欢迎访问作物学报,今天是

作物学报 ›› 2019, Vol. 45 ›› Issue (1): 26-36.doi: 10.3724/SP.J.1006.2019.84060

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

基于形态学性状和SSR标记的花生品种遗传多样性分析和特异性鉴定

刘洪1(),徐振江1(),饶得花1,鲁清2,3,李少雄2,3,刘海燕2,3,陈小平2,3,梁炫强2,3,洪彦彬2,3,*()   

  1. 1 华南农业大学农学院, 广东广州 510642
    广东省农业科学院作物研究所, 广东广州 510640
    广东省农作物遗传改良重点实验室, 广东广州 510640
  • 收稿日期:2018-04-27 接受日期:2018-08-20 出版日期:2018-09-19 网络出版日期:2018-09-19
  • 通讯作者: 洪彦彬
  • 基金资助:
    本研究由国家自然科学基金项目(31771841);2015年品种资源保护项目(2015-18);广东省科技计划项目(2013B020301014);广东省科技计划项目(2013B050800021);广东省科技计划项目(2017A030311007);广东省科技计划项目(2016B020201003);广东省科技计划项目(2015A030313565);广东省现代农业创新联盟建设项目资助(2016LM3161)

Genetic diversity analysis and distinctness identification of peanut cultivars based on morphological traits and SSR markers

Hong LIU1(),Zhen-Jiang XU1(),De-Hua RAO1,Qing LU2,3,Shao-Xiong LI2,3,Hai-Yan LIU2,3, 2,3,Xuan-Qiang LIANG2,3,Yan-Bin HONG2,3,*()   

  1. 1 College of Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, China
    2 Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, Guangdong, China
    3 Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Guangzhou 510640, Guangdong, China
  • Received:2018-04-27 Accepted:2018-08-20 Published:2018-09-19 Published online:2018-09-19
  • Contact: Yan-Bin HONG
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(31771841);2015 Variety Resource Protection Project(2015-18);Science and Technology Plan Project of Guangdong Province(2013B020301014);Science and Technology Plan Project of Guangdong Province(2013B050800021);Science and Technology Plan Project of Guangdong Province(2017A030311007);Science and Technology Plan Project of Guangdong Province(2016B020201003);Science and Technology Plan Project of Guangdong Province(2015A030313565);Modern Agricultural Science and Technology Innovation Alliance Construction Project of Guangdong Province.(2016LM3161)

摘要:

以101份南方花生区试品种为材料, 利用形态学性状和SSR标记进行品种遗传多样性分析和特异性鉴定。结果表明, 29个形态学性状中有7个无多样性, 其余22个的多样性指数为0.23~0.77, 平均为0.43。在相似系数为0.76处, 将供试品种划分为七大类群, 同一育种单位的品种倾向于聚在一起。用40个SSR标记共检测出167个等位基因, 单个标记检测的等位基因数2~6个, 平均为4.18个。标记的多态性信息量(PIC)差异较大, 最大为0.79, 最小为0.26, 平均为0.55。在相似系数为0.70处, 供试品种可被划分为六大类群, 同一省份育成的品种多聚为一类。Mantel检验发现品种间的形态学性状和SSR标记的相似系数矩阵相关性弱(r = 0.36), SSR标记无法取代形态学性状单独用于花生品种特异性鉴定, 但两者相结合能有效提高花生品种特异性鉴定的准确性。

关键词: 花生, 形态学, SSR, 遗传多样性, DUS

Abstract:

The genetic diversity and distinctness of 101 peanut varieties participated in the South China peanut field trial were analyzed based on their morphological traits and SSR markers. Among 29 morphological traits seven were no difference while 22 demonstrated diversity indexes ranging from 0.23 to 0.77, with an average of 0.43. The varieties were divided into seven groups at the similarity coefficient of 0.76, and those released by the same breeding institution tended to converge into one cluster. Molecular characterization with 40 highly informative SSRs generated a total of 167 alleles ranging from 2 to 6 (averaged 4.18) alleles per marker. The polymorphism information content (PIC) of these markers varied from 0.79 to 0.26 with an average of 0.55/marker. The varieties were divided into six groups based on the similarity coefficient of 0.70, and those released by the same province tended to converge into one cluster. Mantel testing revealed that the correlations of the similarity coefficient matrixes between the morphological traits and SSR markers were weak (r = 0.36), implying that SSR markers are unable to replace morphological traits to be solely adopted to identify the distinctness of peanut varieties, but the combination of morphological traits and SSR markers will effectively increase the accuracy of distinctiveness identification.

Key words: peanut, morphology, SSR, genetic diversity, DUS

表1

供试品种数量及来源"

品种
Variety
数量
Number
育种单位
Breeding unit
省份
Province
粤油系列
YY series
16 广东省农业科学院作物研究所
Crops Research Institute, Guangdong Academy of Agricultural Sciences
广东
Guangdong
航花系列
HH series
2 广东省农业科学院作物研究所
Crops Research Institute, Guangdong Academy of Agricultural Sciences
广东
Guangdong
汕油系列
SY series
10 汕头市农业科学研究所
Shantou Agricultural Science Research Institute
广东
Guangdong
仲恺花系列
ZKH series
8 仲恺农业工程学院
Zhongkai University of Agriculture and Engineering
广东
Guangdong
湛油系列
ZY series
9 湛江市农业科学研究院
Zhanjiang Academy of Agricultural Sciences
广东
Guangdong
泉花系列
QH series
8 泉州市农业科学研究所
Quanzhou Agricultural Science Research Institute
福建
Fujian
闽花系列
MH series
8 福建农林大学
Fujian Agriculture and Forestry University
福建
Fujian
金花系列
JH series
2 福建农林大学
Fujian Agriculture and Forestry University
福建
Fujian
龙花系列
LH series
7 龙岩市农业科学研究所
Longyan Agricultural Science Research Institute
福建
Fujian
莆花系列
PH series
5 莆田市农业科学研究所
Putian Agricultural Science Research Institute
福建
Fujian
福花系列
FH series
3 福建省农业科学院作物研究所
Crops Research Institute, Fujian Academy of Agricultural Sciences
福建
Fujian
桂花系列
GH series
11 广西农业科学院经济作物研究所
Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences
广西
Guangxi
贺油系列
HY series
8 贺州市农业科学研究所
Hezhou Agricultural Science Research Institute
广西
Guangxi
湘花系列
XH series
2 湖南农业大学
Hunan Agricultural University
湖南
Hunan
云花系列
YH series
2 云南省农业科学院经济作物研究所
Cash Crops Research Institute, Yunnan Academy of Agricultural Sciences
云南
Yunnan

表2

供试品种的形态学性状特征"

序号
No.
形态学性状
Morphological trait
性状代码
Code of traits
Simpson指数
Simpson’s index
1 开花期 Flowering stage 3/4/5 0.31
2 植株: 开花习性 Plant: flowering general pattern 2 0
3 主茎: 开花习性 Main stem: flowering general pattern 3 0
4 叶: 小叶形状 Leaflet :shape 2 0
5 叶: 绿色程度 Leaflet: green degree 5/6/7 0.29
6 花: 花冠颜色 Flower: corolla color 2 0
7 植株: 生长习性 Plant: growth habit 1 0
8 叶: 小叶大小 Leaflet: size 5/6/7 0.36
9 主茎: 花青甙显色 Main stem: anthocyanin coloration 1/9 0.32
10 主茎: 茸毛密度 Main stem: pubescence density 1/2/3/5/6 0.37
11 植株: 主茎高度 Plant: main stem height 4/5/6 0.44
12 植株: 分枝数量 Plant: branching 3/4 0.38
13 植株: 侧枝长度 Plant: side branch length 4/5/6/7 0.43
14 成熟期 Mature period 4/5/6 0.31
15 荚果: 籽仁率Pod: rate of seed produced 2 0
16 植株: 荚果数 Plant: pods number 3/4/5 0.61
17 籽仁: 休眠期 Kernel: dormancy period 2/3/4/5 0.41
18 荚果: 长度 Pod: length 4/5/6 0.59
19 荚果: 缢缩程度 Pod: constrictions degree 3/4/5/6 0.48
20 荚果: 果嘴明显程度 Pod: prominence of beak 1/2/3/4/5/6 0.73
21 荚果: 果嘴形状 Pod: beak shape 1/2 0.24
22 荚果: 表面质地 Pod: surface texture 2/3/4/5 0.46
23 荚果: 出仁率 Pod: kernel percentage 3/4/5/6 0.67
24 籽仁: 百仁重 Kernel: weight per 100 kernels 1/2/3/4/5/6/7 0.77
25 籽仁: 形状 Kernel: shape 1/2 0.23
26 籽仁: 种皮颜色数量 Kernel: testa color number 1 0
27 籽仁: 种皮颜色 Kernel: testa color 2/4 0.38
28 籽仁: 种皮裂纹 Kernel: testa crack 1/2/3/4/5 0.52
29 籽仁: 种皮内表面颜色 Kernel: endortesta color 1/2 0.23

图1

形态学性状聚类分析图"

"

图3

形态学性状和SSR标记遗传相似性系数矩阵比较"

图2

SSR标记聚类分析图"

[1] 中华人民共和国农业农村部种子管理局. 中国种业大数据平台. 北京:中华人民共和国农业农村部, 2017[2018-04-01]. .
Bureau of Seed Management of Ministry of Agriculture and Rural Affairs of the People’s Republic of China. China Seed Industry Big Data Platform. Beijing: Ministry of Agriculture and Rural Affairs of the People’s Republic of China, 2017 [2018-04-01]. .
[2] 中华人民共和国国务院. 中华人民共和国植物新品种保护条例. 北京: 中国农业出版社, 1997. pp 4-5.
The State Council of the People’s Republic of China. Regulations of the People’s Republic of China Plant Variety Protection. Beijing: China Agriculture Press, 1997. pp 4-5(in Chinese).
[3] 鲁清, 李少雄, 陈小平, 周桂元, 洪彦彬, 李海芬, 梁炫强 . 我国南方产区花生育种现状、存在问题及育种建议. 中国油料作物学报, 2017,39:556-566.
doi: 10.7505/j.issn.1007-9084.2017.04.019
Lu Q, Li S X, Chen X P, Zhou G Y, Hong Y B, Li H F, Liang X Q . Current situation, problems and suggestions of peanut breeding in southern China. Chin J Oil Crop Sci, 2017,39:556-566 (in Chinese with English abstract).
doi: 10.7505/j.issn.1007-9084.2017.04.019
[4] Hayward A C, Tollenaere R, Dalton-Morgan J, Batley J . Molecular marker applications in plants. Methods Mol Biol, 2015,1245:13-27.
doi: 10.1007/978-1-4939-1966-6
[5] Cockram J, Jones H, Norris C, O'Sullivan D M . Evaluation of diagnostic molecular markers for DUS phenotypic assessment in the cereal crop, barley (Hordeum vulgare ssp. vulgare L.). Theor Appl Genet, 2012,125:1735-1749
[6] Jones H, Norris C, Smith D, Cockram J, Lee D, O’Sullivan D M, Mackay I . Evaluation of the use of high-density SNP genotyping to implement UPOV Model 2 for DUS testing in barley. Theor Appl Genet, 2013,126:901-911.
doi: 10.1007/s00122-012-2024-2 pmid: 23232576
[7] Tommasini L, Batley J, Arnold G M, Cooke R J, Donini P, Lee D, Law J R, Lowe C, Moule C, Trick M, Edwards K J . The development of multiplex simple sequence repeat (SSR) markers to complement distinctness, uniformity and stability testing of rape (Brassica napus L.) varieties. Theor Appl Genet, 2003,106:1091-1101.
doi: 10.1007/s00122-002-1125-8 pmid: 12671758
[8] Arens P, Mansilla C, Deinum D, Cavellini L, Moretti A, Rolland S, van der Schoot H, Calvache D, Ponz F, Collonnier C, Mathis R, Smilde D, Caranta C, Vosman B . Development and evaluation of robust molecular markers linked to disease resistance in tomato for distinctness, uniformity and stability testing. Theor Appl Genet, 2010,120:655-664.
doi: 10.1007/s00122-009-1183-2 pmid: 19855951
[9] Jones H, Mackay I . Implications of using genomic prediction within a high-density SNP dataset to predict DUS traits in barley. Theor Appl Genet, 2015,128:2461-2470.
doi: 10.1007/s00122-015-2601-2
[10] 滕海涛, 吕波, 赵久然, 徐岩, 王凤格, 堵苑苑, 杨坤, 唐浩, 李祥羽 . 利用DNA指纹图谱辅助植物新品种保护的可能性. 生物技术通报, 2009, (1):1-6.
Teng H T, Lyu B, Zhao J R, Xu Y, Wang F G, Du Y Y, Yang K, Tang H, Li X Y . DNA fingerprint profile involved in plant variety protection practice. Biotechnol Bull, 2009, (1):1-6 (in Chinese with English abstract).
[11] 中华人民共和国农业农村部. 植物新品种特异性、一致性和稳定性测试指南:花生. 北京: 中国农业出版社, 2012. pp 4-7.
Ministry of Agriculture and Rural Affairs of the People’s Republic of China. Guidelines for the Conduct of Tests for Distinctness, Uniformity and Stability:Peanut (Arachis hypogaea L.). Beijing: China Agriculture Press, 2012. pp 4-7(in Chinese).
[12] Shirasawa K, Bertioli D J, Varshney R K, Moretzsohn M C, Leal-Bertioli S C M, Thudi M, Pandey M K, Rami J F, Foncéka D, Gowda M V C, Qin H, Guo B, Hong Y, Liang X, Hirakawa H, Tabata S, Isobe S . Integrated consensus map of cultivated peanut and wild relatives reveals structures of the A and B genomes of Arachis and divergence of the legume genomes. DNA Res, 2013,20:173-184.
doi: 10.1093/dnares/dss042 pmid: 1744303
[13] Heilmann-Clausen J, Christensen M, Frøslev T G, Kjøller R . Taxonomy of Tricholoma in northern Europe based on ITS sequence data and morphological characters. Persoonia, 2017,38:38-57.
doi: 10.3767/003158517X693174 pmid: 5645187
[14] Smykal P, Horacek J, Dostalova R, Hybl M . Variety discrimination in pea (Pisum sativum L.) by molecular, biochemical and morphological markers. J Appl Genet, 2008,49:155-166.
doi: 10.1007/BF03195609 pmid: 18436990
[15] Ebrahimi A, Zarei A, Zamani F M, Lawson S . Evaluation of genetic variability among “Early Mature” Juglans regia using microsatellite markers and morphological traits. Peer J, 2017,5:e3834.
[16] Rebaa F, Abid G, Aouida M, Abdelkarim S, Aroua I, Muhovski Y, Baudoin J P, M’hamdi M, Sassi K, Jebara M . Genetic variability in Tunisian populations of faba bean (Vicia faba L. var. major) assessed by morphological and SSR markers. Physiol Mol Biol Plants, 2017,23:397-409.
doi: 10.1007/s12298-017-0419-x pmid: 28461727
[17] 李瑞峰, 高鹏, 朱子成, 栾非时 . 基于形态学标记及SSR标记的甜瓜主栽品种分类鉴定研究. 中国蔬菜, 2014, ( 6):20-27.
doi: 10.3969/j.issn.1000-6346.2014.06.004
Li R F, Gao P, Zhu Z C, Luan F S . Studies on classification and identification based on morphological markers and SSR markers for elite varieties of Cucumis melo L. China Vegetables, 2014, ( 6):20-27 (in Chinese with English abstract).
doi: 10.3969/j.issn.1000-6346.2014.06.004
[18] 李鹤, 郭世荣, 束胜, 徐扬, 孙锦 . 砧用南瓜种质资源形态学性状与SSR标记分析. 园艺学报, 2014,41:1379-1390.
Li H, Guo S R, Shu S, Xu Y, Sun J . Germplasm resources analysis of rootstock-used pumpkins by phenotype and SSR. Acta Hortic Sin, 2014,41:1379-1390 (in Chinese with English abstract).
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[3] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[4] 刘嘉欣, 兰玉, 徐倩玉, 李红叶, 周新宇, 赵璇, 甘毅, 刘宏波, 郑月萍, 詹仪花, 张刚, 郑志富. 耐三唑并嘧啶类除草剂花生种质创制与鉴定[J]. 作物学报, 2022, 48(4): 1027-1034.
[5] 陈小红, 林元香, 王倩, 丁敏, 王海岗, 陈凌, 高志军, 王瑞云, 乔治军. 基于高基元SSR构建黍稷种质资源的分子身份证[J]. 作物学报, 2022, 48(4): 908-919.
[6] 张霞, 于卓, 金兴红, 于肖夏, 李景伟, 李佳奇. 马铃薯SSR引物的开发、特征分析及在彩色马铃薯材料中的扩增研究[J]. 作物学报, 2022, 48(4): 920-929.
[7] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
[8] 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291.
[9] 汪颖, 高芳, 刘兆新, 赵继浩, 赖华江, 潘小怡, 毕晨, 李向东, 杨东清. 利用WGCNA鉴定花生主茎生长基因共表达模块[J]. 作物学报, 2021, 47(9): 1639-1653.
[10] 王建国, 张佳蕾, 郭峰, 唐朝辉, 杨莎, 彭振英, 孟静静, 崔利, 李新国, 万书波. 钙与氮肥互作对花生干物质和氮素积累分配及产量的影响[J]. 作物学报, 2021, 47(9): 1666-1679.
[11] 石磊, 苗利娟, 黄冰艳, 高伟, 张忠信, 齐飞艳, 刘娟, 董文召, 张新友. 花生AhFAD2-1基因启动子及5'-UTR内含子功能验证及其低温胁迫应答[J]. 作物学报, 2021, 47(9): 1703-1711.
[12] 高芳, 刘兆新, 赵继浩, 汪颖, 潘小怡, 赖华江, 李向东, 杨东清. 北方主栽花生品种的源库特征及其分类[J]. 作物学报, 2021, 47(9): 1712-1723.
[13] 张鹤, 蒋春姬, 殷冬梅, 董佳乐, 任婧瑶, 赵新华, 钟超, 王晓光, 于海秋. 花生耐冷综合评价体系构建及耐冷种质筛选[J]. 作物学报, 2021, 47(9): 1753-1767.
[14] 薛晓梦, 吴洁, 王欣, 白冬梅, 胡美玲, 晏立英, 陈玉宁, 康彦平, 王志慧, 淮东欣, 雷永, 廖伯寿. 低温胁迫对普通和高油酸花生种子萌发的影响[J]. 作物学报, 2021, 47(9): 1768-1778.
[15] 郝西, 崔亚男, 张俊, 刘娟, 臧秀旺, 高伟, 刘兵, 董文召, 汤丰收. 过氧化氢浸种对花生种子发芽及生理代谢的影响[J]. 作物学报, 2021, 47(9): 1834-1840.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!