欢迎访问作物学报,今天是

作物学报 ›› 2019, Vol. 45 ›› Issue (11): 1664-1671.doi: 10.3724/SP.J.1006.2019.92003

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

水稻黑条矮缩病抗性QTL定位

刘江宁1,2,王楚鑫1,2,张宏根1,2,*(),缪一栩1,2,高海林1,2,许作鹏1,2,刘巧泉1,2,汤述翥1,2   

  1. 1 江苏省作物遗传生理重点实验室 / 植物功能基因组学教育部重点实验室 / 江苏省作物基因组学和分子育种重点实验室 / 扬州大学农学院, 江苏扬州225009
    2 江苏省粮食作物现代产业技术协同创新中心 / 扬州大学, 江苏扬州225009
  • 收稿日期:2019-01-11 接受日期:2019-06-12 出版日期:2019-11-12 网络出版日期:2019-07-09
  • 通讯作者: 张宏根
  • 基金资助:
    本研究由国家转基因生物新品种培育重大专项(2016ZX08001002-003);国家自然科学基金项目(31771743);江苏高校优势学科建设工程项目资助

Mapping of QTLs for resistance to rice black-streaked dwarf disease

LIU Jiang-Ning1,2,WANG Chu-Xin1,2,ZHANG Hong-GEN1,2,*(),MIAO Yi-Xu1,2,GAO Hai-Lin1,2,XU Zuo-Peng1,2,LIU Qiao-Quan1,2,TANG Shu-Zhu1,2   

  1. 1 Jiangsu Key Laboratory of Crop Genetics and Physiology / Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, Jiangsu, China
    2 Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, Jiangsu, China
  • Received:2019-01-11 Accepted:2019-06-12 Published:2019-11-12 Published online:2019-07-09
  • Contact: Hong-GEN ZHANG
  • Supported by:
    This study was supported by the National Major Project for Developing New GM Crops(2016ZX08001002-003);the National Natural Science Foundation of China(31771743);the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)

摘要:

发掘水稻黑条矮缩病的抗性基因有助于抗病品种的选育, 减少黑条矮缩病对水稻生产的危害。本研究构建了包含222个家系的L5494/IR36重组自交系群体。对该群体进行黑条矮缩病的田间诱发鉴定, 抗性亲本IR36发病率为28.70%, 感病亲本L5494发病率为84.26%, 群体发病率范围为11.21%~89.81%。利用134对分子标记构建覆盖12条染色体的遗传连锁图谱, 总遗传距离为1475.97 cM, 平均标记间距为11.1 cM。利用QTL IciMapping 4.0对抗黑条矮缩病QTL进行分析, 共检测到4个QTL, 其中第1、第2、第9染色体上QTL的表型贡献率分别为12.64%、16.00%和8.43%, 抗病等位基因来自抗病亲本IR36; 第6染色体上QTL的表型贡献率为10.82%, 抗病等位基因来自感病亲本L5494。在此基础上, 利用93-11为供体、日本晴为背景的近等基因系材料, 在qRBSDV-1定位区间内检测到来自93-11的抗性QTL。本研究结果为水稻黑条矮缩病抗性基因定位及分子标记辅助选择育种提供借鉴。

关键词: 水稻黑条矮缩病, 重组自交系, QTL定位

Abstract:

Rice black-streaked dwarf virus disease (RBSDV) may cause great loss of rice production, and breeding resistant varieties is an effective method to control RBSDV. To develop resistant varieties, it is important to screen germplasm that shows RBSDV resistance and to identify the genes/quantitative trait loci (QTLs) contained. In the present study, a set of 222 recombinant inbred lines (RILs) derived from the cross between L5494 (a susceptible japonica variety) and IR36 (a resistant indica variety) were constructed for RBSDV-resistant QTL mapping. With natural infection test, the RBSDV incidences of L5494 and IR36 were 84.26% and 28.70%, respectively, and the disease incidence of RILs was ranged from 11.21% to 89.81%. Using 134 polymorphic molecular markers, a linkage genetic map was constructed. The map covered a total length of 1475.97 cM with an average interval of 11. 1 cM between adjacent markers. Four RBSDV-resistant QTLs were discovered using QTL IciMapping 4.0 Software, of which, qRBSDV-1, qRBSDV-2, and qRBSDV-9 were from the resistant parent IR36, and qRBSDV-6 from the susceptible parent L5494. QTLs qRBSDV-1, qRBSDV-2, qRBSDV-6, and qRBSDV-9 were located on chromosomes 1, 2, 6, and 9, respectively, which explained 12.64%, 16.00%, 10.82%, and 8.43% of the phenotypic variations. Moreover, a RBSDV-resistant QTL from 93-11 (O. sativa spp. indica) at the qRBSDV-1 locus was confirmed by a near isogenic line that harbors qRBSDV-1 derived from 93-11 with the Nipponbare (O. sativa spp. japonica) genetic background. Our findings will be benefit for the marker assisted breeding of RBSDV-resistant varieties.

Key words: rice black-streaked dwarf viral disease, recombinant inbred line, QTL mapping

图1

IR36、L5494与群体中小区发病情况 A: 亲本IR36; B: 亲本L5494; C: 群体中重病小区。"

图2

重组自交系群体发病率次数分布图"

图3

基于L5494/IR36 RIL群体构建的遗传连锁图谱"

图4

水稻黑条矮缩病抗性QTL在染色体上的位置"

表1

L5494/ IR36重组自交系抗病QTL定位结果"

数量性状位点
QTL
年份
Year
染色体
Chr.
左侧标记
Left marker
右侧标记
Right marker
临界值
LOD
表型贡献率
PVE (%)
加性效应值
Add.
qRBSDV-1 2015 Chr.1 AP-39.6 RM104 2.96 6.19 4.39
2016 Chr.1 AP-39.6 RM104 4.44 12.64 7.16
qRBSDV-2 2016 Chr.2 CHR2-4 RM341 6.89 16.00 7.61
qRBSDV-6 2013 Chr.6 RM19234 CHR-6-1 4.68 13.33 -2.61
2014 Chr.6 RM19234 CHR-6-1 2.91 11.00 -2.11
2016 Chr.6 RM19234 CHR-6-1 5.45 10.82 -6.20
qRBSDV-9 2013 Chr.9 RM242 RM160 3.30 8.71 2.10
2014 Chr.9 RM242 RM160 4.56 12.27 2.11
2015 Chr.9 RM242 RM160 3.48 6.62 4.31
2016 Chr.9 RM242 RM160 3.94 8.43 5.48

图5

代换系N9的重测序图谱 蓝线、红线分别表示对应SNP位点为日本晴与93-11基因型, 红框表示93-11导入片段。"

表2

日本晴与9311及N9发病情况"

年份
Year
供试材料
Variety
重复1发病率
Repeat 1
重复2发病率
Repeat 2
重复3发病率
Repeat 3
平均发病率
Average
2017 日本晴Nipponbare 31.20 32.73 29.63 31.19
93-11 18.33 10.19 18.35 15.62**
N9 25.65 29.17 24.32 26.38*
2018 日本晴Nipponbare 8.00 18.00 13.00 10.33
93-11 0 3.00 3.00 2.00*
N9 4.00 1.00 1.02 2.01*

图6

2017年日本晴及N9田间发病情况 A: 日本晴; B: N9。"

[1] Milne R G, Lovisolo O . Maize rough dwarf and related viruses. Adv Virus Res, 1977,21:267-341.
[2] Azuhata F, Uyeda I, Kimura I, Shikata E . Close similarity between genome structures of rice black-streaked dwarf and maize rough dwarf viruses. J Gen Virol, 1993,74:1227-1232.
[3] Wang Z H, Fang S G, Xu J L, Sun L Y, Li D W, Yu J L . Sequence analysis of the complete genome of rice black-streaked dwarf virus isolated from maize with rough dwarf disease. Virus Genes, 2003,27:163-168.
[4] Zhang H M, Chen J P, Lei J L, Adama M J . Sequence analysis shows that a dwarfing disease on rice, wheat and maize in China is caused by rice black-streaked dwarf virus. Eur J Plant Pathol, 2001,107:563-567.
[5] 王朝辉, 周益军, 范永坚, 程兆榜, 张文荟 . 江苏水稻黑条矮缩病毒 S10 的cDNA克隆序列分析. 中国病毒学, 2002,17(2):142-144.
Wang C H, Zhou Y J, Fan Y J, Cheng Z B, Zhang W H . cDNA clone and sequence analysis of segment 10 of rice black-streaked dwarf Fijivirus in Jiangsu. Virol Sin, 2002,17(2):142-144 (in Chinese with English abstract).
[6] 李德葆, 王拱辰, 盛方镜 . 浙江省水稻病毒病的发生规律和防治. 植物病理学报, 1979,9:73-87.
Li D B, Wang Z C, Sheng F J . Epidemological study on rice virus disease and their control in Zhejiang province. Acta Phytopathol Sin, 1979,9:73-87 (in Chinese with English abstract).
[7] Wang H D, Chen J P, Wang A G, Jiang X H, Adama M J . Studies on the epidemiology and yield losses from rice black-streaked dwarf disease in a recent epidemic in Zhejiang province, China. Plant Pathol, 2009,58:815-825.
[8] 陈声祥, 吴惠玲, 廖璇刚, 吕永平, 沈升法, 王藕芳, 金梅松 . 水稻黑条矮缩病在浙中的回升流行原因分析. 浙江农业科学, 2000, ( 6):287-289.
Chen S X, Wu H L, Liao X G, Lyu Y P, Shen S F, Wang O F, Jin M S . The prevalent reason of rice black-streaked dwarf viral disease in the middle of Zhejiang. Zhejiang Agric Sci, 2000, ( 6):287-289 (in Chinese with English abstract).
[9] 孙枫, 徐秋芳, 程兆榜, 范永坚, 周益军 . 中国水稻黑条矮缩病研究进展. 江苏农业学报, 2013,29:195-201.
Sun F, Xu Q F, Cheng Z B, Fan Y J, Zhou Y J . Advances in rice black-streaked dwarf disease in China. Jiangsu J Agric Sci, 2013,29:195-201 (in Chinese with English abstract).
[10] 任应党, 鲁传涛, 王锡锋 . 水稻黑条矮缩病暴发流行原因分析——以河南开封为例. 植物保护, 2016,42(3):8-16.
Ren Y D, Lu C T, Wang X F . Analysis of the reason for the outbreak epidemics of the rice black-streaked dwarf disease: Kaifeng in Henan Province as an example. Plant Prot, 2016,42(3):8-16 (in Chinese with English abstract).
[11] 王宝祥, 江玲, 陈亮明, 卢百关, 王琦, 黎光泉, 樊继伟, 程遐年, 翟虎渠, 徐大勇, 万建民 . 水稻黑条矮缩病抗性资源的筛选和抗性QTL的定位. 作物学报, 2010,36:1258-1264.
Wang B X, Jiang L, Chen L M, Lu B G, Wang Q, Li G Q, Fan J W, Cheng X N, Zhai H Q, Xu D Y, Wan J M . Screening of rice resources against rice black-streaked dwarf virus and mapping of resistant QTL. Acta Agron Sin, 2010,36:1258-1264 (in Chinese with English abstract).
[12] 李爱宏, 戴正元, 季红娟, 张小祥, 李育红, 潘存红, 张洪熙, 潘学彪 . 不同基因型水稻种质对黑条矮缩病抗性的初步分析. 扬州大学学报(农业与生命科学版), 2008,29(3):18-22.
Li A H, Dai Z Y, Ji H J, Zhang X X, Li Y H, Pan C H, Zhang H X, Pan X B . Preliminary analysis on resistance of rice black-streaked dwarf viral visease for germplasms with different gene-types. J Yangzhou Univ(Agric & Life Sci Edn), 2008,29(3):18-22 (in Chinese with English abstract).
[13] 李爱宏, 潘存红, 戴正元, 肖宁, 余玲, 李育红, 张小祥, 张洪熙, 潘学彪 . 以标记辅助选择改良江苏主栽粳稻品种“淮稻5号”黑条矮缩病抗性. 作物学报, 2012,38:1775-1781.
Li A H, Pan C H, Dai Z Y, Xiao N, Yu L, Li Y H, Zhang X X, Zhang H X, Pan X B . Using marker-assisted selection to improve the resistance to rice black-streaked dwarf viral disease of Huaidao 5, an elite japonica rice cultivar in Jiangsu. Acta Agron Sin, 2012,38:1775-1781 (in Chinese with English abstract).
[14] 王宝祥, 胡金龙, 孙志广, 宋兆强, 卢百关, 周振玲, 樊继伟, 秦德荣, 刘裕强, 江铃, 徐大勇, 万建民 . 水稻黑条矮缩病抗性评价方法及抗性资源筛选. 作物学报, 2014,40:1521-1530.
Wang B X, Hu J L, Sun Z G, Song Z Q, Lu B G, Zhou Z L, Fan J W, Qin D R, Liu Y Q, Jiang L, Xu D Y, Wan J M . An evaluation system for rice black-streaked dwarf virus disease and screening for resistant rice germplasm. Acta Agron Sin, 2014,40:1521-1530 (in Chinese with English abstract).
[15] 潘存红, 李爱宏, 陈宗祥, 吴林波, 戴正元, 张洪熙, 黄年生, 陈夕军, 张亚芳, 左示敏, 潘学彪 . 水稻黑条矮缩病抗性QTL分析. 作物学报, 2009,35:2213-2217.
Pan C H, Li A H, Chen Z X, Wu L B, Dai Z Y, Zhang H X, Huang N S, Chen X J, Zhang Y F, Zuo S M, Pan X B . Detection of QTL for resistance to rice black-streaked dwarf viral disease. Acta Agron Sin, 2009,35:2213-2217 (in Chinese with English abstract).
[16] Li A H, Pan C H, Wu L B, Dai Z Y, Zuo S M, Xiao N, Yu L, Li Y H, Zhang X X, Xue W X, Zhang H X, Pan X B . Identification and fine mapping of qRBSDV-6MH, a major QTL for resistance to rice black-streaked dwarf virus disease. Mol Breed, 2013,32:1-13.
[17] Sun Z G, Liu Y Q, Xiao S Z, Hu J L, Pan G, He J, Xu T T, Huang J, Qiu Z Y, Fan D J, Zhang L, Liu L L, Jiang L, Cheng X N, Zhai H Q, Wan J M . Identification of quantitative trait loci for resistance to rice black-streaked dwarf virus disease and small brown planthopper in rice. Mol Breed, 2017,37:72.
[18] Zhou T, Du L L, Wang L J, Wang Y, Gao C Y, Lan Y, Sun F, Fan Y J, Wang G L, Zhou Y J . Genetic analysis and molecular mapping of QTLs for resistance to rice black-streaked dwarf disease in rice. Sci Rep, 2015,5:10509.
[19] Zhang H G, Ge Y S, Wang M Y, Liu J N, Si H, Zhang L J, Liang G H, Gu M H, Tang S Z . Mapping QTLs conferring resistance to rice black-streaked dwarf disease in rice (Oryza sativa L.). Euphytica, 2016,212:323-330.
[20] 王英 . 水稻对黑条矮缩病的抗性遗传分析及基因定位. 南京农业大学硕士学位论文,江苏南京, 2011.
Wang Y . Genetic Analysis and Molecular Mapping of QTL for Rice Black Streaked-dwarf Disease Resistance in Rice. MS Thesis of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2011 (in Chinese with English abstract).
[21] Zheng T Q, Yang J, Zhong W G, Zhai H Q, Zhu L H, Fan F J, Juahar A, Yang J H, Wang J, Zhu J Y, Veronica U, Xu J L, Li Z K . Novel loci for field resistance to black-streaked dwarf and stripe viruses identified in a set of reciprocal introgression lines of rice (Oryza sativa L.). Mol Breed, 2012,29:925-938.
[22] Xu Z P, Li S C, Zhang C Q, Zhang B C, Zhu K Z, Zhou Y H, Liu Q Q . Genetic connection between cell-wall composition and grain yield via parallel QTL analysis in indica and japonica subspecies. Sci Rep, 2017,7:12561.
[23] Zhu K Z, Zhang H, Liu X Y, Hu B, Zhang C Q, Gu M H, Liu Q Q . Development and high-throughput genotyping of substitution lines carrying the chromosome segments of indica 9311 in the background of japonica Nipponbare. J Genet Genomics, 2011,38:603-611.
[24] 周彤, 吴丽娟, 王英, 程兆榜, 季英华, 范永坚, 周益军 . 水稻对黑条矮缩病感病生育期研究初报. 华北农学报, 2010,25(6):128-131.
doi: 10.7668/hbnxb.2010.06.024
Zhou T, Wu L J, Wang Y, Cheng Z B, Ji Y H, Fan Y J, Zhou Y J . Preliminary report on the susceptible growth stages of rice to rice black-streaked dwarf disease. Acta Agric Boreali Sin, 2010,25(6):128-131 (in Chinese with English abstract).
doi: 10.7668/hbnxb.2010.06.024
[25] Rogers S O, Bendich A J. Extraction of DNA from plant tissues. In: Gelvin S B, Schilperoort R A, Verma D P S, eds. Plant Molecular Biology Manual. Dordrecht: Springer, 1989. pp 73-83.
[26] Meng L, Li H H, Zhang L Y, Wang J K . QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J, 2015,3:269-283.
[27] McCouch S R, Cho Y G, Yano M, Paul E, Blinstrub M, Morishima H, Kinoshita T . Report on QTL nomenclature. Rice Genet Newsl, 1997,14:11-13.
[28] 周彤, 王英, 吴丽娟, 范永坚, 周益军 . 水稻品种抗黑条矮缩病人工接种鉴定方法. 植物保护学报, 2011,38:301-305.
Zhou T, Wang Y, Wu L J, Fan Y J, Zhou Y J . Method of artificial inoculation identification of rice cultivar resistance to rice black-streaked dwarf. Acta Phytophy Sin, 2011,38:301-305 (in Chinese with English abstract).
[29] 王宝祥, 谭维娜, 卢百关, 宋兆强, 徐大勇 . 水稻品种‘连粳7号’对黑条矮缩病的抗性分析. 中国农学通报, 2014,30(12):51-56.
Wang B X, Tan W N, Lu B G, Song Z Q, Xu D Y . Resistance analysis of the rice cultivar ‘Lianjing 7’ to rice black-streaked dwarf disease. Chin Agric Sci Bull, 2014,30(12):51-56 (in Chinese with English abstract).
[30] Wang Q, Liu Y Q, Hu J L, Zhang Y X, Xie K, Wang B X, Le Quang T, Song Z Q, Wu H, Liu Y L, Jiang L, Liu S J, Cheng X N, Wang C M, Zhai H Q, Wan J M . Detection of quantitative trait loci (QTLs) for resistances to small brown planthopper and rice stripe virus in rice using recombinant inbred lines. Int J Mol Sci, 2013,14:8406-8421.
[31] Wang B X, Wen Y B, Liu Y, Wang K J, Dai H M, Liu J B, Pu H C, Xu D Y . Correlation analysis of rice resistance against black-streaked dwarf virus disease (RBSDV) and small brown planthopper (Laodelphax striatellus Fallen). Plant Diseases Pests, 2016,7(3):1-5.
[1] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[2] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[3] 张波, 裴瑞琴, 杨维丰, 朱海涛, 刘桂富, 张桂权, 王少奎. 利用单片段代换系鉴定巴西陆稻IAPAR9中的粒型基因[J]. 作物学报, 2021, 47(8): 1472-1480.
[4] 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598.
[5] 沈文强, 赵冰冰, 于国玲, 李凤菲, 朱小燕, 马福盈, 李云峰, 何光华, 赵芳明. 优良水稻染色体片段代换系Z746的鉴定及重要农艺性状QTL定位及其验证[J]. 作物学报, 2021, 47(3): 451-461.
[6] 郭建斌,黄莉,刘念,罗怀勇,周小静,陈伟刚,吴贝,淮东欣,任小平,姜慧芳. 利用RIL群体创制低山嵛酸花生新种质[J]. 作物学报, 2020, 46(5): 661-667.
[7] 刘代铃,谢俊锋,何乾瑞,陈四维,胡跃,周佳,佘跃辉,刘卫国,杨文钰,武晓玲. 净作和套作下大豆贮藏蛋白11S、7S组分相对含量的QTL分析[J]. 作物学报, 2020, 46(3): 341-353.
[8] 吴海涛, 张勇, 苏伯鸿, Lamlom F Sobhi, 邱丽娟. 大豆分枝数相关分子标记开发及qBN-18位点精细定位[J]. 作物学报, 2020, 46(11): 1667-1677.
[9] 王存虎,刘东,许锐能,杨永庆,廖红. 大豆叶柄角的QTL定位分析[J]. 作物学报, 2020, 46(01): 9-19.
[10] 杨晓梦, 李霞, 普晓英, 杜娟, Muhammad Kazim Ali, 杨加珍, 曾亚文, 杨涛. 大麦重组自交系群体籽粒总花色苷含量和千粒重QTL定位[J]. 作物学报, 2020, 46(01): 52-61.
[11] 王大川,汪会,马福盈,杜婕,张佳宇,徐光益,何光华,李云峰,凌英华,赵芳明. 增加穗粒数的水稻染色体代换系Z747鉴定及相关性状QTL定位[J]. 作物学报, 2020, 46(01): 140-146.
[12] 魏丽娟,刘瑞影,张莉,陈志友,杨鸿,霍强,李加纳. 甘蓝型油菜茎高QTL定位及株高相关位点整合[J]. 作物学报, 2019, 45(6): 818-828.
[13] 闫超,郑剑,段文静,南文斌,秦小健,张汉马,梁永书. 越冬栽培稻产量性状相关QTL定位[J]. 作物学报, 2019, 45(4): 522-537.
[14] 张春宵,李淑芳,金峰学,刘文平,李万军,刘杰,李晓辉. 用3种方法定位玉米萌发期和苗期的耐盐和耐碱相关性状QTL[J]. 作物学报, 2019, 45(4): 508-521.
[15] 赵佳佳,马小飞,郑兴卫,郝建宇,乔玲,葛川,王爱爱,张树伟,张晓军,姬虎太,郑军. 不同水分条件下HMW-GS对小麦品质的影响[J]. 作物学报, 2019, 45(11): 1682-1690.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!