欢迎访问作物学报,今天是

作物学报 ›› 2020, Vol. 46 ›› Issue (4): 586-595.doi: 10.3724/SP.J.1006.2020.91038

• 耕作栽培·生理生化 • 上一篇    下一篇

种植密度对2个青稞品种抗倒伏及秸秆饲用特性的影响

赵小红1,白羿雄1,2,3,*(),王凯1,姚有华1,2,姚晓华1,2,吴昆仑1,2,*()   

  1. 1 青海大学农林科学院,青海西宁810016
    2 青海省青稞遗传育种重点实验室 / 国家麦类改良中心青海青稞分中心, 青海西宁810016
    3 西北农林科技大学农学院, 陕西杨凌712100
  • 收稿日期:2019-05-20 接受日期:2019-09-26 出版日期:2020-04-12 网络出版日期:2019-10-14
  • 通讯作者: 白羿雄,吴昆仑
  • 作者简介:E-mail: 825626698@qq.com
  • 基金资助:
    本研究由青海省农林科学院创新基金重点研发项目(2019-NKY-01);国家现代农业产业技术体系(大麦青稞)建设专项(CAS-05);青海大学中青年科研基金项目资助(2017-QNY-2)

Effects of planting density on lodging resistance and straw forage characteristics in two hulless barley varieties

ZHAO Xiao-Hong1,BAI Yi-Xiong1,2,3,*(),WANG Kai1,YAO You-Hua1,2,YAO Xiao-Hua1,2,WU Kun-Lun1,2,*()   

  1. 1 Agriculture and Forestry Academy, Qinghai University, Xining 810016, Qinghai, China
    2 222Qinghai Key Laboratory of Hulless Barley Genetics and Breeding / Hulless Barley Branch of State Wheat Improvement Centre, Xining 810016, Qinghai, China
    3 College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China;
  • Received:2019-05-20 Accepted:2019-09-26 Published:2020-04-12 Published online:2019-10-14
  • Contact: Yi-Xiong BAI,Kun-Lun WU
  • Supported by:
    This study was supported by the Qinghai Provincial Academy of Agriculture and Forestry Innovation Fund Key Research and Development Project(2019-NKY-01);the China Agriculture Research System (Barley and Hulless Barley)(CAS-05);the Qinghai University Young and Middle-aged Research Fund Project(2017-QNY-2)

摘要:

种植密度是影响青稞抗倒伏和秸秆饲用特性的重要因子。以抗倒伏品种昆仑14号和倒伏品种门源亮蓝为试验材料, 比较研究种植密度对这2个品种生长发育、抗倒伏特性和秸秆饲用特性的影响。结果表明, 种植密度对2个品种的抗倒伏和秸秆饲用特性的影响存在差异。随着种植密度的增加, 昆仑14号根长、根体积、根数和根干重先增后降, 茎粗和壁厚依次下降; 门源亮蓝根系和茎秆相关指标则随种植密度增大而下降。昆仑14号抗倒伏相关指标先增后降, 但整个生育期未发生倒伏; 门源亮蓝各指标均显著降低, 诱发倒伏现象提前发生, 致使倒伏率增大、倒伏程度加剧。昆仑14号茎秆中性洗涤纤维、酸性洗涤纤维、半纤维素、纤维素和木质素等化学成分含量随密度增加先增后降, 门源亮蓝各成分含量呈下降趋势, 相对饲喂价值随密度增加呈现增高的趋势。综合抗倒伏特性与秸秆饲用特性, 昆仑14号最佳种植密度为375×10 4株 hm -2, 门源亮蓝粮饲兼用时适宜密度为300×10 4~375×10 4株 hm -2

关键词: 青稞, 种植密度, 生长发育, 抗倒性, 饲草特性

Abstract:

Planting density is an important factor affecting the lodging resistance and straw feeding characteristics of hulless barley. Two varieties the lodging-resistant variety Kunlun 14 and the lodging variety Menyuanlianglan, were used to study the effects of planting density on the growth and development, lodging characteristics and straw feeding characteristics. The effects of planting density on two varieties were not entirely consistent. With the increase of planting density, the traits of root and stem increased firstly and decreased then in Kunlun 14, whereas gradually decreased in Menyuanlianglan; and the relative lodging-resistance indexes of Kunlun 14 were increased firstly and decreased then, without lodging occurred, while these in Menyuanlianglan were significantly declined, resulted in lodging in early stage, lodging rate and degree increased; the chemical constituents neutral detergent fiber, acid detergent fiber, cellulose, hemicellulose and lignin in the stem of Kunlun 14 increased firstly and decreased then with the increase of planting density, whereas these of Menyuanlianglan showed a downward trend, with the increased relative feeding value. Based on lodging resistance and straw forage characteristics of two varieties, we concluded that the suitable density of Kunlun 14 should be 3.75×10 6 plants hm -2, and that of Menyuanlianglan for grain and forage should be 3.00×10 6 to 3.75×10 6 plants hm -2.

Key words: hulless barley (Hordeum vulgare L. var. nudum Hook. f.), planting density, growth and development, lodging resistance, forage characteristics

表1

种植密度对茎节和根系性状的影响"

品种
Variety
处理Treatment 株高
Plant height (cm)
茎粗 Internode external diameter (mm) 壁厚 Internode wall thickness (mm) 根长
Root length (mm)
体积
Root volume (cm3)
根干重
Root dry weight (g)
根数
Root number
基部第2节
2nd node from the base
基部第3节
3rd node from the base
基部第4节
4th node from the base
基部第2节
2nd node from the base
基部第3节
3rd node from the base
基部第4节
4th node from the base
2017
昆仑14号
Kunlun 14
T1 108.78 b 4.29 a 3.84 a 3.99 a 0.48 a 0.47 a 0.39 a 71.75 e 0.16 a 0.32 bc 23.80 d
T2 112.07 a 3.78 ab 3.60 ab 3.78 ab 0.41 ab 0.42 ab 0.31 b 76.08 c 0.17 a 0.33 bc 26.18 c
T3 112.31 a 3.47 b 3.44 ab 3.68 b 0.38 ab 0.40 ab 0.31 b 105.74 a 0.18 a 0.47 a 27.67 b
T4 112.93 a 3.43 b 3.37 ab 3.59 b 0.37 ab 0.38 b 0.28 b 84.52 b 0.17 a 0.39 ab 29.16 a
T5 112.47 a 2.70 c 3.14 b 3.53 b 0.36 b 0.37 b 0.27 b 73.98 d 0.14 a 0.26 c 27.67 b
门源亮蓝
Menyuanlianglan
T1 114.42 a 3.30 a 2.99 a 2.88 a 0.29 a 0.29 a 0.22 a 98.10 a 0.18 a 0.28 a 26.01 a
T2 112.64 a 2.98 ab 2.72 ab 2.62 ab 0.28 ab 0.29 a 0.22 a 88.82 b 0.17 a 0.19 b 18.06 b
T3 111.51 a 2.83 b 2.57 b 2.57 abc 0.26 ab 0.28 a 0.20 a 62.22 c 0.14 ab 0.12 c 16.53 c
T4 113.61 a 2.79 b 2.52 b 2.42 bc 0.22 ab 0.22 ab 0.18 a 47.08 d 0.10 b 0.11 c 15.00 d
T5 111.84 a 2.38 c 2.52 b 2.32 c 0.20 b 0.20 b 0.18 a 44.70 e 0.08 b 0.08 d 14.38 d
2018
昆仑14号
Kunlun 14
T1 118.97 b 3.9.0 a 3.50 a 3.50 a 0.41 a 0.40 a 0.32 a 67.69 d 0.16 a 0.25 bc 20.00 b
T2 122.57 a 3.43 b 3.21 ab 3.32 a 0.35 b 0.35 ab 0.26 b 71.77 c 0.15 ab 0.26 bc 22.00 ab
T3 122.83 a 3.15 b 3.07 bc 3.23 a 0.33 b 0.33 ab 0.25 b 99.75 a 0.13 ab 0.37 a 24.75 a
T4 121.30 a 3.12 b 3.01 bc 3.15 a 0.32 b 0.32 b 0.23 b 79.74 b 0.12 bc 0.31 ab 24.50 a
T5 120.68 ab 2.45 c 2.80 c 3.10 a 0.31 b 0.31 b 0.23 b 69.78 cd 0.101 c 0.21 c 23.25 a
门源亮蓝
Menyuanlianglan
T1 122.87 a 3.03 a 2.67 a 2.69 a 0.21 a 0.21 a 0.16 a 71.72 a 0.12 a 0.18 a 21.25 a
T2 120.96 b 2.74 a 2.45 a 2.45 a 0.20 a 0.20 a 0.16 a 64.94 b 0.10 ab 0.12 b 14.75 b
T3 119.75 b 2.60 a 2.32 a 2.40 a 0.19 a 0.20 a 0.14 a 45.49 c 0.07 bc 0.08 c 13.50 bc
T4 122.00 a 2.56 a 2.27 a 2.26 a 0.16 ab 0.16 a 0.13 a 34.42 d 0.06 c 0.07 cd 12.25 c
T5 120.10 b 2.18 b 2.21 a 2.17 a 0.14 b 0.14 a 0.13 a 32.68 e 0.04 c 0.05 d 11.75 c

图1

种植密度对籽粒产量的影响 T1: 150×104株 hm-2; T2: 225×104株 hm-2; T3: 300×104株 hm-2; T4: 375×104株 hm-2; T5: 450×104株 hm-2。"

表2

种植密度对倒伏特性的影响"

品种
Variety
处理
Treatment
茎长 Stem length (cm) 茎重 Stem weight (g) 茎秆强度 Stem strength 穗重
Panicle weight (g)
基部第2节
2nd node from the base
基部第3节
3rd node from the base
基部第4节
4th node from the base
基部第2节
2nd node from the base
基部第3节
3rd node from the base
基部第4节
4th node from the base
基部第2节
2nd node from the base
基部第3节
3rd node from the base
基部第4节
4th node from the base
2017
昆仑14号
Kunlun 14
T1 10.56 b 13.36 a 22.84 a 0.28 b 0.24 b 0.27 b 10.60 ab 6.57 a 6.28 a 3.26 ab
T2 10.76 b 13.95 a 20.05 a 0.29 b 0.27 b 0.28 b 14.54 ab 7.15 a 6.38 a 3.19 ab
T3 13.07 a 16.30 a 23.31 a 0.35 a 0.40 a 0.36 a 19.34 a 9.11 a 7.10 a 3.47 a
T4 12.50 a 15.00 a 21.36 a 0.25 b 0.23 bc 0.24 b 9.92 b 5.99 a 5.98 a 3.06 b
T5 11.84 ab 14.23 a 20.75 a 0.24 b 0.22 c 0.23 b 9.54 b 4.15 b 5.61 a 3.50 a
门源亮蓝Menyuanlianglan T1 13.65 c 14.99 b 17.94 c 0.14 ab 0.16 ab 0.16 b 4.07 b 1.85 b 1.61 b 0.92 b
T2 13.10 c 14.90 b 17.00 c 0.15 a 0.16 a 0.19 a 4.63 a 2.35 a 2.07 a 1.89 a
T3 14.36 bc 16.06 b 18.49 bc 0.13 b 0.15 abc 0.15 b 2.97 c 1.56 c 1.54 b 0.92 b
T4 16.22 ab 16.27 ac 20.13 ab 0.11 c 0.13 bc 0.14 b 2.10 d 1.48 c 1.33 c 0.66 c
T5 16.96 a 18.51 a 20.55 a 0.10 c 0.12 c 0.14 b 1.77 d 1.413 c 1.30 c 0.62 c
2018
昆仑14号
Kunlun 14
T1 11.25 d 14.15 d 21.67 c 0.28 a 0.34 a 0.28 a 7.31 c 4.45 b 4.76 a 6.08 a
T2 13.3 b 15.00 cd 22.28 bc 0.23 ab 0.21 b 0.22 a 10.03 b 4.84 b 4.01 cd 6.13 a
T3 13.9 a 17.53 a 25.90 a 0.22 b 0.19 b 0.21 a 13.34 a 6.61 a 4.21 bc 6.73 a
T4 12.6 c 16.13 b 23.73 b 0.20 b 0.19 b 0.19 a 6.84 d 4.06 b 4.23 bc 6.38 a
T5 11.45 d 15.3 bc 22.68 bc 0.19 b 0.17 b 0.18 a 6.58 d 2.81 c 3.76 d 6.20 a
门源亮蓝Menyuanlianglan T1 14.28 d 16.30 c 18.68 c 0.14 a 0.15 a 0.17 a 3.73 a 1.86 a 1.61 a 4.03 b
T2 14.87 d 16.40 c 19.70 bc 0.13 a 0.14 a 0.14 ab 3.28 a 1.49 a 1.25 b 5.60 a
T3 15.65 c 17.57 b 20.30 b 0.12 a 0.13 a 0.13 ab 2.39 b 1.24 a 1.20 b 3.93 b
T4 17.67 b 17.80 b 22.10 a 0.10 a 0.12 a 0.11 bc 1.69 bc 1.17 a 1.03 b 3.78 b
T5 18.48 a 20.25 a 22.93 a 0.09 a 0.11 a 0.08 c 1.43 c 1.21 1.01 b 3.53 b

表3

种植密度对青稞田间倒伏率的影响"

年份
Year
品种
Variety
处理Treatment 开花期 Anthesis stage 灌浆期 Filling stage 成熟期 Mature stage
LR LD LR LD LR LD
2017 昆仑14号
Kunlun 14
T1 0 0 0 0 0 0
T2 0 0 0 0 0 0
T3 0 0 0 0 0 0
T4 0 0 0 0 0 0
T5 0 0 0 0 0 0
门源亮蓝
Menyuanlianglan
T1 0 0 37.95 3 80.87 5
T2 0 0 38.92 3 81.43 5
T3 0 0 51.79 4 83.05 5
T4 0 0 56.50 4 83.09 5
T5 19.38 1 74.50 4 95.09 5
2018 昆仑14号
Kunlun 14
T1 0 0 0 0 0 0
T2 0 0 0 0 0 0
T3 0 0 0 0 0 0
T4 0 0 0 0 0 0
T5 0 0 0 0 0 0
门源亮蓝
Menyuanlianglan
T1 0 0 45.67 3 97.33 5
T2 0 0 46.84 3 98.00 5
T3 0 0 62.33 4 99.95 5
T4 0 0 68.00 4 100.00 5
T5 23.33 1 89.67 5 100.00 5

图2

种植密度对秸秆产量的影响 T1: 150×104株 hm-2; T2: 225×104株 hm-2; T3: 300×104株 hm-2; T4: 375×104株 hm-2; T5: 450×104株 hm-2。"

表4

种植密度对青稞饲草品质的影响"

年份
Year
品种
Variety
处理Treatment 粗蛋白
Crude protein
(%)
NDF
(%)
ADF
(%)
半纤维素
Hemicellulose (%)
纤维素
Cellulose (%)
木质素
Lignin (%)
RFV
2017 昆仑14号
Kunlun 14
T1 1.69 ab 75.61 c 53.40 ab 22.56 c 36.44 d 15.17 d 58.20 b
T2 1.70 ab 79.47 b 55.87 ab 23.98 b 37.20 c 18.20 b 53.11 c
T3 1.68 ab 84.81 a 60.11 a 25.09 a 39.62 a 19.99 a 46.14 d
T4 1.91 a 79.07 b 55.31 ab 24.14 b 37.72 b 17.12 c 53.89 c
T5 1.65 b 71.77 d 48.97 b 23.16 c 35.77 e 12.79 e 65.79 a
门源亮蓝
Menyuan
lianglan
T1 1.79 b 69.67 a 47.97 a 22.03 a 35.19 a 12.38 a 68.81 d
T2 1.94 b 67.14 b 46.06 b 21.42 ab 34.07 b 11.61 ab 73.46 c
T3 2.33 a 64.63 c 43.95 c 21.00 bc 32.50 c 11.09 bc 78.67 b
T4 2.47 a 63.74 c 43.35 c 20.70 bc 32.13 c 10.86 c 80.45 ab
T5 2.70 a 62.51 d 42.68 d 20.14 c 31.97 c 10.36 c 82.81 a
2018 昆仑14号
Kunlun 14
T1 1.83 ab 71.95 c 50.72 d 21.23 b 34.88 cd 15.84 c 63.85 b
T2 1.84 ab 75.63 b 53.07 bc 22.56 a 35.61 bc 17.46 b 58.50 c
T3 1.81 b 80.71 a 57.10 a 23.61 a 37.92 a 19.18 a 51.19 d
T4 1.78 b 75.25 b 52.54 cd 22.71 a 36.11 b 16.43 c 59.30 c
T5 1.93 a 68.31 d 46.51 e 21.79 a 34.24 d 12.27 d 71.73 a
门源亮蓝
Menyuan
lianglan
T1 2.10 d 66.30 a 45.56 a 20.73 a 33.68 a 11.88 a 74.94 d
T2 2.20 cd 63.90 b 43.75 b 20.15 ab 32.61 a 11.14 b 79.81 c
T3 2.52 bc 61.51 c 41.75 c 19.76 b 31.11 b 10.64 bc 85.26 b
T4 2.67 ab 60.66 cd 41.18 c 19.48 c 30.76 b 10.42 cd 87.13 b
T5 2.92 a 59.49 d 40.54 c 18.95 c 30.60 b 9.94 d 89.62 a
[1] 吴昆仑, 赵媛, 迟德钊 . 青稞Wx基因多态性与直链淀粉含量的关系. 作物学报, 2012,38:71-79.
Wu K L, Zhao Y, Chi D Z . Relationship polymorphism of Wx gene and amylose content in hulless barley . Acta Agric Sin, 2012,38:71-79 (in Chinese with English abstract).
[2] Khan S, Anwar S, Kuai J, Ullah S, Fahad S, Zhou G S . Optimization of nitrogen rate and planting density for improving yield, nitrogen use efficiency, and lodging resistance in oilseed rape. Front Plant Sci, 2017,8:532.
[3] 杨吉顺, 高辉远, 刘鹏, 李耕, 董树亭, 张吉旺, 王敬峰 . 种植密度和行距配置对超高产夏玉米群体光合特性的影响. 作物学报, 2010,36:1226-1233.
Yang J S, Gao H Y, Liu P, Li G, Dong S T, Zhang J W, Wang J F . Effects of planting density and row spacing on canopy apparent photosynthesis of high-yield summer corn. Acta Agron Sci, 2010,36:1226-1233 (in Chinese with English abstract).
[4] Xiao Y G, Liu J J, Li H S, Cao X Y, Xia X C, He Z H . Lodging resistance and yield potential of winter wheat: effect of planting density and genotype. Front Agric Sci Engineer, 2015,2:168-178.
[5] Li J C, Yin J, Wei F Z . Effects of planting density on characters of culm and culm lodging resistant index in winter wheat. Acta Agron Sin, 2005,31:662-666.
[6] 姚敏娜, 施志国, 薛军, 杨再文, 勾玲, 张旺锋 . 种植密度对玉米茎秆皮层结构及抗倒伏能力的影响. 新疆农业科学, 2013,50:2006-2014.
Yao M N, Shi Z G, Xue J, Yang Z W, Gou L, Zhang W F . The effects of different planting densities on the cortex structure of stem and lodging resistance in maize. Xinjiang Agric Sci, 2013,50:2006-2014 (in Chinese with English abstract).
[7] Lin X Q, Zhu D F, Chen H Z, Cheng S H, Uphoff N . Effect of plant density and nitrogen fertilizer rates on grain yield and nitrogen uptake of hybrid rice (Oryza sativa L.). J Agric Biotechnol Sustain Dev, 2009,1:44-53.
[8] Tian B, Liu Y, Zhang L, Zhang L X, Li H J . Stem lodging parameters of the basal three internodes associated with plant population densities and developmental stages in foxtail millet ( Setaria italica) cultivars differing in resistance to lodging. Crop Pasture Sci, 2017,68:349-357.
[9] 石德杨, 李艳红, 夏德军, 张吉旺, 刘鹏, 赵斌, 董树亭 . 种植密度对夏玉米根系特性及氮肥吸收的影响. 中国农业科学, 2017,50:2006-2017.
Shi D Y, Li Y H, Xia D J, Zhang J W, Liu P, Zhao B, Dong S T . Effects of planting density on root characteristics and nitrogen uptake in summer maize. Sci Agric Sin, 2017,50:2006-2017 (in Chinese with English abstract).
[10] Konno Y . Feedback regulation of constant leaf standing crop in Sasa tsuboiana grasslands. Ecol Res, 2001,16:459-469.
[11] 肖继兵, 刘志, 孔凡信, 辛宗绪, 吴宏生 . 种植方式和密度对高粱群体结构和产量的影响. 中国农业科学, 2018,51:4264-4276.
Xiao J B, Liu Z, Kong F X, Xin Z X, Wu H S . Effects of planting pattern and density on population structure and yield of sorghum. Sci Agric Sin, 2018,51:4264-4276 (in Chinese with English abstract).
[12] Kong E, Liu D C, Guo X L, Yang W L, Sun J Z, Li X, Zhan K H, Cui D Q, Lin J X, Zhang A M . Anatomical and chemical characteristics associated with lodging resistance in wheat. Crop J, 2013,1:43-49.
[13] Tian B, Liu Y, Zhang L, Li H . Stem lodging parameters of the basal three internodes associated with plant population densities and developmental stages in foxtail millet (Setaria italica) cultivars differing in resistance to lodging. Crop Past Sci, 2017,68:349-357.
[14] Ookawa T, Ishihara K . Varietal difference of physical characteristics of the culm related to lodging resistance in paddy rice. Jpn J Crop Sci, 1992,61:419-425.
[15] 白羿雄, 姚晓华, 姚有华, 吴昆仑 . 青稞抗倒伏性状的基因型差异. 中国农业科学, 2019,52:228-238.
Bai Y X, Yao X H, Yao Y H, Wu K L . Difference of traits relating to lodging resistance in hulless barley genotypes. Sci Agric Sin, 2019,52:228-238 (in Chinese with English abstract).
[16] Cusicanqui J A, Lauer J G . Plant density and hybrid influence on corn forage yield and quality. Agron J, 1999,91:911-915.
[17] 王凯, 赵小红, 姚晓华, 姚有华, 白羿雄, 吴昆仑 . 茎秆特性和木质素合成与青稞抗倒伏关系. 作物学报, 2019,45:632-638.
Wang K, Zhao X H, Yao X H, Yao Y H, Bai Y X, Wu K L . Relationship of stem characteristics and lignin synthesis with lodging resistance of hulless barley. Acta Agron Sin, 2019,45:632-638 (in Chinese with English abstract).
[18] 池宁琳 . 植物纤维中不溶性碳水化合物的测定. 上海: 复旦大学, 2012. pp 27-28.
Chi N L . Determination of Insoluble Carbohydrates in Plant Fibers. Shanghai: Fudan University, 2012. pp 27-28 (in Chinese ).
[19] GB/6432-94. 饲料粗蛋白质的测定方法. 北京: 中国标准出版社, 2000.
GB/6432-94. Method for the Determination of Crude Protein in feedstuffs. Beijing: China Standards Press, 2000.
[20] 王彦华, 王成章, 李德锋, 郑爱荣, 齐胜利, 李冠真 . 播种量和品种对紫花苜蓿植株动态变化、产量及品质的影响. 草业学报, 2017,26:123-135.
Wang Y H, Wang C Z, Li D F, Zheng A R, Qi S L, Li G Z . Effects of seeding rate on plant number, production performance, and quality of alfalfa. Acta Pratac Sin, 2017,26:123-135 (in Chinese with English abstract).
[21] 梁烜赫, 徐晨, 赵鑫, 陈宝玉, 胡宇, 曹铁华 . 干旱对不同种植密度玉米生长发育及产量的影响. 灌溉排水学报, 2018,37(11):15-19.
Liang X H, Xu C, Zhao X, Chen B Y, Hu Y, Cao T H . The impact of drought and planting density on growth and yield of maize. J Irrig Drain, 2018,37(11):15-19 (in Chinese with English abstract).
[22] Lashkari M, Madani H, Ardakani M R, Golzardi F, Zargari K . Effect of plant density on yield and yield components of different corn ( Zea mays L.) hybrids. Am-Euras J Agric Environ Sci, 2011,10:450-457.
[23] Sangoi L, Gracietti M A, Rampazzo C, Bianchetti P . Response of Brazilian maize hybrids from different eras to changes in plant density. Field Crops Res, 2002,79:39-51.
[24] 邵庆勤, 周琴, 王笑, 蔡剑, 黄梅, 戴廷波, 姜东 . 种植密度对不同小麦品种茎秆形态特征、化学成分及抗倒性能的影响. 南京农业大学学报, 2018,41:808-816.
Shao Q Q, Zhou Q, Wang X, Cai J, Huang M, Dai T B, Jiang D . Effects of planting density on stem morphological characteristics, chemical composition and lodging resistance of different wheat varieties. J Nanjing Agric Univ, 2018,41:808-816 (in Chinese with English abstract).
[25] Chen B, Zhang Z, Yan L, Hou X, Zhang W, Zhang G . Effects of different row spacing and planting density on the main agronomic characters and yield of a maize variety Xianyu 335. Agric Sci Technol, 2017,18:801-804.
[26] Tollenaar M, Lee E A . Yield potential, yield stability and stress tolerance in maize. Field Crops Res, 2002,75:161-169.
[27] Duncan W G . Leaf angles, leaf area, and canopy photosynthesis. Crop Sci, 1971,11:482-485.
[28] Hammer G L, Dong Z, McLean G, Doherty A, Messina C, Schussler J, Cooper M . Can changes in canopy and/or root system architecture explain historical maize yield trends in the US corn belt? Crop Sci, 2009,49:299-312.
[29] Franklin K A . Shade avoidance. New Phytol, 2008,179:930-944.
[30] 张晓阳, 杜凤光, 常春, 王林风 . 纤维素生物质水解与应用. 郑州: 郑州大学出版社, 2012. pp 3-17.
Zhang X Y, Du F G, Chang C, Wang L F. Hydrolysis and Application of Cellulose Biomass. Zhengzhou: Zhengzhou University Press, 2012. pp 3-17(in Chinese).
[31] Chabannes M, Ruel K, Yoshinaga A, Chabber B, Jauneau A, Joseleau J P, Boudet A M . In situ analysis of lignins in transgenic tobacco reveals a differential impact of individual transformations on the spatial patterns of lignin deposition at the cellular and subcellular levels. Plant J, 2001,28:271-282.
[32] Moura J C, Bonine C A, Dornelas M C, Mazzafera P . Abiotic and biotic stresses and changes in the lignin content and composition in plants. J Integr Plant Biol, 2010,52:360-376.
[33] Setter T L, Laureles E V, Mazaredo A M . Lodging reduces yield of rice by self-shading and reductions in canopy photosynthesis. Field Crops Res, 1997,49:95-106.
[34] 于德花, 陈小芳, 毕云霞, 邵秋玲 . 种植密度对不同株型青贮玉米产量及相关特性的影响. 草业科学, 2018,35:1465-1471.
Yu D H, Chen X F, Bi Y X, Shao Q L . Effect of planting density on yield and related traits of silage maize with different plant types. Pratac Sci, 2018,35:1465-1471 (in Chinese with English abstract).
[1] 王兴荣, 李玥, 张彦军, 李永生, 汪军成, 徐银萍, 祁旭升. 青稞种质资源成株期抗旱性鉴定及抗旱指标筛选[J]. 作物学报, 2022, 48(5): 1279-1287.
[2] 姚晓华, 王越, 姚有华, 安立昆, 王燕, 吴昆仑. 青稞新基因HvMEL1 AGO的克隆和条纹病胁迫下的表达[J]. 作物学报, 2022, 48(5): 1181-1190.
[3] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[4] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[5] 娄洪祥, 姬建利, 蒯婕, 汪波, 徐亮, 李真, 刘芳, 黄威, 刘暑艳, 尹羽丰, 王晶, 周广生. 种植密度对油菜正反交组合产量与倒伏相关性状的影响[J]. 作物学报, 2021, 47(9): 1724-1740.
[6] 张明聪, 何松榆, 秦彬, 王孟雪, 金喜军, 任春元, 吴耀坤, 张玉先. 外源褪黑素对干旱胁迫下春大豆品种绥农26形态、光合生理及产量的影响[J]. 作物学报, 2021, 47(9): 1791-1805.
[7] 李洁, 付惠, 姚晓华, 吴昆仑. 不同耐旱性青稞叶片差异蛋白分析[J]. 作物学报, 2021, 47(7): 1248-1258.
[8] 王慰亲, 唐启源, 陈元伟, 贾巍, 罗友谊, 王小卉, 郑华斌, 熊娇军. 水稻机械精量有序抛秧栽培的产量形成和生长发育特征研究[J]. 作物学报, 2021, 47(5): 942-951.
[9] 郑迎霞, 陈杜, 魏鹏程, 卢平, 杨锦越, 罗上轲, 叶开梅, 宋碧. 种植密度对贵州春玉米茎秆抗倒伏性能及籽粒产量的影响[J]. 作物学报, 2021, 47(4): 738-751.
[10] 张金丹, 范虹, 杜进勇, 殷文, 樊志龙, 胡发龙, 柴强. 小麦玉米同步增密有利于优化种间关系而提高间作产量[J]. 作物学报, 2021, 47(12): 2481-2489.
[11] 卢合全, 唐薇, 罗振, 孔祥强, 李振怀, 徐士振, 辛承松. 商品有机肥替代部分化肥对连作棉田土壤养分、棉花生长发育及产量的影响[J]. 作物学报, 2021, 47(12): 2511-2521.
[12] 郑飞娜,初金鹏,张秀,费立伟,代兴龙,贺明荣. 播种方式与种植密度互作对大穗型小麦品种产量和氮素利用率的调控效应[J]. 作物学报, 2020, 46(3): 423-431.
[13] 王士红,杨中旭,史加亮,李海涛,宋宪亮,孙学振. 增密减氮对棉花干物质和氮素积累分配及产量的影响[J]. 作物学报, 2020, 46(3): 395-407.
[14] 王凯,赵小红,姚晓华,姚有华,白羿雄,吴昆仑. 茎秆特性和木质素合成与青稞抗倒伏关系[J]. 作物学报, 2019, 45(4): 621-627.
[15] 伦珠朗杰,李慧慧,郭刚刚,其美旺姆,高丽云,唐亚伟,尼玛扎西,达瓦顿珠,卓嘎. 西藏青稞冬春性鉴定及抽穗期多样性与稳定性分析[J]. 作物学报, 2019, 45(12): 1796-1805.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!