSPL16 in rice. 2012, Nat Genet, 44: 950–954 [11] Sax K. The association of size differences with seed-coat pattern and pigmentation in PHASEOLUS VULGARIS. Genetics, 1923, 8: 552–560 [12] Vallejos C E, Chase C D. Linkage between isozyme markers and a locus affecting seed size in Phaseolus vulgaris L. Theor Appl Genet, 1991, 81: 413–419 [13] Blair M W, Iriarte G, Beebe S. QTL analysis of yield traits in an advanced backcross population derived from a cultivated Andean × wild common bean (Phaseolus vulgaris L.) cross. Theor Appl Genet, 2006, 112: 1149–1163 [14] Yuste-Lisbona F J, González A N, Capel C, Garcia-Alcazar M, Capel J, Ron A M D, Lozano R, Santalla M. Genetic analysis of single-locus and epistatic QTLs for seed traits in an adapted×nu?a RIL population of common bean (Phaseolus vulgaris L.). Theor Appl Genet, 2014, 127: 897–912 [15] Vlasova A, Capella-Gutiérrez S, Rendón-Anaya M, Hernández-O?ate M, E. Minoche A, Erb I, Camara F, Prieto-Barja P, Corvelo A, Sanseverino W, Westergaard G, C. Dohm J, J. Pappas Jr G, Saburido-Alvarez S, Kedra D, Gonzalez I, Cozzuto L, Gómez-Garrido J, A. Aguilar-Morón M, Andreu N, Aguilar O, Garcia-Mas J, Zehnsdorf M, P. Vázquez M, Delgado-Salinas A, Delaye L, Lowy E, Mentaberry A, P. Vianello-Brondani R, García J, Alioto T, Sánchez F, Himmelbauer H, Santalla M, Notredame C, Gabaldón T, Herrera-Estrella A, Guigó R. Genome and transcriptome analysis of the Mesoamerican common bean and the role of gene duplications in establishing tissue and temporal specialization of genes. Genome Biol, 2016, 17: 1–18 [16] Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucl Acids Res, 1980, 8: 4321–4325 [17] Li H H, Ye G Y, Wang J K. A modified algorithm for the improvement of composite interval mapping. Genetics, 2007, 175: 361–374 [18] Meng L, Li H H, Zhang L Y, Wang J K. QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental population. Crop J, 2015, 3: 269–283 [19] Wan X Y, Wan J M, Jiang L, Wang J K, Zhai H Q, Weng J F, Wang H L, Lei C L, Wang J K, Zhang X. QTL analysis for rice grain length and fine mapping of an identified QTL with stable and major effects. Theor Appl Genet, 2006, 112: 1258–1270 [20] 高用明, 朱军, 宋佑胜, 何慈信, 石春海, 邢永忠. 水稻永久F2群体抽穗期QTL的上位性及其与环境互作效应的分析. 作物学报, 2004, 30: 849–854 Gao Y M, Zhu J, Song Y S, He C X, Shi C H, Xing Y Z. Use of permanent F2 population to analyze epistasis and their interaction effects with environments for QTLs controlling heading date in rice. Acta Agron Sin, 2004, 30: 849–854 (in Chinese with English abstract) [21] Hoyos-Villegas V, Song Q, Wright E M, Beebe S E, Kelly D J. Joint linkage QTL mapping for yield and agronomic traits in a composite map of three common bean RIL populations. Crop Sci, 2016, 56: 1–18 [22] Tanksley S D. Mapping ploygenes. Annu Rev Genet, 1993, 27: 205–233 [23] 陈秀华, 于丽娟, 罗黎明, 陈洪梅, 刘丽. 玉米分子标记辅助育种及标记开发研究进展. 中国农业科技导报, 2016, 18(1): 26–31 Chen X H, Yu L J, Luo L M, Chen H M, Liu L. Research progress on maize molecular marker-assisted breeding and marker development. J Agric Sci Technol, 2016, 18(1): 26–31 (in Chinese with English abstract) [24] 赵洪波, 李明丽, 鲁绍雄, 连林生, 李国治. 群体规模和性状遗传力对F2设计下QTL定位效果的影响. 云南农业大学学报, 2007, 22(2): 159–163 Zhao H B, Li M L, Lu S X, Lian L S, Li G Z. Study on the effects of population size and trait heritability on the accuracy of QTL mapping under F2 design. J Yunnan Agric Univ, 2007, 22(2): 159–163 (in Chinese with English abstract) [25] Groos C, Robert N, Bervas E, Charmet G. Genetic analysis of grain protein-content, grain yield and thousand-kernel weight in bread wheat. Theor Appl Genet, 2003, 106: 1032–1040 [26] 张坤普, 徐宪斌, 田纪春. 小麦籽粒产量及穗部相关性状的QTL定位. 作物学报, 2009, 35: 270–278 Zhang K P, Xu X B, Tian J C. QTL mapping for grain yield and spike related traits in common wheat. Acta Agron Sin, 2009, 35: 270–278 (in Chinese with English abstract) [27] 李文福, 刘宾, 彭涛, 袁倩倩, 韩淑晓, 田纪春. 利用DH和IF2两个群体进行小麦粒重、粒型和硬度的QTL分析. 中国农业科学, 2012, 45: 3453–3462 Li W F, Liu B, Peng T, Yuan Q Q, Han S X, Tian J C. Detection of QTL for kernel weight, grain size, and grain hardness in wheat using DH and immortalized F2 population. Sci Agric Sin, 2012, 45: 3453–3462 (in Chinese with English abstract) [28] 覃鸿妮, 晏萌, 王召辉, 郭莹, 王辉, 孙海燕, 刘志斋, 蔡一林. 玉米籽粒中花色苷和黑色素含量的QTL分析. 作物学报, 2012, 38: 275–284 Qin H N, Yan M, Wang Z H, Guo Y, Wang H, Sun H Y, Liu Z Z, Cai Y L. QTL mapping for anthocyanin and melanin contents in maize kernel. Acta Agron Sin, 2012, 38: 275–284 (in Chinese with English abstract) [29] 郑德波, 杨小红, 李建生, 严建兵, 张士龙, 贺正华, 黄益勤. 基于SNP标记的玉米株高及穗位高QTL定位. 作物学报, 2013: 549–556 Zheng D B, Yang X H, Li J S, Yan J B, Zhang S L, He Z H, Huang Y Q. QTL identification for plant height and ear height based on SNP mapping in maize(Zea mays L.). Acta Agron Sin, 2013, 39: 549–556 (in Chinese with English abstract) [30] Tuberosa R, Salvi S, Sanguineti M C, Landi P, Maccaferri M, Conti S. Mapping QTLs regulating morpho-physiological traits and yield: case studies, shortcomings and perspectives in drought-stressed maize. Ann Bot, 2002, 89: 941–963
[1] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[2] 王小雷, 李炜星, 曾博虹, 孙晓棠, 欧阳林娟, 陈小荣, 贺浩华, 朱昌兰. 基于染色体片段置换系对水稻粒形及千粒重QTL检测与稳定性分析[J]. 作物学报, 2020, 46(10): 1517-1525.
[3] 彭伟业,孙平勇,潘素君,李魏,戴良英. 水稻品种魔王谷粒形、剑叶性状和株高QTL定位[J]. 作物学报, 2018, 44(11): 1673-1680.
[4] 薛仁风, 王利, 丰明, 葛维德. 普通菜豆中烟草水杨酸结合蛋白2同源基因的鉴定及表达特征分析[J]. 作物学报, 2018, 44(05): 642-649.
[5] 王兰芬, 武晶, 王昭礼, 陈吉宝, 余莉, 王强, 王述民. 普通菜豆种质资源不同环境下表型差异及生态适应性评价[J]. 作物学报, 2018, 44(03): 357-368.
[6] 朱吉风,武晶,王兰芬,朱振东,王述民*. 菜豆普通细菌性疫病抗性基因定位[J]. 作物学报, 2017, 43(01): 1-8.
[7] 王辉,梁前进,胡小娇,李坤,黄长玲,王琪,何文昭,王红武*,刘志芳*. 不同密度下玉米穗部性状的QTL分析[J]. 作物学报, 2016, 42(11): 1592-1600.
[8] 裔传灯*,王德荣,蒋伟,李玮,成晓俊,王颖,周勇. 水稻粒形基因GW8 的功能标记开发和单体型鉴定[J]. 作物学报, 2016, 42(09): 1291-1297.
[9] 陈强**,闫龙**,邓莹莹,肖二宁,刘兵强,杨春燕*,张孟臣*. 大豆籽粒大小与形状性状的QTL定位[J]. 作物学报, 2016, 42(09): 1309-1318.
[10] 秦伟伟,李永祥,李春辉,陈林,吴迅,白娜,石云素,宋燕春,张登峰,王天宇,黎裕. 基于高密度遗传图谱的玉米籽粒性状QTL定位[J]. 作物学报, 2015, 41(10): 1510-1518.
[11] 李龙,王兰芬,武晶,景蕊莲,王述民. 普通菜豆品种苗期抗旱性鉴定[J]. 作物学报, 2015, 41(06): 963-971.
[12] 陈明丽,王兰芬,武晶,张晓艳,杨广东,王述民1. 普通菜豆基因组SSR标记开发及在豇豆和小豆中的通用性分析[J]. 作物学报, 2014, 40(05): 924-933.
[13] 李龙,王兰芬,武晶,景蕊莲,王述民. 普通菜豆抗旱生理特性[J]. 作物学报, 2014, 40(04): 702-710.
[14] 陈春侠**,陆明洋**,尚爱兰,王玉民,席章营*. 基于单片段代换系的玉米百粒重QTL分析[J]. 作物学报, 2013, 39(09): 1562-1568.
[15] 牛远,谢芳腾,布素红,谢尚潜,韩世凤,耿青春,刘兵,章元明. 大豆粒形性状QTL的精细定位[J]. 作物学报, 2013, 39(04): 609-616.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!