欢迎访问作物学报,今天是

作物学报 ›› 2019, Vol. 45 ›› Issue (6): 957-966.doi: 10.3724/SP.J.1006.2019.81068

• 研究简报 • 上一篇    

限水减氮对豫北冬小麦产量和植株不同层次器官干物质运转的影响

姜丽娜1,马静丽1,方保停2,马建辉1,李春喜1,王志敏3,蒿宝珍3,4,*()   

  1. 1 河南师范大学生命科学学院, 河南新乡 453007
    2 河南省农科院小麦研究中心, 河南郑州 450002
    3 中国农业大学农学院, 北京 100193
    4 新乡学院生命科学技术学院, 河南新乡 453003
  • 收稿日期:2018-09-29 接受日期:2019-01-19 出版日期:2019-06-12 网络出版日期:2019-06-12
  • 通讯作者: 蒿宝珍
  • 作者简介:E-mail: jianglina73@aliyun.com
  • 基金资助:
    本研究由“十三五”国家重点研发计划项目课题(2017YFD0301101, 2016YFD0300203-3);国家科技支撑计划课题(2013BAD07B14);中央级科研院所基本科研业务费专项(中国农业科学院农田灌溉研究所)(FIRI2018-08-01);博士科研启动项目(1366020075, 1399020175)

Effect of lower water and nitrogen supply on grain yield and dry matter remobilization of organs in different layers of winter wheat plant in northern Henan province

Li-Na JIANG1,Jing-Li MA1,Bao-Ting FANG2,Jian-Hui MA1,Chun-Xi LI1,Zhi-Min WANG3,Bao-Zhen HAO3,4,*()   

  1. 1 College of Life Sciences, Henan Normal University, Xinxiang 453007, Henan, China
    2 Wheat Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, Henan, China
    3 College of Agronomy, China Agricultural University, Beijing 100193, China
    4 School of Life Science and Technology, College of Xinxiang, Xinxiang 453003, Henan, China
  • Received:2018-09-29 Accepted:2019-01-19 Published:2019-06-12 Published online:2019-06-12
  • Contact: Bao-Zhen HAO
  • Supported by:
    This study was supported by the National “13th Five-Year” Key Research and Development Plan(2017YFD0301101, 2016YFD0300203-3);the National Key Technology Support Program of China(2013BAD07B14);Basic Research Funding of National Research Institute (Farmland Irrigation Research Institute)(FIRI2018-08-01);the Scientific Research Staring of Doctoral Program(1366020075, 1399020175)

摘要:

采用节水栽培并减少氮肥用量是实现豫北冬小麦生产的高产、高效和环境友好发展的必然选择, 探明限水减氮对冬小麦产量和植株各层次器官干物质运转的影响, 可为该地区冬小麦节水栽培和合理施用氮肥提供科学依据。2009—2010和2010—2011年连续2年在河南浚县钜桥进行小麦田间裂区试验, 主区设置2个灌溉水平[拔节水(W1)和拔节水+开花水 (W2)], 副区设置5个氮肥水平[330 kg hm -2 (N4, 豫北地区小麦生产中常规施氮量)、270 kg hm -2 (N3)、210 kg hm -2 (N2)、120 kg hm -2 (N1)、0 kg hm -2 (N0)], 测定了籽粒产量和植株各层次器官干物质运转量、运转率和对籽粒贡献率。减量施氮与N4相比, 各营养器官向籽粒运转的干物质量均有增加, 其中, 穗轴+颖壳的干物质运转量增加了323.2%, 增幅远高于茎节的24.5%和叶片的4.6%, 且穗轴+颖壳的干物质运转率和对籽粒贡献率增幅也远高于茎节和叶片。减量施氮处理的叶片干物质运转量的增加主要源于倒三叶和倒四叶, 分别增加28.7%和201.1%, 而茎节干物质运转量的增加主要源于除穗位节外的其他茎节, 分别增加21.7% (倒二节)、71.8% (倒三节)、44.5% (倒四节)和31.1% (余节)。与W2相比, W1干物质运转量无显著差异, 但干物质运转率略高(24.6% vs. 23.8%), 对籽粒贡献率较高(35.1% vs. 30.0%), 籽粒产量降低11.2%, 水分供应量减少750 m 3hm -2。可见, 减量施氮促进了营养器官, 尤其是穗轴+颖壳和下层器官(倒三叶、倒四叶、倒三节、倒四节和余节)的干物质向籽粒的运转, 提高了对籽粒贡献率, 有利于提高籽粒产量。

关键词: 冬小麦, 减氮, 限水灌溉, 干物质, 运转

Abstract:

Reducing irrigation and N fertilizer application is an inevitable option to meet the target of enhancing grain yield, improving nutrient use efficiency and developing friendly environment in winter wheat production of northern Henan province. Clarifying effects of lower water and nitrogen supply on grain yield and dry matter remobilization of organs in different layers of wheat plant can provide scientific basis for rational N fertilizer inputs in wheat production with limited irrigation in Northern Henan province. A field experiment was carried out at the Xun County Experimental Station, Henan province by a split-plot design with water regime as the main plot and N rate as sub-plot factor in 2009-2010 and 2010-2011 growing seasons. There were two water regimes: W1 (irrigation of 75 mm water at stem elongation stage) and W2 (irrigation of 75 mm water at stem elongation stage plus 75 mm at anthesis), and five nitrogen (N) treatments: 120+210 kg ha -1 (N4, traditional N application rate with pre-sowing N and top-dressed N at elongation), 120+150 kg ha -1 (N3), 120+90 kg ha -1 (N2), 120+0 kg ha -1 (N1), and 0+0 kg ha -1 (N0). Grain yield and dry matter remobilization amount, dry matter remobilization efficiency, contribution rate of dry matter remobilization to grain of individual organs of wheat plant were analyzed. Compared with N4, the treatments of decreased N rate increased the amount, efficiency and contribution rate to grain of dry matter remobilization in vegetative organs, among them the dry matter remobilization amount of chaff increased by 323.2%, which was higher than that of stem (24.5%) and leaf (4.6%), as well as dry matter remobilization efficiency and contribution rate of dry matter remobilization to grain in chaff increased by 313.7% and 77.0%, respectively, which were higher than those in stem (30.9% and 36.8%) and leaf (17.8% and 13.4%). The increase of dry matter remobilization from leaf in treatments of decreased N rates was mainly attributed to the increased dry matter remobilization amount from the 3rd leaf and 4th leaf, which was 28.7% and 201.1%, respectively. Similarly, the increase of dry matter remobilization from stem in treatments of decreased N rates was mainly attributed to the increased dry matter accumulation amount from the 2nd internode, the 3rd internode, the 4th internode and residue internodes, which was 21.7%, 71.8%, 44.5%, and 31.1%, respectively. There were no signi?cant differences in dry matter accumulation amount between W1 and W2, with slight higher dry matter remobilization efficiency in W1 (24.6%) than in W2 (23.8%), and higher contribution rate of dry matter remobilization to grain in W1 (35.1%) than in W2 (30.0%). Compared with W2, W1 reduced grain yield by 11.2% with a water reduction of 750 m 3ha -1. The results indicate that lower nitrogen supply enhances the dry matter remobilization from wheat vegetative organs to grains, improving the contribution rate of dry matter remobilization to grain, which is mainly contributed by chaff and lower layer organs (the 3rd leaf, the 4th leaf, the 3rd internode, the 4th internode and residue internodes), but not by upper layer organs.

Key words: winter wheat, low nitrogen application, limited irrigation, dry matter, remobilization

图1

2009-2010和2010-2011年度冬小麦生育期间月降雨量及1981-2008年(28年)小麦生育期月平均降雨量"

表1

减氮处理(N3、N2、N1、N0)与常规施氮处理(N4)相比小麦植株各器官干物质运转量、运转率和对籽粒贡献率的增加量和增加率"

器官
Organ
运转量DMRA 运转率DMRE 贡献率CDMR
增加量
Increase amount
(mg stem-1)
增加率
Increase rate (%)
增加量
Increase amount (%)
增加率
Increase rate
(%)
增加量
Increase amount (%)
增加率
Increase rate
(%)
穗轴+颖壳Chaff 23.0 323.2 6.0 313.7 1.8 377.0
旗叶 Flag leaf -1.6 -4.2 0 0.1 0.1 2.8
倒二叶 2nd leaf -2.8 -7.4 -0.7 -1.9 0 0.3
倒三叶 3rd leaf 4.3 28.7 7.4 32.9 0.4 39.6
倒四叶 4th leaf 7.0 201.1 17.4 182.7 0.6 244.5
余叶 Residue leaf -1.9 -11.8 0.4 1.0 0 -3.7
叶片 Leaf 5.1 4.6 4.9 17.8 1.0 13.4
倒一节 1st internode -9.9 -15.9 -2.3 -12.9 -0.4 -9.4
倒二节 2nd internode 12.8 21.7 4.5 19.3 1.4 34.2
倒三节 3rd internode 22.9 71.8 10.8 63.6 2.0 91.6
倒四节 4th internode 19.2 44.5 9.5 31.2 1.8 60.0
余节 Residue internode 14.6 31.1 18.9 41.6 1.4 42.8
茎节 Internode 59.6 24.5 8.3 30.9 6.3 36.8

图2

不同氮肥和水分处理下小麦植株地上部各器官干物质运转量 误差线表示3次重复的标准误。括号内的数值为氮肥处理间差异达到显著水平的LSD0.05值。"

图3

不同氮肥和水分处理下小麦植株地上部各器官干物质运转率 误差线表示3次重复的标准误。括号内的数值为氮肥处理间差异达到显著水平的LSD0.05值。"

图4

不同氮肥和水分处理下小麦植株地上部各器官干物质运转对籽粒贡献率 误差线表示3次重复的标准误。括号内的数值为氮肥处理间达到显著差异的LSD0.05值。"

图5

不同氮肥和水分处理下小麦籽粒产量 误差线表示3次重复的标准误, 其上所标不同字母表示处理间差异显著(P < 0.05)。"

图6

不同氮肥处理下小麦植株地上部全部营养器官的平均干物质运转量(A)、运转率(B)和对籽粒贡献率(C) 各箱体中, 实线表示中位数, 虚线表示平均值。箱体上方不同字母表示处理间差异显著(P < 0.05)。"

[1] 王志敏, 王璞, 李绪厚, 李建民, 鲁来清 . 冬小麦节水省肥高产简化栽培理论与技术. 中国农业科技导报, 2006,8(5):38-44.
Wang Z M, Wang P, Li X H, Li J M, Lu L Q . Principle and technology of water-saving, fertilizer-saving, high-yielding and simple cultivation in winter wheat. J Agric Sci Tech China, 2006,8(5):38-44 (in Chinese with English abstract).
[2] 郭进考, 史占良, 何明琦, 张相岐, 张爱民, 贾旭 . 发展节水小麦缓解北方水资源短缺. 中国生态农业学报, 2010,18:876-879.
Guo J K, Shi Z L, He M Q, Zhang X Q, Zhang A M, Jia X . Development of water-saving wheat cultivars to limit water shortage in North China. Chin J Eco-Agric, 2010,18:876-879 (in Chinese with English abstract).
[3] 叶优良, 王桂良, 黄玉芳, 陈伟强 . 豫北高产灌区小麦生产与肥料施用状况研究. 河南农业科学, 2008,37(1):53-57.
Ye Y L, Wang G L, Huang Y F, Chen W Q . Wheat production and fertilizer application in northern Henan province. J Henan Agric Sci, 2008,37(1):53-57 (in Chinese with English abstract).
[4] 赵亚南, 徐霞, 黄玉芳, 孙笑梅, 叶优良 . 河南省小麦、玉米氮肥需求及节氮潜力. 中国农业科学, 2018,51:2747-2757.
Zhao Y N, Xu X, Huang Y F, Sun X M, Ye Y L . Nitrogen requirement and saving potential for wheat and maize in Henan province. Sci Agric Sin, 2018,51:2747-2757 (in Chinese with English abstract).
[5] 张福锁, 王激清, 张卫峰, 崔振岭, 马文奇, 陈新平, 江荣风 . 中国主要粮食作物肥料利用率现状与提高途径. 土壤学报, 2008,45:915-924.
Zhang F S, Wang J Q, Zhang W F, Cui Z L, Ma W Q, Chen X P, Jiang R F . Nutrient use efficiencies of major cereal crops in China and measures for improvement. Acta Pedol Sin, 2008,45:915-924 (in Chinese with English abstract).
[6] Guo J H, Liu X J, Zhang Y, Shen J L, Han W X, Zhang W F, Christie P, Goulding K W, Vitousek P M, Zhang F S . Significant acidification in major Chinese croplands. Science, 2010,237:1008-1010.
doi: 10.1126/science.1182570 pmid: 20150447
[7] Le C, Zha Y, Li Y, Sun D, Lu H, Yin B . Eutrophication of lake waters in China: cost, causes, and control. J Environ Manage, 2010,45:662-668.
doi: 10.1007/s00267-010-9440-3 pmid: 20177679
[8] Liu X J, Zhang Y, Han W X, Tang A H, Shen J L, Cui Z L, Vitousek P, Erisman J W, Goulding K, Christie P, Fangmeier A, Zhang F S . Enhanced nitrogen deposition over China. Nature, 2013,494:459-462.
[9] Zhang W F, Dou Z X, He P, Ju X T, Powlson D, Chadwick D, Norse D, Lu Y L, Zhang Y, Wu L, Chen X P, Cassman K G, Zhang F S . New technologies reduce greenhouse gas emissions from nitrogenous fertilizer in China. Proc Natl Acad Sci USA, 2013,110:8375-8380.
doi: 10.1073/pnas.1210447110 pmid: 23671096
[10] Ju X T, Zhang C . Nitrogen cycling and environmental impacts in upland agricultural soils in North China: a review. J Integr Agric, 2017,16:2848-2862.
doi: 10.1016/S2095-3119(17)61743-X
[11] 郭文善, 封超年, 严六零, 彭永欣, 朱新开, 宗爱国 . 小麦开花后源库关系分析. 作物学报, 1995,21:334-340.
Guo W S, Feng C N, Yan L L, Peng Y G, Zhu X K, Zong A G . Analysis on source-sink relationship after anthesis in wheat. Acta Agron Sin, 1995,21:334-340 (in Chinese with English abstract).
[12] 王月福, 于振文, 李尚霞, 余松烈 . 氮素营养水平对小麦开花后碳素同化, 运转和产量的影响. 麦类作物学报, 2002,22(2):55-59.
Wang Y F, Yu Z W, Li S X, Yu S L . Effect of nitrogen nutrition on carbon assimilation and transfer and yield after wheat anthesis. J Triticeae Crops, 2002,22(2):55-59 (in Chinese with English abstract).
[13] Ercoli L, Lulli L, Mariotti M, Masoni A, Arduini I . Post-anthesis dry matter and nitrogen dynamics in durum wheat as affected by nitrogen supply and soil water availability. Eur J Agron, 2008,28:138-147.
doi: 10.1016/j.eja.2007.06.002
[14] Arduini I, Masoni A, Ercoli L, Mariotti M . Grain yield, and dry matter and nitrogen accumulation and remobilization in durum wheat as affected by variety and seeding rate. Eur J Agron, 2006,25:309-318.
doi: 10.1016/j.eja.2006.06.009
[15] 吴清丽, 高茂盛, 廖允成, 温晓霞 . 氮素对冬小麦光合物质贮运及籽粒灌浆进程的影响. 干旱地区农业研究, 2009,27(2):120-124.
Wu Q L, Gao M S, Liao Y C, Wen X X . Effect of nitrogen application on accumulation and transportation of photoassimilation and grain filling course. Agric Res Arid Areas, 2009,27(2):120-124 (in Chinese with English abstract).
[16] 蒿宝珍, 张英华, 姜丽娜, 方保停, 张菡, 李春喜, 王志敏 . 限水灌溉下追氮水平对冬小麦旗叶光合特性及物质运转的影响. 麦类作物学报, 2010,30:863-869.
Hao B Z, Zhang Y H, Jiang L N, Fang B T, Zhang H, Li C X, Wang Z M . Effect of topdressing amount of nitrogen on photosynthetic characteristics and assimilates transportation in winter wheat under limited irrigation. J Triticeae Crops, 2010,30:863-869 (in Chinese with English abstract).
[17] Yang J, Zhang J . Grain filling of cereals under soil drying. New Phytol, 2006,169:223-236.
[18] Yang J, Zhang J, Wang Z . Water deficit-induced senescence and its relationship to the remobilization of pre-stored carbon in wheat during grain filling. Agron J, 2001,93:196-206.
[19] 吕金印, 山仑, 高俊凤 . 水分亏缺对小麦碳同化物的动员与分配. 核农学报, 2002,16(4):228-231.
Lyu J Y, Shan L, Gao J F . Mobilization and distribution of carbon assimilates of wheat under water deficits. J Nucl Agric Sci, 2002,16(4):228-231 (in Chinese with English abstract).
[20] 米慧聪, 谢双泽, 李跃, 丁寒, 吕金印 . 水分亏缺对小麦灌浆中后期穗部光合特性和 14C-同化物转运的影响 . 作物学报, 2017,43:149-154.
Mi H C, Xie S Z, Li Y, Ding H, Lyu J Y . Photosynthetic characteristics and 14C-assimilate translocation in wheat spike during mid-tolate-filling stage under water deficit . Acta Agron Sin, 2017,43:149-154 (in Chinese with English abstract).
[21] 张胜全, 方保停, 张英华, 周顺利, 王志敏 . 冬小麦节水栽培三种灌溉模式的水氮利用与产量形成. 作物学报, 2009,35:2045-2054.
Zhang S Q, Fang B T, Zhang Y H, Zhou S L, Wang Z M . Utilization of water and nitrogen and yield formation under three limited irrigation schedules in winter wheat. Acta Agron Sin, 2009,35:2045-2054 (in Chinese with English abstract).
[22] 马东辉, 王月福, 周华, 孙虎 . 氮肥和花后土壤含水量对小麦干物质积累, 运转及产量的影响. 麦类作物学报, 2007,27:847-851.
Ma D H, Wang Y F, Zhou H, Sun H . Effect of post-anthesis soil water status and nitrogen on grain yield and canopy biomass accumulation and transportation of winter wheat. J Triticeae Crops, 2007,27:847-851 (in Chinese with English abstract).
[23] 熊淑萍, 吴延鹏, 王小纯, 马新明, 杜盼, 吴懿鑫 . 减氮处理对不同小麦品种干物质积累及氮素转运特性的影响. 麦类作物学报, 2015,35:1134-1140.
Xiong S P, Wu Y P, Wang X C, Ma X M, Du P, Wu Y X . Effect of lower nitrogen application on dry matter accumulation and nitrogen translocation of different wheat varieties. J Triticeae Crops, 2015,35:1134-1140 (in Chinese with English abstract).
[24] 张嫚, 周苏玫, 杨习文, 周燕, 杨蕊, 张珂珂, 贺德先, 尹钧 . 减氮适墒对冬小麦土壤硝态氮分布和氮素吸收利用的影响. 中国农业科学, 2017,50:3385-3897.
Zhang M, Zhou S M, Yang X W, Zhou Y, Yang R, Zhang K K, He D X, Yin J . Effect of nitrogen-reducing and suitable soil moisture on nitrate nitrogen distribution in soil, nitrogen absorption and utilization of winter wheat. Sci Agric Sin, 2017,50:3385-3897 (in Chinese with English abstract).
[25] 蒿宝珍, 姜丽娜, 方保停, 张英华, 张菡, 李春喜, 王志敏 . 限水灌溉冬小麦冠层氮分布与转运特征及其对供氮的响应. 生态学报, 2011,31:4945-4951.
Hao B Z, Jiang L N, Fang B T, Zhang Y H, Zhang H, Li C X, Wang Z M . Effect of different nitrogen supply on the temporal and spatial distribution and remobilization of canopy nitrogen in winter wheat under limited irrigation condition. Acta Ecol Sin, 2011,31:4945-4951 (in Chinese with English abstract).
[26] 周苏玫, 张珂珂, 张嫚, 李磊, 张春丽, 尹钧, 贺德先 . 减氮适墒提高冬小麦旗叶光合潜力和籽粒产量. 作物学报, 2016,42:1677-1688.
Zhou S M, Zhang K K, Zhang M, Li L, Zhang C L, Yin J, He D X . Nitrogen-reducing and suitable soil moisture enhance photosynthetic potential of flag leaf and grain in winter wheat. Acta Agron Sin, 2016,42:1677-1688 (in Chinese with English abstract).
[27] 张琨, 秦毛毛, 刘艳喜, 秦海霞, 郑春风, 车军 . 减量施氮对郑麦101产量及加工品质的影响. 河南农业科学, 2018,47(5):24-27.
Zhang K, Qin M M, Liu Y X, Qin H X, Zheng C F, Che J . Effects of reducing nitrogen application rate on grain yield and processing quality of Zhengmai 101. J Henan Agric Sci, 2018,47(5):24-27 (in Chinese with English abstract).
[28] 赵亚南, 宿敏敏, 吕阳, 况福虹, 陈轩敬, 张跃强, 石孝均 . 减量施肥下小麦产量、肥料利用率和土壤养分平衡. 植物营养与肥料学报, 2017,23:864-873.
Zhao Y N, Su M M, Lyu Y, Kuang F H, Chen X J, Zhang Y Q, Shi X J . Wheat yield, nutrient use efficiencies and soil nutrient balance under reduced fertilizer rate. Plant Nutr Fert Sci, 2017,23:864-873 (in Chinese with English abstract).
[29] 魏爱丽, 王志敏 . 小麦茎秆贮藏物质对籽粒灌浆的影响. 中国农学通报, 2001,17(2):53-56.
Wei A L, Wang Z M . Effects of stem reserve for grain filling in wheat. Chin Agric Sci Bull, 2001,17(2):53-56 (in Chinese with English abstract).
[30] 姜东, 谢祝捷, 曹卫星, 戴廷波, 荆奇 . 花后干旱和渍水对冬小麦光合特性和物质运转的影响. 作物学报, 2004,30:175-182.
Jiang D, Xie Z J, Cao W X, Dai T B, Jing Q . Effects of post-anthesis drought and waterlogging on photosynthetic characteristics, assimilates transportation in winter wheat. Acta Agron Sin, 2004,30:175-182 (in Chinese with English abstract).
[1] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[2] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[3] 张特, 王蜜蜂, 赵强. 滴施缩节胺与氮肥对棉花生长发育及产量的影响[J]. 作物学报, 2022, 48(2): 396-409.
[4] 张军, 周冬冬, 许轲, 李必忠, 刘忠红, 周年兵, 方书亮, 张永进, 汤洁, 安礼政. 淮北地区麦茬机插优质食味粳稻氮肥减量的精确运筹[J]. 作物学报, 2022, 48(2): 410-422.
[5] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[6] 王建国, 张佳蕾, 郭峰, 唐朝辉, 杨莎, 彭振英, 孟静静, 崔利, 李新国, 万书波. 钙与氮肥互作对花生干物质和氮素积累分配及产量的影响[J]. 作物学报, 2021, 47(9): 1666-1679.
[7] 吴雅薇, 蒲玮, 赵波, 魏桂, 孔凡磊, 袁继超. 不同耐低氮性玉米品种的花后碳氮积累与转运特征[J]. 作物学报, 2021, 47(5): 915-928.
[8] 程艳双, 胡美艳, 杜志敏, 闫秉春, 李丽, 王祎玮, 鞠晓堂, 孙丽丽, 徐海. 减氮对辽粳5号/秋田小町RIL群体茎秆维管束、穗部和产量
性状的影响及其相互关系
[J]. 作物学报, 2021, 47(5): 964-973.
[9] 韦还和, 张徐彬, 葛佳琳, 孟天瑶, 陆钰, 李心月, 陶源, 丁恩浩, 陈英龙, 戴其根. 甬优籼粳杂交稻栽后地上部干物质积累动态与特征分析[J]. 作物学报, 2021, 47(3): 546-555.
[10] 柳燕兰, 郭贤仕, 张绪成, 马明生, 王宏康. 密度和施肥对旱地马铃薯干物质积累、产量和水肥利用的影响[J]. 作物学报, 2021, 47(2): 320-331.
[11] 张矞勋, 齐拓野, 孙源, 璩向宁, 曹媛, 吴梦瑶, 刘春虹, 王磊. 高分六号遥感影像植被特征及其在冬小麦苗期LAI反演中的应用[J]. 作物学报, 2021, 47(12): 2532-2540.
[12] 王飞, 郭彬彬, 孙增光, 尹飞, 刘领, 焦念元, 付国占. 增温增CO2浓度对玉米||花生体系玉米生长发育及产量的影响[J]. 作物学报, 2021, 47(11): 2220-2231.
[13] 胡鑫慧, 谷淑波, 朱俊科, 王东. 分期施钾对不同质地土壤麦田冬小麦干物质积累和产量的影响[J]. 作物学报, 2021, 47(11): 2258-2267.
[14] 周宝元, 葛均筑, 孙雪芳, 韩玉玲, 马玮, 丁在松, 李从锋, 赵明. 黄淮海麦玉两熟区周年光温资源优化配置研究进展[J]. 作物学报, 2021, 47(10): 1843-1853.
[15] 时晓娟, 韩焕勇, 王方永, 郝先哲, 高宏云, 罗宏海. DPC+化学封顶对不同施氮量下棉花叶片光合生理特性的影响[J]. 作物学报, 2020, 46(9): 1416-1429.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!