欢迎访问作物学报,今天是

作物学报 ›› 2020, Vol. 46 ›› Issue (8): 1174-1184.doi: 10.3724/SP.J.1006.2020.92066

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

基于高密度SNP遗传图谱的粳稻芽期耐低温QTL鉴定

姜树坤1,*(),王立志1,杨贤莉1,李波2,母伟杰3,董世晨3,车韦才3,李忠杰1,迟力勇1,李明贤1,张喜娟1,姜辉2,李锐1,赵茜1,李文华2,*()   

  1. 1黑龙江省农业科学院耕作栽培研究所/黑龙江省寒地作物生理生态重点实验室/黑龙江省农作物低温冷害工程技术研究中心, 黑龙江哈尔滨 150086
    2黑龙江省农业科学院, 黑龙江哈尔滨 150086
    3哈尔滨师范大学生命科学与技术学院, 黑龙江哈尔滨 150025
  • 收稿日期:2019-12-08 接受日期:2020-03-24 出版日期:2020-08-12 网络出版日期:2020-04-10
  • 通讯作者: 姜树坤,李文华
  • 作者简介:E-mail: sk_jiang@126.com
  • 基金资助:
    国家重点研发计划项目(2018YFD0300105-5-2);国家自然科学基金项目(31661143012);国家重点研发项目黑龙江省级资助(768001);黑龙江省自然科学基金优秀青年基金项目(YQ2019C020);黑龙江省农业科学院长期性基础性项目(2018CQJC002);黑龙江省农业科学院长期性基础性项目(2019CQJC002)

Detection of QTLs controlling cold tolerance at bud bursting stage by using a high-density SNP linkage map in japonica rice

JIANG Shu-Kun1,*(),WANG Li-Zhi1,YANG Xian-Li1,LI Bo2,MU Wei-Jie3,DONG Shi-Chen3,CHE Wei-Cai3,LI Zhong-Jie1,CHI Li-Yong1,LI Ming-Xian1,ZHANG Xi-Juan1,JIANG Hui2,LI Rui1,ZHAO Qian1,LI Wen-Hua2,*()   

  1. 1Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences/Heilongjiang Provincial Key Laboratory of Crop Physiology and Ecology in Cold Region/Heilongjiang Provincial Engineering Technology Research Center of Crop Cold Damage, Harbin 150086, Heilongjiang, China
    2Heilongjiang Academy of Agricultural Sciences, Harbin 150086, Heilongjiang, China
    3Life Science and Technology College, Harbin Normal University, Harbin 150025, Heilongjiang, China
  • Received:2019-12-08 Accepted:2020-03-24 Published:2020-08-12 Published online:2020-04-10
  • Contact: Shu-Kun JIANG,Wen-Hua LI
  • Supported by:
    National Key Research and Development Program of China(2018YFD0300105-5-2);National Natural Science Foundation of China(31661143012);Provincial Funding for the National Key Research and Development Program in Heilong jiang Province(768001);Natural Science Foundation of Heilongjiang Province of China(YQ2019C020);Heilongjiang Province Agricultural Science and Technology Innovation Project(2018CQJC002);Heilongjiang Province Agricultural Science and Technology Innovation Project(2019CQJC002)

摘要:

水稻直播由于省时、省工和节约成本而备受农户关注。然而, 芽期耐冷性不强致使现行推广的许多优良水稻品种不适于直播生产。因此, 挖掘鉴定芽期耐冷位点, 为后续的辅助育种提供基因资源就日益受到重视。本研究利用丽江新团黑谷和沈农265构建的重组自交系群体及其重测序构建的包含2818个bin标记的遗传图谱对水稻芽期的耐冷性进行QTL定位分析。共检测到5个芽期耐冷QTL, 分布在水稻的1号、3号、9号和11号染色体上, 增效等位基因均来自耐冷亲本丽江新团黑谷。这些QTL的LOD值的范围从3.05到24.01, 表型贡献率为8.0%~53.5%。其中, 表型贡献率最大的主效QTL是qCTB11b, 位于11号染色体长臂端的21.24 Mb~22.03 Mb之间, 物理图谱区间为790 kb。随后利用“选择作图”的策略进行了QTL验证和累加效应分析, 明确了可以通过QTL的累加聚合实现芽期耐冷能力的遗传改良, 聚合的增效QTL越多, 耐冷能力提升越明显。上述研究结果不仅可以增强人们对芽期水稻耐冷能力遗传基础的认识和理解, 也可以为后续直播品种的遗传改良提供理论依据和技术指导。

关键词: 粳稻, 芽期耐冷性, 重测序, 遗传图谱, 数量性状基因座

Abstract:

Direct seeded rice (DSR) has received much attention because of its time- and labour-saving and low-input demand. However, the long-term cultivation method of seedling-transplantation has led to loss of some low-temperature-tolerant genes expressed at the bud stage. It has made many currently popular rice varieties unsuitable for direct seeding production. Therefore, it is important to identify cold-tolerance genes at the bud stage and to provide genes for subsequent molecular marker assistant breeding. In this study, we used a recombinant inbred line population constructed by cross of Lijiangxintuanheigu (LTH) and Shennong 265 (SN265) and its linkage map containing 2818 markers to detect cold tolerance QTLs at the bud stage. A total of five QTLs were detected on rice chromosomes 1, 3, 9, and 11. All the cold tolerance alleles were from the cold-tolerant parent LTH. The LOD values of these QTLs ranged from 3.05 to 24.01, and the phenotypic variations ranged from 8.0% to 53.5%. Among them, the major QTL qCTB11b was located in a 790 kb interval of 21.24 Mb to 22.03 Mb on the long arm of chromosome 11. Subsequently, the “selective mapping” strategy was used for QTL verification and pyramiding effect analysis. Genetic improvement of cold tolerance at the bud stage would be achieved through pyramiding more QTLs. These results not only promote people’s understanding of the genetic basis for cold tolerance at the bud stage in rice but also provide theoretical basis and technical guidance for genetic improvement of DSR varieties.

Key words: japonica rice, cold tolerance at bud bursting stage, re-sequencing, genetic map, QTLs

图1

丽江新团黑谷-沈农265重组自交系群体的物理图谱(A)和基因型(B) 物理图谱位置基于日本晴参考基因组(MSU Rice Genome Annotation Project Release 7), 黄色表示沈农265; 蓝色表示丽江新团黑谷。"

图2

水稻芽期冷害评价等级标准"

图3

亲本丽江新团黑谷和沈农265芽期不经冷处理(A)和冷处理后(B)的比较"

图4

重组自交系群体的芽期耐冷性分布"

表1

利用丽江新团黑谷-沈农265的重组自交系群体检测的芽期耐冷QTL信息"

数量性状
基因座
QTL
染色体
Chr.
峰值位置a
Peak pos.a
峰值标记
Peak marker
QTL区间QTL interval LOD值
LOD value
表型贡献率
Var. (%)
加性
效应
Add.
增效等位
基因来源
Positive
allele
物理图谱
Physical (Mb)
定位区间
Location
interval (Mb)
qCTB1 1 0.73 Bin01-002 0.43-0.93 0.50 3.26 8.20 0.22 LTH
qCTB3 3 29.40 Bin03-281 29.40-32.87 3.47 3.05 8.00 0.21 LTH
qCTB9 9 21.45 Bin09-185 19.90-22.30 2.40 5.36 16.60 0.34 LTH
qCTB11a 11 9.71 Bin11-087 8.53-9.93 1.40 8.58 24.10 0.39 LTH
qCTB11b 11 21.80 Bin11-141 21.24-22.03 0.79 24.01 53.50 0.64 LTH

图5

控制芽期耐冷性的QTL在染色体上的位置分布 OsCOIN: 低温诱导的锌指蛋白[46]; OsHOS1: 参与冷胁迫的E3泛素连接酶[47]; OsDREB1A, OsDREB1B: 低温诱导的AP2/ EREBP转录因子基因[48]; qCTP11: 芽期耐冷QTL[27]。"

图6

芽期耐冷QTL的验证和聚合效应分析使用的重组单株基因型 “-”: 缺失。"

图7

控制芽期耐冷性的QTL效应及在LTH-SN265重组自交系群体中的聚合效果分析 A: 亲本沈农265 (SN265); B: 亲本丽江新团黑谷(LTH); C~G: qCTB1、qCTB3、qCTB9、qCTB11a和qCTB11b的芽期耐冷效应; H: qCTB1和qCTB3的芽期耐冷聚合效应; I: qCTB3和qCTB9的芽期耐冷聚合效应; J: qCTB9和qCTB11a的芽期耐冷聚合效应; K: qCTB11a和qCTB11b的芽期耐冷聚合效应; L: qCTB1和qCTB11b的芽期耐冷聚合效应; M: qCTB9和qCTB11b的芽期耐冷聚合效应; N: qCTB1、qCTB3和qCTB9的芽期耐冷聚合效应; O: qCTB3、qCTB9和qCTB11a的芽期耐冷聚合效应; P: qCTB1、qCTB3和qCTB11a的芽期耐冷聚合效应; Q: qCTB1、qCTB11a和qCTB11b的芽期耐冷聚合效应; R: qCTB3、qCTB11a和qCTB11b的芽期耐冷聚合效应; S: qCTB9、qCTB11a和qCTB11b的芽期耐冷聚合效应; T: qCTB1、qCTB3、qCTB11a和qCTB11b的芽期耐冷聚合效应; U: qCTB1、qCTB9、qCTB11a和qCTB11b的芽期耐冷聚合效应; V: qCTB3、qCTB9、qCTB11a和qCTB11b的芽期耐冷聚合效应; W: qCTB1、qCTB3、qCTB9、qCTB11a和qCTB11b的芽期耐冷聚合效应; X: 无QTL的株系表型。"

[1] 刘次桃, 王威, 毛毕刚, 储成才. 水稻耐低温逆境研究: 分子生理机制及育种展望. 遗传, 2018,40:171-185.
Liu C T, Wang W, Mao B G, Chu C C. Cold stress tolerance in rice: physiological changes, molecular mechanism, and future prospects. Hereditas, 2018,40:171-185 (in Chinese with English abstract).
[2] 矫江, 许显滨, 孟英. 黑龙江省水稻低温冷害及对策研究. 中国农业气象, 2004,25(2):27-29.
Jiao J, Xu X B, Meng Y. Analysis of rice chilling injury and countermeasures in Heilongjiang province. Chin J Agrometeorol, 2004,25(2):27-29 (in Chinese with English abstract).
[3] 聂元元, 蔡耀辉, 颜满莲, 李永辉, 毛凌华, 颜龙安, 杨晓莉. 水稻低温冷害分析研究进展. 江西农业学报, 2011,23(3):63-66.
Nie Y Y, Cai Y H, Yan M L, Li Y H, Mao L H, Yan L A, Yang X L. Research advances in chilling injury to rice. Acta Agric Jiangxi, 2011,23(3):63-66 (in Chinese with English abstract).
[4] Cruz R P, Sperotto R A, Cargnelutti D, Adamski J M, de FreitasTerra T, Fett J P. Avoiding damage and achieving cold tolerance in rice plants. Food & Energy Security, 2013,2:96-119.
doi: 10.5923/j.food.20120205.05
[5] Borjas A H, Leon T B D, Subudhi P K. Genetic analysis of germinating ability and seedling vigor under cold stress in US weedy rice. Euphytica, 2016,208:1-14.
[6] Satoh T, Tezuka K, Kawamoto T, Matsumoto S, Satoh-Nagasawa N, Ueda K, Sakurai K, Watanabe A, Takahashi H, Akagi H. Identification of QTLs controlling low-temperature germination of the east European rice variety Maratteli. Euphytica, 2016,207:245-254.
[7] 吴立, 霍治国, 姜燕, 张蕾, 于彩霞. 气候变暖背景下南方早稻春季低温灾害的发生趋势与风险. 生态学报, 2016,36:1263-1271.
Wu L, Huo Z G, Jiang Y, Zhang L, Yu C X. Trends and risk of spring low-temperature damage to early rice in southern China against the background of global warming. Acta Ecol Sin, 2016,36:1263-1271 (in Chinese with English abstract).
[8] 郭丽颖, 耿艳秋, 金峰, 宋微, 邵玺文. 寒地水稻低温冷害防御栽培技术研究进展. 作物杂志, 2017, (4):7-14.
Guo L Y, Geng Y Q, Jin F, Song W, Shao X W. Research advances about low temperature, cold damage defense cultivation techniques of rice in cold region of china. Crops, 2017, (4):7-14 (in Chinese with English abstract).
[9] 戴陆园, 叶昌荣, 余腾琼, 徐福荣. 水稻耐冷性研究: I. 稻冷害类型及耐冷性鉴定评价方法概述. 西南农业学报, 2002,15(1):41-45.
Dai L Y, Ye C R, Yu T Q, Xu F R. Studies on cold tolerance of rice, Oryza sativa L.: I. Description on types of cold injury and classifications of evaluation methods on cold tolerance in rice. Southwest China J Agric Sci, 2002,15(1):41-45 (in Chinese with English abstract).
[10] 韩龙植, 曹桂兰, 芮钟斗, 安永平, 乔永利, 黄兴九, 高熙宗. 水稻芽期耐冷性与其他耐冷性状的相关关系. 作物学报, 2004,30:990-995.
Han L Z, Cao G L, Yea J D, An Y P, Qiao Y L, Huang X J, Koh H J. Relationship between cold tolerance at the bud bursting period and other traits related to cold tolerance in rice. Acta Agron Sin, 30:990-995 (in Chinese with English abstract).
[11] 陈品, 陆建飞. 长江中下游地区直播稻的生理生态特性及其栽培技术的研究进展. 核农学报, 2013,27:487-494.
Chen P, Lu J F. Research advances on the physiological and ecological characteristics and cultivation techniques of direct seeding rice in the Middle-Lower Yangtze area. J Nucl Agric Sci, 2013,27:487-494 (in Chinese with English abstract).
[12] 张喜娟, 来永才, 孟英, 唐傲, 董文军, 冷春旭, 王立志, 姜树坤, 姜辉, 丁国华. 水直播对寒地粳稻产量和品质性状的影响. 中国稻米, 2016,22(2):43-46.
Zhang X J, Lai Y C, Meng Y, Tang A, Dong W J, Leng C X, Wang L Z, Jiang S K, Jiang H, Ding G H. Effects of water direct seeding on yield and quality of japonica rice in cold area. China Rice, 2016,22(2):43-46 (in Chinese with English abstract).
[13] 余会康, 郭建平. 气候变化下东北水稻冷害时空分布变化. 中国生态农业学报, 2014,22:594-601.
Yu H K, Guo J P. Variation in spatial and temporal distribution of chilling injury of rice under climate change in Northeast China. Chin J Eco-Agric, 2014,22:594-601 (in Chinese with English abstract).
[14] Fujino K, Sekiguchi H, Matsuda Y, Sugimoto K, Ono K, Yano M. Molecular identification of a major quantitative trait locus, qLTG3-1, controlling low-temperature germinability in rice. Proc Natl Acad Sci USA, 2008,105:12623-12628.
doi: 10.1073/pnas.0805303105 pmid: 18719107
[15] Liu C T, Ou S, Mao B, Tang J, Wang W, Wang H, Cao S, Schläppi M, Zhao B, Xiao G. Early selection of bZIP73 facilitated adaptation of japonica rice to cold climates. Nat Commun, 2018,9:3302.
pmid: 30120236
[16] Saito K, Hayano-Saito Y, Kuroki M, Sato Y. Map-based cloning of the rice cold tolerance gene Ctb1. Plant Sci, 2010,179:97-102.
doi: 10.1016/j.plantsci.2010.04.004
[17] Zhang Z Y, Li J J, Pan Y H, Li J L, Zhou L, Shi H L, Zeng Y W, Guo H F, Yang S M, Zheng W W, Yu J P, Sun X M, Li G L, Ding Y L, Ma L, Shen S Q, Dai L Y, Zhang H L, Yang S H, Guo Y, Li Z C. Natural variation in CTB4a enhances rice adaptation to cold habitats. Nat Commun, 2017,8:14788.
doi: 10.1038/ncomms14788 pmid: 28332574
[18] Ma Y, Dai X Y, Xu Y Y, Luo W, Zheng X M, Zeng D L, Pan Y J, Lin X L, Liu H H, Zhang D J, Xiao J, Guo X Y, Xu S J, Niu Y D, Jin J B, Zhang H, Xu X, Li L L, Wang W, Qian Q, Ge S, Chong K. COLD1 confers chilling tolerance in rice. Cell, 2015,160:1209-1221.
doi: 10.1016/j.cell.2015.01.046 pmid: 25728666
[19] Mao D H, Xin Y Y, Tan Y J, Hu X J, Bai J J, Liu Z Y, Yu Y L, Li L Y, Peng C, Fan T, Zhu Y X, Guo Y L, Wang S H, Li D P, Xing Y Z, Yuan L P, Chen C Y. Natural variation in the HAN1 gene confers chilling tolerance in rice and allowed adaptation to a temperate climate. Proc Natl Acad Sci USA, 2019,116:3494-3501.
doi: 10.1073/pnas.1819769116 pmid: 30808744
[20] 严长杰, 李欣, 程祝宽, 于恒秀, 顾铭洪, 朱立煌. 利用分子标记定位水稻芽期耐冷性基因. 中国水稻科学, 1999,13:134-138.
Yan C J, Li X, Cheng Z K, Yu H X, Gu M H, Zhu L H. Identification of QTL for cold tolerance at early seeding stage in rice (Oryza sativa) via RFLP markers. Chin J Rice Sci, 1999,13:134-138 (in Chinese with English abstract).
[21] Zhang Z H, Li S, Li W, Chen W, Zhu Y G. A major QTL conferring cold tolerance at the early seedling stage using recombinant inbred lines of rice ( Oryza sativa L.). Plant Sci, 2005,168:527-534.
doi: 10.1016/j.plantsci.2004.09.021
[22] 乔永利, 韩龙植, 安永平, 张媛媛, 曹桂兰, 高熙宗. 水稻芽期耐冷性QTL的分子定位. 中国农业科学, 2005,38:217-221.
Qiao Y L, Han L Z, An Y P, Zhang Y Y, Cao G L, Koh H J. Molecular mapping of QTLs for cold tolerance at the bud bursting period in rice. Sci Agric Sin, 2005,38:217-221 (in Chinese with English abstract).
[23] 陈玮, 李炜. 水稻RIL群体芽期耐冷性基因的分子标记定位. 武汉植物学研究, 2005,23:116-120.
Chen W, Li W. Mapping of QTL conferring cold tolerance at early seeding stage of rice by molecular markers. J Wuhan Bot Res, 2005,23:116-120 (in Chinese with English abstract).
[24] 张露霞, 王松凤, 江铃, 万建民. 利用重组自交系群体检测水稻芽期耐冷性QTL. 南京农业大学学报, 2007,30(4):1-5.
Zhang L X, Wang S F, Jiang L, Wan J M. QTL analysis of cold tolerance at the bud bursting period in rice (Oryza sativa L.) by using recombinant inbred lines. J Nanjing Agric Univ, 2007,30(4):1-5 (in Chinese with English abstract).
[25] 巩迎军, 阮雯君, 荀星, 董彦君, 林冬枝, 叶胜海, 张小明. 水稻芽性状耐冷性的QTL分析. 分子植物育种, 2009,7:273-278.
Gong Y J, Ruan W J, Xun X, Dong Y J, Lin D Z, Ye S H, Zhang X M. QTL analysis of cold tolerance for two bud traits in rice. Mol Plant Breed, 2009,7:273-278 (in Chinese with English abstract).
[26] 林静, 朱文银, 张亚东, 朱镇, 赵凌, 陈涛, 赵庆勇, 周丽慧, 方先文, 王艳平. 利用染色体片段置换系定位水稻芽期耐冷性QTL. 中国水稻科学, 2010,24:233-236.
doi: 10.3969/j.issn.1001-7216.2010.03.004
Lin J, Zhu W Y, Zhang Y D, Zhu Z, Zhao L, Chen T, Zhao Q Y, Zhou L H, Fang X W, Wang Y P. Detection of quantitative trait loci for cold tolerance at the bursting stage by using chromosome segment substitution lines in rice (Oryza sativa). Chin J Rice Sci, 2010,24:233-236 (in Chinese with English abstract).
doi: 10.3969/j.issn.1001-7216.2010.03.004
[27] Baruah A R, Ishigo-Oka N, Adachi M, Oguma Y, Tokizono Y, Onishi K, Sano Y. Cold tolerance at the early growth stage in wild and cultivated rice. Euphytica, 2009,165:459-470.
doi: 10.1007/s10681-008-9753-y
[28] Ji Z J, Zeng Y X, Zeng D L, Ma L Y, Li X M, Liu B X, Yang C D. Identification of QTLs for rice cold tolerance at plumule and 3-leaf-seedling stages by using QTL Network software. Rice Sci, 2010,17:282-287.
doi: 10.1016/S1672-6308(09)60028-7
[29] 周勇, 朱孝波, 袁华, 郑英, 钦鹏, 魏应海, 王玉平, 黄世君, 李仕贵. 水稻单片段代换系芽期和苗期耐冷性分析及耐冷性QTL鉴定. 中国水稻科学, 2013,27:381-388.
doi: 10.3969/j.issn.10017216.2013.04.007
Zhou Y, Zhu X B, Yuan H, Zheng Y, Qin P, Wei Y H, Wang Y P, Huang S J, Li S G. Characterization of cold tolerance and identification of cold tolerance QTLs for rice single segment substitution lines at plumule and seedling stages. Chin J Rice Sci, 2013,27:381-388 (in Chinese with English abstract).
doi: 10.3969/j.issn.10017216.2013.04.007
[30] 杨洛淼, 王敬国, 刘化龙, 孙健, 郑洪亮, 邹德堂. 寒地粳稻发芽期和芽期的耐冷性QTL定位. 作物杂志, 2014, (6):44-51.
Yang L S, Wang J G, Liu H L, Sun J, Zheng H L, Zou D T. QTL mapping of cold tolerance for the germination period and the bud bursting period of japonica in cold area. Crops, 2014, (6):44-51 (in Chinese with English abstract).
[31] 朱金燕, 杨梅, 嵇朝球, 王军, 杨杰, 范方军, 李文奇, 王芳权, 梁国华, 周勇, 仲维功. 利用染色体单片段代换系定位水稻芽期耐冷QTL. 植物学报, 2015,50:338-345.
doi: 10.3724/SP.J.1259.2015.00338
Zhu J Y, Yang M, Ji C Q, Wang J, Yang J, Fan F J, Li W Q, Wang F Q, Liang G H, Zhou Y, Zhong W G. Identification of cold tolerance at the plumule stage quantitative trait loci with single segment substituted lines in rice. Chin Bull Bot, 2015,50:338-345 (in Chinese with English abstract).
doi: 10.3724/SP.J.1259.2015.00338
[32] Yang T F, Zhang S H, Zhao J L, Liu Q, Huang Z H, Mao X X, Dong J F, Wang X F, Zhang G Q, Liu B. Identification and pyramiding of QTLs for cold tolerance at the bud bursting and the seedling stages by use of single segment substitution lines in rice ( Oryza sativa L.). Mol Breed, 2016,36:96.
doi: 10.1007/s11032-016-0520-9
[33] Zhang M C, Ye J, Xu Q, Feng Y, Yuan X P, Yu H Y, Wang Y P, Wei X H, Yang Y L. Genome-wide association study of cold tolerance of Chinese indica rice varieties at the bud burst stage. Plant Cell Rep, 2018,37:529-539.
doi: 10.1007/s00299-017-2247-4 pmid: 29322237
[34] Huang X, Feng Q, Qian Q, Zhao Q, Wang L, Wang A, Guan J, Fan D, Weng Q, Huang T. High-throughput genotyping by whole-genome resequencing. Genome Res, 2009,19:1068-1076.
doi: 10.1101/gr.089516.108 pmid: 19420380
[35] Jiang S, Yang C, Xu Q, Wang L, Yang X, Song X, Wang J, Zhang X, Li B, Li H, Li Z, Li W. Genetic dissection germinability under low temperature by building a resequencing linkage map in japonica rice. Int J Mol Sci, 2020,21:1284.
doi: 10.3390/ijms21041284
[36] 韩龙植, 魏兴华. 水稻种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006. p 107.
Han L Z, Wei X H. Descriptors and Data Standard for Rice (Oryza sativa L.). Beijing: China Agriculture Press, 2006. p 107.
[37] Arends D, Prins P, Jansen R, Broman K. R/QTL: high-throughput multiple QTL mapping. Bioinformatics, 2010,26:2990-2992.
doi: 10.1093/bioinformatics/btq565 pmid: 20966004
[38] 姜树坤, 张凤鸣, 白良明, 孙世臣, 王彤彤, 丁国华, 姜辉, 张喜娟. 水稻移栽后新生根系相关性状的QTL分析. 中国水稻科学, 2014,28:598-604.
doi: 10.3969/j.issn.10017216.2014.06.005
Jiang S K, Zhang F M, Bai L M, Sun S C, Wang T T, Ding G H, Jiang H, Zhang X J. QTL analysis on new root traits after rice transplanting. Chin J Rice Sci, 2014,28:598-604 (in Chinese with English abstract).
doi: 10.3969/j.issn.10017216.2014.06.005
[39] Yu H, Xie W, Wang J, Xing Y, Xu C, Li X, Xiao J, Zhang Q. Gains in QTL detection using an ultra-high density SNP map based on population sequencing relative to traditional RFLP/SSR markers. PLoS One, 2011,6:e17595.
doi: 10.1371/journal.pone.0017595 pmid: 21390234
[40] Gao Z Y, Zhao S C, He W M, Guo L B, Peng Y L, Wang J J, Guo X S, Zhang X M, Rao Y C, Zhang C, Dong G J, Zheng F Y, Lu C X, Hu J, Zhou Q, Liu H J, Wu H Y, Xu J, Ni P X, Zeng D L, Liu D H, Tian P, Gong L H, Ye C, Zhang G H, Wang J, Tian F K, Xue D W, Liao Y, Zhu L, Chen M S, Li J Y, Cheng S H, Zhang G Y, Wang J, Qian Q. Dissecting yield-associated loci in super hybrid rice by resequencing recombinant inbred lines and improving parental genome sequences. Proc Natl Acad Sci USA, 2013,110:14492-14497.
doi: 10.1073/pnas.1306579110 pmid: 23940322
[41] Jiang N, Shi S, Shi H, Khanzada H, Wassan G M, Zhu C, Peng X, Yu Q, Chen X, He X, Fu J, Hu L, Xu J, Ou-Yang L, Sun X, Zhou D, He H, Bian J. Mapping QTL for seed germinability under low temperature using a new high-density genetic map of rice. Front Plant Sci, 2017,8:1223.
doi: 10.3389/fpls.2017.01223 pmid: 28747923
[42] Liu H, Niu Y, Gonzalez-Portilla P J, Zhou H, Wang L, Zuo T, Qin C, Tai S, Jansen C, Shen Y, Lin H, Lee M, Ware D, Zhang Z, Lübberstedt T, Pan G. An ultra-high-density map as a community resource for discerning the genetic basis of quantitative traits in maize. BMC Genomics, 2015,16:1078.
doi: 10.1186/s12864-015-2242-5 pmid: 26691201
[43] Song W, Wang B, Hauck A L, Dong X, Li J, Lai J. Genetic dissection of maize seedling root system architecture traits using an ultra-high density bin-map and a recombinant inbred line population. J Integr Plant Biol, 2016,58:266-279.
pmid: 26593310
[44] Zou G, Zhai G, Feng Q, Yan S, Wang A, Zhao Q, Shao J, Zhang Z, Zou J, Han B, Tao Y. Identification of QTLs for eight agronomically important traits using an ultra-high-density map based on SNPs generated from high-throughput sequencing in sorghum under contrasting photoperiods. J Exp Bot, 2012,63:5451-5462.
doi: 10.1093/jxb/ers205 pmid: 22859680
[45] 姜树坤, 徐正进, 陈温福. 水稻QTL图位克隆的特征分析. 遗传, 2008,30:1121-1126.
Jiang S K, Xu Z J, Chen W F. Analysis of features of 15 successful positional cloning of QTL in rice. Hereditas (Beijing), 2008,30:1121-1126 (in Chinese with English abstract).
[46] Jiang S K, Huang C, Zhang X J, Wang J Y, Xu Z J, Chen W F. Development of a high informative microsatellite markers (SSRs) framework for genotyping of rice (Oryza sativa L.). Agric Sci China, 2010,9:1697-1704.
[47] Liu K M, Wang L, Xu Y Y, Chen N, Ma Q B, Li F, Chong K. Overexpression of OsCOIN, a putative cold inducible zinc finger protein, increased tolerance to chilling, salt and drought, and enhanced proline level in rice. Planta, 2007,226:1007-1016.
doi: 10.1007/s00425-007-0548-5 pmid: 17549515
[48] Lourenço T, Sapeta H, Figueiredo D D, Rodrigues M, Cordeiro A, Abreu I A, Saibo N J M, Oliveira M M. Isolation and characterization of rice ( Oryza sativa L.) E3-ubiquitin ligase OsHOS1 gene in the modulation of cold stress response. Plant Mol Biol, 2013,83:351-363.
doi: 10.1007/s11103-013-0092-6 pmid: 23780733
[49] Mao D H, Chen C Y. Colinearity and similar expression pattern of rice DREB1s reveal their functional conservation in the cold-responsive pathway. PLoS One, 2012,7:e47275.
doi: 10.1371/journal.pone.0047275 pmid: 23077584
[1] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[2] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[3] 袁嘉琦, 刘艳阳, 许轲, 李国辉, 陈天晔, 周虎毅, 郭保卫, 霍中洋, 戴其根, 张洪程. 氮密处理提高迟播栽粳稻资源利用和产量[J]. 作物学报, 2022, 48(3): 667-681.
[4] 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769.
[5] 张军, 周冬冬, 许轲, 李必忠, 刘忠红, 周年兵, 方书亮, 张永进, 汤洁, 安礼政. 淮北地区麦茬机插优质食味粳稻氮肥减量的精确运筹[J]. 作物学报, 2022, 48(2): 410-422.
[6] 刘秋员, 周磊, 田晋钰, 程爽, 陶钰, 邢志鹏, 刘国栋, 魏海燕, 张洪程. 长江中下游地区常规中熟粳稻产量、品质及氮素吸收性状的相互关系分析[J]. 作物学报, 2021, 47(5): 904-914.
[7] 黄恒, 姜恒鑫, 刘光明, 袁嘉琦, 汪源, 赵灿, 王维领, 霍中洋, 许轲, 戴其根, 张洪程, 李德剑, 刘国林. 侧深施氮对水稻产量及氮素吸收利用的影响[J]. 作物学报, 2021, 47(11): 2232-2249.
[8] 徐婷婷, 汪巧玲, 邹淑琼, 狄佳春, 杨欣, 朱银, 赵涵, 颜伟. 基于高通量测序的大麦InDel标记开发及应用[J]. 作物学报, 2020, 46(9): 1340-1350.
[9] 赵春芳,岳红亮,田铮,顾明超,赵凌,赵庆勇,朱镇,陈涛,周丽慧,姚姝,梁文化,路凯,张亚东,王才林. 江苏和东北粳稻稻米理化特性及WxOsSSIIa基因序列分析[J]. 作物学报, 2020, 46(6): 878-888.
[10] 卫平洋,裘实,唐健,肖丹丹,朱盈,刘国栋,邢志鹏,胡雅杰,郭保卫,高尚勤,魏海燕,张洪程. 安徽沿淮地区优质高产常规粳稻品种筛选及特征特性[J]. 作物学报, 2020, 46(4): 571-585.
[11] 杨正钊, 王梓豪, 胡兆荣, 辛明明, 姚颖垠, 彭惠茹, 尤明山, 宿振起, 郭伟龙. 小麦主栽品种济麦22与良星99的基因组序列多态性比较分析[J]. 作物学报, 2020, 46(12): 1870-1883.
[12] 姚姝, 张亚东, 刘燕清, 赵春芳, 周丽慧, 陈涛, 赵庆勇, 朱镇, Balakrishna Pillay, 王才林. 水稻Wxmp背景下SSIIaSSIIIa等位变异及其互作对蒸煮食味品质的影响[J]. 作物学报, 2020, 46(11): 1690-1702.
[13] 王艳,易军,高继平,张丽娜,杨继芬,赵艳泽,辛威,甄晓溪,张文忠. 不同叶龄蘖、穗氮肥组合对粳稻产量及氮素利用的影响[J]. 作物学报, 2020, 46(01): 102-116.
[14] 曾新颖,郭建斌,赵姣姣,陈伟刚,邱西克,黄莉,罗怀勇,周晓静,姜慧芳,黄家权. 花生籽仁大小相关性状QTL定位[J]. 作物学报, 2019, 45(8): 1200-1207.
[15] 陆海燕,周玲,林峰,王蕊,王凤格,赵涵. 基于高通量测序开发玉米高效KASP分子标记[J]. 作物学报, 2019, 45(6): 872-878.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!