欢迎访问作物学报,今天是

作物学报 ›› 2019, Vol. 45 ›› Issue (12): 1784-1795.doi: 10.3724/SP.J.1006.2019.94053

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

陆地棉漆酶基因家族鉴定及在黄萎病菌胁迫下的表达分析 *

赵晶,李旭彤,梁学忠,王志城,崔静,陈斌,吴立强,王省芬,张桂寅,马峙英,张艳()   

  1. 河北农业大学 / 华北作物种质资源研究与利用重点实验室 / 河北省棉花产业协同创新中心, 河北保定 071001
  • 收稿日期:2019-04-02 接受日期:2019-06-22 出版日期:2019-12-12 网络出版日期:2019-07-13
  • 通讯作者: 张艳
  • 作者简介:赵晶, E-mail: 824802835@qq.com
  • 基金资助:
    本研究由河北省优秀青年科学基金项目(C2017204011);河北省高等学校科学技术研究重点项目(ZD2014019);河北省青年拔尖人才支持计划资助

Genome-wide identification of Laccase gene family in update G. hirsutum L. genome and expression analysis under V. dahliae stress

Jing ZHAO,Xu-Tong LI,Xue-Zhong LIANG,Zhi-Cheng WANG,Jing CUI,Bin CHEN,Li-Qiang WU,Xing-Fen WANG,Gui-Yin ZHANG,Zhi-Ying MA,Yan ZHANG()   

  1. Hebei Agricultural University / North China Key Laboratory for Crop Germplasm Resources of Education Ministry / Co-Innovation Center for Cotton Industry of Hebei Province, Baoding 071001, Hebei, China
  • Received:2019-04-02 Accepted:2019-06-22 Published:2019-12-12 Published online:2019-07-13
  • Contact: Yan ZHANG
  • Supported by:
    This study was supported by the Natural Science Foundation of Hebei Province(C2017204011);Key Scientific and Technological Research Projects of University in Hebei Province(ZD2014019);Talents Support Program of Hebei Province.

摘要:

黄萎病是降低棉花产量和品质较为严重的维管束病害。棉花在抵抗病原菌的过程中, 抗病基因起着尤为重要的作用。漆酶是一种多功能氧化酶, 在植物木质素合成和提高植株抗逆性等方面发挥着重要作用。高质量版本的基因组是提升基因家族分析准确性的必要条件。本研究以目前最新的陆地棉TM-1高质量版本基因组为参考, 通过生物信息学分析鉴定了陆地棉基因组中的Laccase (GhirLAC)基因家族, 并对其进行了理化性质、基因结构、染色体定位以及在黄萎病胁迫下的表达模式分析。结果表明, 陆地棉TM-1基因组中共包含83个GhirLAC家族成员, 分布在24条染色体上, 所有GhirLAC蛋白均定位在胞外, 且具有相同/相似的保守基序。系统发育树分析显示, GhirLAC基因家族成员可分为7个亚组。结合黄萎病胁迫下棉花转录组数据, 将GhirLAC基因家族各成员的表达分为3种模式, 其中第1类和第2类GhirLAC基因在黄萎病菌胁迫下分别呈现有规律的表达量升高和降低, 推测这些基因在棉花抗黄萎病反应中发挥重要功能。荧光定量PCR结果表明, GhirLAC02 (GhLAC4)、GhirLAC38 (GhLAC11)和GhirLAC20 (GhLAC12) 3个候选基因均受黄萎病菌诱导表达, 其表达趋势与转录组数据相吻合。本研究为以后深入解析棉花GhirLAC基因的抗病功能及分子机制奠定基础。

关键词: 陆地棉, 漆酶, 基因家族, 黄萎病, 基因表达

Abstract:

Verticillium dahliae stress causes a disease in vascular bundle that decreases cotton yield and fiber quality. During cotton defense against pathogen infection, disease resistance genes play important roles. Laccase is a multifunctional oxidase that plays an important role in lignin synthesis and plant resistance. High-quality cotton reference genome is necessary to improve the accuracy of gene family analysis. In this study, the laccase (GhirLAC) family genes in the update genome of G. hirsutum L. cv. TM-1 were identified by bioinformatics, and its physical and chemical properties, gene structure, chromosome location and expression pattern under V. dahliae stress were analyzed. There were 83 members of GhirLAC family in the genome of G. hirsutum L., which distributed on 24 chromosomes. All GhirLAC proteins predicted were located in extracellular and had the same conserved motif. Phylogenetic analysis showed that the members of the GhirLAC genes family were divided into seven subgroups. According to the analysis results of cotton transcription under V. dahliae stress, it was clear that the expression pattern of GhirLAC genes could be divided into three groups, of which, group 1 and group 2 GhirLAC genes displayed down-regulation and up-regulation expression patterns, respectively, suggesting that these genes should play important roles in cotton Verticillium wilt resistance. Furthermore, we identified three candidate genes expression patterns induced by V. dahliae, including GhirLAC02 (GhLAC4), GhirLAC38 (GhLAC11), and GhirLAC20 (GhLAC12), the qPCR results were consistent with the expression trend based on transcriptome data. This study lays a foundation for further analysis of disease resistance function and molecular mechanism of GhirLAC gene in cotton.

Key words: G. hirsutum L., laccase, gene family, Verticillium wilt, gene expression

表1

陆地棉LAC基因家族信息"

基因名称
Gene name
基因ID
Gene ID
染色体定位
Chromosome location
基因大小
Gene size (bp)
蛋白
Protein (aa)
亚细胞定位
Subcellular localization
GhLAC01 Ghir_A01G021510 A01:116737831-116742782 4952 573 胞外Extracellular
GhLAC02 Ghir_A01G021950 A01:117127088-117132069 4982 558 胞外Extracellular
GhLAC03 Ghir_A02G006480 A02:10086940-10089681 2742 580 胞外Extracellular
GhLAC04 Ghir_A03G005270 A03:9138986-9141467 2482 420 胞外Extracellular
GhLAC05 Ghir_A03G005280 A03:9197235-9204292 7058 568 胞外Extracellular
GhLAC06 Ghir_A03G005300 A03:9235739-9242786 7048 571 胞外Extracellular
GhLAC07 Ghir_A03G005800 A03:10413905-10417019 3115 434 胞外Extracellular
GhLAC08 Ghir_A03G007710 A03:17682089-17684169 2081 560 胞外Extracellular
GhLAC09 Ghir_A04G009430 A04:71412678-71434702 22025 531 胞外Extracellular
GhLAC10 Ghir_A04G009440 A04:71412678-71415616 2939 485 胞外Extracellular
GhLAC11 Ghir_A04G009460 A04:71525265-71528510 3246 570 胞外Extracellular
GhLAC12 Ghir_A04G009470 A04:71627753-71631136 3384 576 胞外Extracellular
GhLAC13 Ghir_A05G009230 A05:8476727-8479903 3177 556 胞外Extracellular
基因名称
Gene name
基因ID
Gene ID
染色体定位
Chromosome location
基因大小
Gene size (bp)
蛋白
Protein (aa)
亚细胞定位
Subcellular localization
GhLAC14 Ghir_A05G010150 A05:9143475-9146068 2594 579 胞外Extracellular
GhLAC15 Ghir_A05G010190 A05:9194020-9196191 2172 574 胞外Extracellular
GhLAC16 Ghir_A05G025290 A05:25890847-25893461 2615 537 胞外Extracellular
GhLAC17 Ghir_A05G025340 A05:25981068-25989683 8616 566 胞外Extracellular
GhLAC18 Ghir_A05G025350 A05:26015294-26017921 2628 563 胞外Extracellular
GhLAC19 Ghir_A05G031190 A05:41692291-41698066 5776 555 胞外Extracellular
GhLAC20 Ghir_A05G031330 A05:42716069-42718551 2483 551 胞外Extracellular
GhLAC21 Ghir_A06G012170 A06:67269136-67271306 2171 558 胞外Extracellular
GhLAC22 Ghir_A06G017280 A06:116079600-116081862 2263 522 胞外Extracellular
GhLAC23 Ghir_A06G017300 A06:116223123-116225599 2477 518 胞外Extracellular
GhLAC24 Ghir_A06G017320 A06:116280847-116285027 4181 562 胞外Extracellular
GhLAC25 Ghir_A08G021230 A08:116971139-116973684 2546 576 胞外Extracellular
GhLAC26 Ghir_A09G016340 A09:72475738-72478310 2573 583 胞外Extracellular
GhLAC27 Ghir_A10G009410 A10:18971904-18974558 2655 562 胞外Extracellular
GhLAC28 Ghir_A10G023410 A10:112560879-112563710 2832 554 胞外Extracellular
GhLAC29 Ghir_A10G024200 A10:114093313-114095981 2669 569 胞外Extracellular
GhLAC30 Ghir_A11G010610 A11:9769950-9772299 2350 570 胞外Extracellular
GhLAC31 Ghir_A11G035330 A11:122965170-122967669 2500 580 胞外Extracellular
GhLAC32 Ghir_A11G035350 A11:122971778-122974013 2236 583 胞外Extracellular
GhLAC33 Ghir_A11G035490 A11:123045551-123048240 2690 556 胞外Extracellular
GhLAC34 Ghir_A12G012190 A12:80351644-80353970 2327 572 胞外Extracellular
GhLAC35 Ghir_A13G001780 A13:2014792-2017130 2339 462 胞外Extracellular
GhLAC36 Ghir_A13G002160 A13:2565151-2567561 2411 553 胞外Extracellular
GhLAC37 Ghir_A13G002170 A13:2580835-2585183 4349 447 胞外Extracellular
GhLAC38 Ghir_A13G002350 A13:2736016-2738294 2279 563 胞外Extracellular
GhLAC39 Ghir_A13G003100 A13:3705196-3707259 2064 537 胞外Extracellular
GhLAC40 Ghir_A13G023990 A13:107564582-107569198 4617 577 胞外Extracellular
GhLAC41 Ghir_D01G023050 D01:62359392-62363270 3879 569 胞外Extracellular
GhLAC42 Ghir_D01G023480 D01:62708521-62717375 8855 558 胞外Extracellular
GhLAC43 Ghir_D02G006860 D02:9508400-9511507 3108 580 胞外Extracellular
GhLAC44 Ghir_D03G010220 D03:35974903-35978183 3281 534 胞外Extracellular
GhLAC45 Ghir_D03G013060 D03:43363895-43367056 3162 556 胞外Extracellular
GhLAC46 Ghir_D03G013490 D03:44287872-44290796 2925 453 胞外Extracellular
GhLAC47 Ghir_D03G013500 D03:44314668-44316870 2203 531 胞外Extracellular
GhLAC48 Ghir_D03G015740 D03:48218625-48221114 2490 576 胞外Extracellular
GhLAC49 Ghir_D04G013650 D04:44922823-44925840 3018 573 胞外Extracellular
GhLAC50 Ghir_D04G013660 D04:45073981-45077137 3157 573 胞外Extracellular
基因名称
Gene name
基因ID
Gene ID
染色体定位
Chromosome location
基因大小
Gene size (bp)
蛋白
Protein (aa)
亚细胞定位
Subcellular localization
GhLAC51 Ghir_D04G013670 D04:45158044-45161359 3316 592 胞外Extracellular
GhLAC52 Ghir_D04G013680 D04:45181487-45184916 3430 567 胞外Extracellular
GhLAC53 Ghir_D04G013870 D04:45597220-45599865 2646 556 胞外Extracellular
GhLAC54 Ghir_D05G009240 D05:7540512-7543586 3075 556 胞外Extracellular
GhLAC55 Ghir_D05G009870 D05:8212961-8215461 2501 579 胞外Extracellular
GhLAC56 Ghir_D05G025170 D05:23475679-23484348 8670 552 胞外Extracellular
GhLAC57 Ghir_D05G025180 D05:23486473-23489452 2980 531 胞外Extracellular
GhLAC58 Ghir_D05G025190 D05:23514531-23517069 2539 563 胞外Extracellular
GhLAC59 Ghir_D05G025200 D05:23542441-23557617 15177 566 胞外Extracellular
GhLAC60 Ghir_D05G025220 D05:23575706-23578427 2722 562 胞外Extracellular
GhLAC61 Ghir_D05G031070 D05:33904186-33908534 4349 555 胞外Extracellular
GhLAC62 Ghir_D06G012330 D06:29988284-29990547 2264 571 胞外Extracellular
GhLAC63 Ghir_D06G018210 D06:59288750-59291253 2504 568 胞外Extracellular
GhLAC64 Ghir_D06G018220 D06:59357081-59359262 2182 568 胞外Extracellular
GhLAC65 Ghir_D06G018250 D06:59500342-59502844 2503 568 胞外Extracellular
GhLAC66 Ghir_D08G022010 D08:63494311-63496810 2500 576 胞外Extracellular
GhLAC67 Ghir_D09G015810 D09:44179260-44181960 2701 583 胞外Extracellular
GhLAC68 Ghir_D10G009840 D10:11987141-11989232 2092 541 胞外Extracellular
GhLAC69 Ghir_D10G025960 D10:66026294-66029136 2843 554 胞外Extracellular
GhLAC70 Ghir_D10G026620 D10:67161382-67164003 2622 569 胞外Extracellular
GhLAC71 Ghir_D11G010590 D11:9024231-9027561 3331 574 胞外Extracellular
GhLAC72 Ghir_D11G036190 D11:72693575-72696286 2712 570 胞外Extracellular
GhLAC73 Ghir_D11G036210 D11:72700213-72702426 2214 583 胞外Extracellular
GhLAC74 Ghir_D11G036340 D11:72775350-72777973 2624 556 胞外Extracellular
GhLAC75 Ghir_D12G012430 D12:41466012-41468206 2195 569 胞外Extracellular
GhLAC76 Ghir_D13G002060 D13:1759037-1761649 2613 576 胞外Extracellular
GhLAC77 Ghir_D13G002440 D13:2206264-2213052 6789 567 胞外Extracellular
GhLAC78 Ghir_D13G002640 D13:2386833-2389243 2411 563 胞外Extracellular
GhLAC79 Ghir_D13G003370 D13:3233418-3235743 2326 563 胞外Extracellular
GhLAC80 Ghir_D13G003390 D13:3256191-3258374 2184 557 胞外Extracellular
GhLAC81 Ghir_D13G024730 D13:62656628-62661237 4610 435 胞外Extracellular
GhLAC82 Ghir_A03G023780 Scaffold2615:13682-16169 2488 576 胞外Extracellular
GhLAC83 Ghir_A08G026500 Scaffold2204:49182-53499 4318 564 胞外Extracellular

图1

陆地棉LAC基因家族成员的染色体定位分析"

图2

陆地棉和拟南芥LACs基因家族进化树分析"

图3

陆地棉LAC家族成员基因结构分析"

图4

陆地棉LAC基因家族保守基序"

图5

陆地棉LAC基因在黄萎病胁迫下的表达热图"

图6

黄萎病菌胁迫下GhLAC4、GhLAC11和GhLAC12基因的表达"

[1] Gao X Q, Wheeler T, Li Z H, Kenerley C M, He P, Shan L B . Silencing GhNDR1 and GhMKK2 compromises cotton resistance to Verticillium wilt. Plant J, 2011,66:293-305.
doi: 10.1111/j.1365-313X.2011.04491.x
[2] Bolek Y, Elzik K M, Pepper A E, Bell A A, Magill C W, Thaxton P M, Reddy O U K . Mapping of Verticillium wilt resistance genes in cotton. Plant Sci, 2005,168:1581-1590.
doi: 10.1016/j.plantsci.2005.02.008
[3] Zhang Y, Wang X F, Rong W, Yang J, Li Z K, Wu L Q, Zhang G Y, Ma Z Y . Histochemical analyses reveal that stronger intrinsic defenses in Gossypium barbadense than in G. hirsutum are associated with resistance to Verticillium dahliae. Mol Plant Microbe Int, 2017,30:984-996.
doi: 10.1094/MPMI-03-17-0067-R
[4] Cai Y F, He X H, Mo J C, Sun Q, Yang J P, Liu J G . Molecular research and genetic engineering of resistance to Verticillium wilt in cotton: a review. Afr J Biotechnol, 2009,8:7363-7372.
[5] 张天真, 周兆华, 闵留芳, 郭旺珍, 潘家驹, 何金龙, 纵瑞收, 汤杰珍, 郭小平, 蒯本科, 王谧, 朱协飞, 陈兆夏, 唐灿明, 刘康, 孙敬, 惠书勤, 黄在进 . 棉花对黄萎病的抗性遗传模式及抗(耐)病品种的选育技术. 作物学报, 2000,26:673-680.
Zhang T Z, Zhou Z H, Min L F, Guo W Z, Pan J J, He J L, Zong R S, Tang J Z, Guo X P, Kuai B K, Wang M, Zhu X F, Chen Z X, Tang C M, Liu K, Sun J, Hui S Q, Huang Z J . Inheritance of cotton resistance to Verticillium dahliae and strategies to develop resistant or tolerant cultivars. Acta Agron Sin, 2000,26:673-680 (in Chinese with English abstract).
[6] Malinovsky F G, Fangel J U, Willats W G T . The role of the cell wall in plant immunity. Front Plant Sci, 2014,5:178.
[7] Bowers J H, Nameth S T, Riedel R M, Rowe R C . Infection and colonization of potato roots by Verticillium dahliae as affected by Pratylenchus penetrans and P. crenatus. Phytopathology, 1996,86:614-621.
doi: 10.1094/Phyto-86-614
[8] Fradin E F, Thomma B P H J . Physiology and molecular aspects of Verticillium wilt caused by V. dahliae and V. alboatrum. Mol Plant Pathol, 2006,7:71-86.
doi: 10.1111/mpp.2006.7.issue-2
[9] 赵蕾, 张天宇 . 植物病原菌产生的降解酶及其作用. 微生物学通报, 2002,29:89-93.
Zhao L, Zhang T Y . Production and roles of the degrading enzymes prodused by phytopathogen. Microbiol Chin, 2002,29:89-93 (in Chinese with English abstract).
[10] Smit F, Dubery I A . Cell wall reinforcement in cotton hypocotyls in response to a Verticillium dahliae elicitor. Phytochemistry, 1997,44:811-815.
doi: 10.1016/S0031-9422(96)00595-X
[11] Wang Y, Coussa O B, Lebris P, Antelme S, Soulhat C, Gineau E, Dalmais M, Bendahmane A, Morin H, Mouille G, Legée F, Cézard L, Lapierre C, Sibout R . LACCASE 5 is required for lignification of the Brachypodium distachyon culm. Plant Physiol, 2017,168:192-204.
doi: 10.1104/pp.114.255489
[12] 王骥, 朱木兰, 卫志明 . 棉花漆酶基因在转基因新疆杨中的表达及其对木质素合成的影响. 分子细胞生物学报, 2008, ( 1):11-18.
W J, Zhu M L, Wei Z M . Cotton Laccase gene overexpression in transgenic Populus alba var.pyramidalis and its effects on the lignin biosynthesis in transgenic plants. J Mol Cell Biol, 2008, ( 1):11-18 (in Chinese with English abstract).
[13] 赵先炎, 庞明利, 赵强, 任怡然, 郝玉金, 由春香 . 番茄漆酶基因LeLACmiR397的克隆与表达分析. 园艺学报, 2015,42:1285-1298.
doi: 10.16420/j.issn.0513-353x.2014-1079
Zhao X Y, Pang M L, Zhao Q, Ren Y R, Hao Y J, You C X . Cloning and expression analysis of tomato LeLACmiR397 gene. Acta Hortic Sin, 2015,42:1285-1298 (in Chinese with English abstract).
doi: 10.16420/j.issn.0513-353x.2014-1079
[14] 田奇琳, 林玉玲, 郑庆游, 苏荣峰, 赖钟雄 . 龙眼DlLac7的克隆及其表达调控分析. 果树学报, 2016,33:1185-1193.
Tian Q L, Lin Y L, Zheng Q Y, Su R F, Lai Z X . Cloning and expression analyses of DlLac7 in Dimocarpus longan. J Fruit Sci, 2016,33:1185-1193 (in Chinese with English abstract).
[15] 黄晨, 陈帅, 程小芳, 张新, 黎星辉, 孙晓玲 . 茶树漆酶基因CsLAC4CsLAC12的克隆与表达分析. 植物保护学报, 2018,45:1069-1077.
Huang C, Chen S, Cheng X F, Zhang X, Li X H, Sun X L . Cloning and expression analysis of the laccase genes CsLAC4 and CsLAC12 from the tea plant. J Plant Prot, 2018, 45:1069-1077 (in Chinese with English abstract).
[16] Liu Q Q, Luo L, Wang X X, Shen Z G, Zheng L Q . Comprehensive analysis of rice laccase gene(OsLAC) family and ectopic expression of OsLAC10 enhances tolerance to copper stress in Arabidopsis. Int J Mol Sci, 2017,18:1-16.
doi: 10.3390/ijms18010001
[17] Wang J H, Feng J J, Jia W T, Fan P X, Bao H X G D L, Li S Z, Li Y X . Genome-wide dentification of sorghum bicolor laccases reveals potential targets for lignin modification. Front Plant Sci, 2017,8:714.
doi: 10.3389/fpls.2017.00714
[18] Roy J L, Blervacq A S, Créach A, Huss B, Hawkins S, Neutelings G . Spatial regulation of monolignol biosynthesis and laccase genes control developmental and stress-related lignin in flax. BMC Plant Biol, 2017,17:124.
doi: 10.1186/s12870-017-1072-9
[19] Zhang Y, Wu L Z, Wang X F, Chen B, Zhao J, Cui J, Li Z K, Yang J, Wu L Q, Wu J H, Zhang G Y, Ma Z Y . The cotton laccase gene GhLAC15 enhanced Verticillium wilt resistance via increasing defense-induced lignification and lignin components in the cell wall of plants. Mol Plant Pathol, 2019,20:309-322.
doi: 10.1111/mpp.2019.20.issue-3
[20] Hu Q, Min L, Yang X Y, Jin S X, Zhang L, Li Y Y, Ma Y Z, Qi X W, Li D Q, Liu H B, Lindsey K, Zhu L F, Zhang X L . Laccase GhLac1 modulates broad-spectrum biotic stress tolerance via DAMP-triggered immunity. Plant Physiol, 2017,176:1-34.
[21] Balasubramanian V K, Rai K M, Thu S W, Hii M M, Mendu V . Genome-wide identification of multifunctional laccase gene family in cotton (Gossypium spp.); expression and biochemical analysis during fiber development. Sci Rep, 2016,29:6.
[22] Li F G, Fan G Y, Lu C R, Xiao G H, Zou C S, Kohel R J, Ma Z Y, Shang H H, Ma X F, Wu J Y, Liang X M, Huang G, Percy R G, Liu K, Yang W H, Chen W B, Du X M, Shi C C, Yuan Y L, Ye W W, Liu X, Zhang X Y, Liu W Q, Wei H L, Wei S J, Huang G D, Zhang X L, Zhu S J, Zhang H, Sun F M, Wang X F, Liang J, Wang J H, He Q, Huang L H, Wang J, Cui J J, Song G L, Wang K B, Xu X, Yu J Z, Zhu Y X, Yu S X . Genome sequence of cultivated Upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution. Nat Biotechnol, 2015,33:524-530.
doi: 10.1038/nbt.3208
[23] Wang M J, Tu L L, Yuan D J, Zhu D, Shen C, Li J Y, Liu F Y, Pei L L, Wang P C, Zhao G N, Ye Z X, Huang H, Yan F L, Ma Y Z, Zhang L, Liu M, You J Q, Yang Y C, Liu Z P, Huang F, Li B Q, Qiu P, Zhang Q H, Zhu L F, Jin S X, Yang X Y, Min L, Li G L, Chen L L, Zheng H K, Lindsey K, Lin Z X, Udall J A, Zhang X L . Reference genome sequences of two cultivated allotetraploid cottons, Gossypium hirsutum and Gossypium barbadense. Nat Genet, 2019,51:224-229.
doi: 10.1038/s41588-018-0282-x
[24] Yu J, Jung S, Cheng C H, Ficklin1 S P, Lee T, Zheng P, Jones D, Percy R G, Main D . CottonGen: a genomics, genetics and breeding database for cotton research. Nucleic Acids Res, 2014,42:1229-1236.
[25] Zhang Y, Wang X F, Rong W, Yang J, Ma Z Y . Island cotton enhanced disease susceptibility 1 gene encoding a lipase-like protein plays a crucial role in response to Verticillium dahliae by regulating the SA level and H2O2 accumulation. Front Plant Sci, 2016,7:1830.
[26] Livak K J, Schmittgen T D . Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods, 2001,25:402-408.
doi: 10.1006/meth.2001.1262
[27] Berthet S, Demont-Caulet N, Pollet B, Bidzinski P, Cézard L, Bris P L, Borrega N, Hervé J, Blondet E, Balzergue S, Lapierre C, Jouanin L . Disruption of LACCASE4 and 17 results in tissue-specific alterations to lignification of Arabidopsis thaliana stems. Plant Cell, 2011,23:1124-1137.
doi: 10.1105/tpc.110.082792
[28] Zhao Q, Nakashima J, Chen F, Yin Y B, Fu C X, Yun J F, Shao H, Wang X Q, Wang Z Y, Dixon R A . LACCASE is necessary and nonredundant with PEROXIDASE for lignin polymerization during vascular development in Arabidopsis. Plant Cell, 2013,25:3976-3987.
doi: 10.1105/tpc.113.117770
[29] Turlapati P V, Kim K W, Davin L B, Lewis N G . The laccase multigene family in Arabidopsis thaliana: towards addressing the mystery of their gene function(s). Planta, 2011,233:439-470.
doi: 10.1007/s00425-010-1298-3
[30] Szakasits D, Heinen P, Wieczorek K, Hofmann J, Wagner F, Kreil D P, Sykacek P, Grundler F M W, Bohlmann H . The transcriptome of syncytia induced by the cyst nematode Heterodera schachtii in Arabidopsis roots. Plant J, 2010,57:771-784.
doi: 10.1111/tpj.2009.57.issue-5
[31] Yang J, Zhang Y, Wang X F, Wang W Q, Li Z K, Wu J H, Wang G N, Wu L Q, Zhang G Y, Ma Z Y . HyPRP1 performs a role in negatively regulating cotton resistance to V. dahliae via the thickening of cell walls and ROS accumulation. BMC Plant Biol, 2018,18:339.
doi: 10.1186/s12870-018-1565-1
[32] Li F G, Fan G Y, Wang K B, Sun F M, Yuan Y L, Song G L, Li Q, Ma Z Y, Lu C R, Zou C S, Chen W B, Liang X M, Shang H H, Liu W Q, Shi C C, Xiao G H, Gou C Y, Ye W W, Xu X, Zhang X Y, Wei H L, Li Z F, Zhang G Y, Wang G Y, Liu K, Kohel R J, Percy R G, Yu J Z, Zhu Y X, Wang J, Yu S X . Genome sequence of the cultivated cotton Gossypium arboreum. Nat Genet, 2014,46:567-572.
doi: 10.1038/ng.2987
[33] Zhang T Z, Hu Y, Jiang W K, Fang L, Guan X Y, Chen J D, Zhang J B, Saski C A, Scheffler B E, Stelly D M, Hulse-Kemp A M, Wan Q, Liu B L, Liu C X, Wang S, Pan M Q, Wang Y K, Wang D, Ye W X, Chang L J, Zhang W P, Song Q X, Kirkbride R C, Chen X Y, Dennis E, Llewellyn D J, Peterson D G, Thaxton P, Jones D C, Wang Q, Xu X Y, Zhang H, Wu H T, Zhou L, Mei G F, Chen S Q, Tian Y, Xiang D, Li X H, Ding J, Zuo Q Y, Tao L N, Liu Y C, Li J, Lin Y, Hui Y Y, Cao Z S, Cai C P, Zhu X F, Jiang Z, Zhou B L, Guo W Z, Li R Q, Chen Z J . Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nat Biotechnol, 2015,33:531-537.
doi: 10.1038/nbt.3207
[34] Chezem W R, Memon A, Li F S, Weng J K, Clay N . SG2-Type R2R3-MYB Transcription factor MYB15 controls defense- induced lignification and basal immunity in Arabidopsis. Plant Cell, 2017,29:1907-1926.
doi: 10.1105/tpc.16.00954
[35] Ye J, Zhong T, Zhang D, Ma C, Wang L, Yao L, Zhang Q, Zhu M, Xu M . The auxin-regulated protein ZmAuxRP1 coordinates the balance between root growth and stalk rot disease resistance in maize. Mol Plant, 2019,12:360-373.
doi: 10.1016/j.molp.2018.10.005
[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[3] 姚晓华, 王越, 姚有华, 安立昆, 王燕, 吴昆仑. 青稞新基因HvMEL1 AGO的克隆和条纹病胁迫下的表达[J]. 作物学报, 2022, 48(5): 1181-1190.
[4] 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623.
[5] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[6] 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366.
[7] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[8] 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449.
[9] 宋天晓, 刘意, 饶莉萍, Soviguidi Deka Reine Judesse, 朱国鹏, 杨新笋. 甘薯细胞壁蔗糖转化酶基因IbCWIN家族成员鉴定及表达分析[J]. 作物学报, 2021, 47(7): 1297-1308.
[10] 马燕斌, 王霞, 李换丽, 王平, 张建诚, 文晋, 王新胜, 宋梅芳, 吴霞, 杨建平. 玉米光敏色素A1基因(ZmPHYA1)在棉花中的转化及分子鉴定[J]. 作物学报, 2021, 47(6): 1197-1202.
[11] 黄宁, 惠乾龙, 方振名, 李姗姗, 凌辉, 阙友雄, 袁照年. 甘蔗β-胡萝卜素异构酶基因家族的鉴定、定位和表达分析[J]. 作物学报, 2021, 47(5): 882-893.
[12] 秦天元, 刘玉汇, 孙超, 毕真真, 李安一, 许德蓉, 王一好, 张俊莲, 白江平. 马铃薯StIgt基因家族的鉴定及其对干旱胁迫的响应分析[J]. 作物学报, 2021, 47(4): 780-786.
[13] 韩贝, 王旭文, 李保奇, 余渝, 田琴, 杨细燕. 陆地棉种质资源抗旱性状的关联分析[J]. 作物学报, 2021, 47(3): 438-450.
[14] 解盼, 刘蔚, 康郁, 华玮, 钱论文, 官春云, 何昕. 甘蓝型油菜CBF基因家族的鉴定和表达分析[J]. 作物学报, 2021, 47(12): 2394-2406.
[15] 李鹏, 刘彻, 宋皓, 姚盼盼, 苏沛霖, 魏跃伟, 杨永霞, 李青常. 烟草非特异性脂质转移蛋白基因家族的鉴定与分析[J]. 作物学报, 2021, 47(11): 2184-2198.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!