欢迎访问作物学报,今天是

作物学报 ›› 2020, Vol. 46 ›› Issue (8): 1195-1207.doi: 10.3724/SP.J.1006.2020.94163

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

甘薯基因组NBS-LRR类抗病家族基因挖掘与分析

黄小芳1,2,毕楚韵1,2,石媛媛2,胡韵卓3,周丽香4,梁才晓4,黄碧芳4,许明1,2,林世强1,4,*(),陈选阳1,2,5,*()   

  1. 1福建农林大学作物生物技术福建省高校重点实验室, 福建福州 350002
    2福建农林大学农学院, 福建福州 350002
    3福建农林大学植物保护学院, 福建福州 350002
    4福建农林大学生命科学学院, 福建福州 350002
    5福建农林大学教育部作物遗传育种与综合利用重点实验室, 福建福州 350002
  • 收稿日期:2019-11-01 接受日期:2020-04-15 出版日期:2020-08-12 网络出版日期:2020-04-26
  • 通讯作者: 林世强,陈选阳
  • 作者简介:黄小芳, E-mail: 1102718600@qq.com, Tel: 059183789483|毕楚韵, E-mail: 494028227@qq.com, Tel: 059183789483.
  • 基金资助:
    福建省科技重大专项子专题(CN2017NZ0002-2)

Discovery and analysis of NBS-LRR gene family in sweet potato genome

HUANG Xiao-Fang1,2,BI Chu-Yun1,2,SHI Yuan-Yuan2,HU Yun-Zhuo3,ZHOU Li-Xiang4,LIANG Cai-Xiao4,HUANG Bi-Fang4,XU Ming1,2,LIN Shi-Qiang1,4,*(),CHEN Xuan-Yang1,2,5,*()   

  1. 1Key Laboratory of Crop Biotechnology, Fujian Agriculture and Forestry University, Fujian Province Universities, Fuzhou 350002, Fujian, China
    2College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
    3College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
    4College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
    5Key Laboratory of Genetics, Breeding and Multiple Application of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
  • Received:2019-11-01 Accepted:2020-04-15 Published:2020-08-12 Published online:2020-04-26
  • Contact: Shi-Qiang LIN,Xuan-Yang CHEN
  • Supported by:
    Fujian Provincial Department of Science & Technology(CN2017NZ0002-2)

摘要:

NBS-LRR类基因家族是植物抗病R基因(Resistance gene)数量最多的一类, 具有NBS (Nucleotide-binding site)和LRR (Leucine-leucine-repeat)结构域。甘薯(Ipomoea batatas)栽培种基因组已完成测序, 但尚未注释, 本研究对甘薯基因组序列进行外显子预测, 得到甘薯染色体组全基因组蛋白序列, 在此基础上进一步对NBS-LRR家族基因鉴定和分析表明, 甘薯基因组中含有379个NBS-LRR家族基因, 占全基因组基因总数的0.212%, 其中N型亚家族120个, NL型103个, CNL型133个, TNL型22个, PN型1个。所有染色体上均有NBS-LRR家族基因分布, 但数量明显不同, 其中有60.9%的NBS-LRR基因序列呈簇状分布。NBS-LRR基因序列有15个保守结构域, 在N端较为保守。研究结果为甘薯进一步开展NBS-LRR家族基因的功能研究和抗性育种提供了参考。

关键词: 甘薯, NBS-LRR, R基因, 基因家族, 生物信息学

Abstract:

The NBS-LRR gene families possess the most abundant resistance genes in plants. Members of the NBS-LRR gene families contain nucleotide-binding site (NBS) and leucine-leucine repeat (LRR) domains. The genome of sweet potato (Ipomoea batatas) cultivar has been sequenced but the genes have not been annotated yet. In this study, we predicted the exons of sweet potato genome and obtained the proteins sequences, which were then used to identify and analyze genes of NBS-LRR family. There were 379 genes within NBS-LRR family, amounting to 0.212% of the total genes of sweet potato. The number of the N type, NL type, CNL type, TNL type and PN type was 120, 103, 133, 22, and 1, respectively. All of the chromosomes had NBS-LRR family genes but varied in number and 60.9% of them were clustered. NBS-LRR genes included 15 conservative domains and the genes were conservative within N terminal domain. The results provide references for further studies on the function of NBS-LRR family genes and resistance breeding of sweet potato.

Key words: Ipomoea batatas, NBS-LRR, R gene, gene family, bioinformatics

表1

甘薯编码NBS-LRR蛋白的基因数量及其分类"

项目
Item
预测结构域
Predicted domain
代码
Code
甘薯
Ib
木薯a
Me a
水稻b
Os b
拟南芥c
At c
乌拉尔图小麦d
Tu d
N类型N type NB N 118 14 45 1 270
NCCC 1
NB NB NN 1
NL类型NL type NB LRR NL 81 52 301 6 31
NLN 1
项目
Item
预测结构域
Predicted domain
代码
Code
甘薯
Ib
木薯a
Me a
水稻b
Os b
拟南芥c
At c
乌拉尔图小麦d
Tu d
NLC 1
NB LRR LRR NLL 16 19
NLLC 1
NB LRR LRR LRR NLLL 1 1
NB NB LRR NNL 2 3 1
CNL类型CNL type CC NB CN 22 11 7 5 55
CXN 29
CC NB LRR CNL 15 117 175 51 84
CXNL 37
CNCL 1
CNLC 1
CXNLC 1
LCXNL 1
CC NB LRR LRR CNLL 4 8
CXNLL 5
CC NB LRR LRR LRR CXNLLL 1 1
CC NB NB LRR LRR CNNLL 1
CC CC NB CXCN 4
CXCXN 1
CC CC NB LRR CCNL 2
CXCNL 6
CC CC NB LRR LRR CXCNLL 1
CC CC CC CC NB LRR LRR CCCCNLL 1
TNL类型TNL type TIR NB TN 9 5 3 23 0
TIR NB NB TNN 1
TIR NB LRR TNL 7 29 88 0
TIR NB LRR LRR TNLL 3
TIR NB LRR LRR LRR TNLLL 2
PN类型PN type RPW8 NB PN 1
其他Other 99 1 33 15
总数Total 379 327 535 207 485
基因组中基因总数
Total number of genes in the genome
178458 30666 37544 25498 32265
基因组大小Genome size (Mb) 633.42 ~760 389 125 3747.05

图1

甘薯NBS-LRR家族基因在染色体上的分布"

表2

甘薯NBS-LRR基因家族基因簇统计表"

染色体
Chromosome
基因
Gene
基因簇/基因数目
Gene cluster/gene number
最大基因簇
Maximal gene cluster
百分比
Percentage (%)
1 26 4/14 4 53.8
2 28 4/13 4 46.4
3 11 2/7 4 63.6
4 22 5/15 5 68.2
5 18 4/13 6 72.2
6 18 2/4 2 22.2
7 53 16/41 4 77.4
8 29 4/9 3 31.0
9 35 8/30 9 85.7
10 40 12/30 4 75.0
11 3 1/2 2 66.7
12 26 5/14 4 53.8
13 54 11/33 9 61.1
14 9 0/0 0 0
15 7 3/6 2 85.7
总数Total 379 81/231 60.9

图2

甘薯NBS-LRR家族中CNL亚家族保守结构域分布"

图3

甘薯NBS-LRR家族中TNL亚家族保守结构域分布"

图4

甘薯NB-ARC保守性分析"

图5

甘薯NBS-LRR家族基因保守结构域及其氨基酸保守性分析"

图6

甘薯NBS-LRR家族基因系统进化树"

[1] Staskawicz B J, Ausubel F M, Baker B J, Ellis J G, Jones J D. Molecular genetics of plant disease resistance. Science, 1995,268:661-667.
doi: 10.1126/science.7732374 pmid: 7732374
[2] 李楠洋. 棉花抗黄萎病基因筛选及NBS-LRR类抗病基因GbaNA1功能研究. 中国农业科学院博士学位论文, 北京, 2017.
Li N Y. Screening of Cotton Anti Verticillium Wilt Genes and Functional Study on NBS-LRR Resistance Gene GbaNA1. PhD Dissertation of Chinese Academy of Agricultural Sciences, Beijing, China, 2017 (in Chinese with English abstract).
[3] Changkwian A, Venkatesh J, Lee J H, Han J W, Kwon J K, Siddique M I, Solomon A M, Choi G J, Kim E, Seo Y, Kim Y H, Kang B C. Physical localization of the root-knot nematode (Meloidogyne incognita) resistance locus Me7 in pepper(Capsicum annuum). Front Plant Sci, 2019,10:886.
doi: 10.3389/fpls.2019.00886 pmid: 31354762
[4] 房卫平, 谢德意, 李志芳, 李武, 赵付安, 孙瑶, 段峥峥, 杨晓杰. NBS-LRR类抗病蛋白介导的植物抗病应答分子机制. 分子植物育种, 2015,13:469-474.
Fang W P, Xie D Y, Li Z F, Li W, Zhao F A, Sun Y, Duan Z Z, Yang X J. Molecular mechanism on NBS-LRR proteins-mediated plant disease response. Mol Plant Breed, 2015, 13:469-474 (in Chinese with English abstract).
[5] Jones J D G, Dangl J L. The plant immune system. Nature, 2006,444:323-329.
doi: 10.1038/nature05286 pmid: 17108957
[6] Hammond-Kosack K E, Parker J E. Deciphering plant-pathogen communication: fresh perspectives for molecular resistance breeding. Curr Opin Biotechnol, 2003,14:177-193.
doi: 10.1016/s0958-1669(03)00035-1 pmid: 12732319
[7] 尹玲, 方辉, 黄羽, 卢江, 曲俊杰. 植物TIR-NB-LRR类型抗病基因各结构域的研究进展. 广西植物, 2017,37:186-190.
Yin L, Fang H, Huang Y, Lu J, Qu J J. Research progress on domains of plant TIR-NB-LRR resistance genes. Guihaia, 2017,37:186-190 (in Chinese with English abstract).
[8] 陆建珍, 汪翔, 秦建军, 戴起伟, 易中懿. 我国甘薯种植业发展状况调查报告(2017年)——基于国家甘薯产业技术体系产业经济固定观察点数据的分析. 江苏农业科学, 2018,46(23):393-398.
Lu J Z, Wang X, Qin J J, Dai Q W, Yi Z Y. Investigation report on the development of sweet potato cultivation in China (2017): Analysis based on the data of industrial economy fixed observation point of the national sweet potato industry technology system. Jiangsu Agric Sci, 2018,46(23):393-398 (in Chinese with English abstract).
[9] 赵永强, 张成玲, 孙厚俊, 徐振, 陈晓宇, 谢逸萍. 甘薯病毒病复合体(SPVD)对甘薯产量的影响. 西南农业学报, 2012,25:909-911.
Zhao Y Q, Zhang C L, Sun H J, Xu Z, Chen X Y, Xie Y P. Effects of viruses (SPVD) on yield of sweet potato. Southwest China J Agric Sci, 2012,25:909-911 (in Chinese with English abstract).
[10] 赵冬兰, 唐君, 张安, 周志林, 曹清河, 戴习彬. 甘薯病毒病对不同基因型甘薯产量和品质的影响. 江西农业学报, 2018,30(11):62-65.
Zhao D L, Tang J, Zhang A, Zhou Z L, Cao Q H, Dai X B. Effects of virus diseases on yield and quality of different sweet potato genotypes. Acta Agric Jiangxi, 2018,30(11):62-65 (in Chinese with English abstract).
[11] 屈满义, 查向东, 王钰, 杨金环, 蒋琳, 阮龙. 甘薯NBS-LRR类抗病基因同源序列的克隆、分析及数目研究. 热带作物学报, 2008,29:610-617.
Qu M Y, Zha X D, Wang Y, Yang J H, Jiang L, Ruan L. Study on cloning, analysis and number of NBS-LRR resistance genes of sweet potato. Chin J Trop Crops, 2008,29:610-617 (in Chinese with English abstract).
[12] Yang J, Moeinzadeh M H, Kuhl H, Helmuth J, Xiao P, Haas S, Liu G, Zheng J, Sun Z, Fan W, Deng G, Wang H, Hu F, Zhao S, Fernie A R, Boerno S, Timmermann B, Zhang P, Vingron M. Haplotype-resolved sweet potato genome traces back its hexaploidization history. Nat Plants, 2017,3:696-703.
doi: 10.1038/s41477-017-0002-z pmid: 28827752
[13] Ian K. Gene finding in novel genomes. BMC Bioinformatics, 2004,5:59.
pmid: 15144565
[14] Finn R D, Bateman A, Clements J, Coggill P, Eberhardt R Y, Eddy S R, Heger A, Hetherington K, Holm L, Mistry J, Sonnhammer E L, Tate J, Punta M. Pfam: the protein families database. Nucleic Acids Res, 2014,42:222-230.
[15] Madeira F, Park Y M, Lee J, Buso N, Gur T, Madhusoodanan N, Basutkar P, Tivey A R N, Potter S C, Finn R D, Lopez R. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res, 2019,47:636-641.
[16] Eddy S R. Profile Hidden Markov Models. Bioinformatics, 1998,14:755-763.
pmid: 9918945
[17] Pottter S C, Luciani A, Eddy S R, Park Y, Lopez R, Finn R D. Web server issue. Nucleic Acids Res, 2018,46:200-204.
[18] Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Genome Project Data Processing, Subgroup. The sequence alignment/map format and SAMtools. Bioinformatics, 2009,25:2078-2079.
doi: 10.1093/bioinformatics/btp352 pmid: 19505943
[19] Li H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics. 2011,27:2987-2993.
doi: 10.1093/bioinformatics/btr509 pmid: 21903627
[20] Brendolise C, Montefiori M, Dinis R, Peeters N, Storey R D, Rikkerink E H. A novel hairpin library-based approach to identify NBS-LRR genes required for effector-triggered hypersensitive response in Nicotiana benthamiana. Plant Methods, 2017,13:32.
doi: 10.1186/s13007-017-0181-7 pmid: 28465712
[21] Sievers F, Wilm A, Dineen D, Gibson T J, Karplus K, Li W Z, Lopez R, McWilliam H, Remmert M, Söding J, Thompson J D, Higgins D G. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol, 2011,7:539.
doi: 10.1038/msb.2011.75 pmid: 21988835
[22] Marchler-Bauer A, Bryant S H. CD-search: protein domain annotations on the fly. Nucleic Acids Res, 2004,32:327-331.
[23] Marchler-Bauer A, Lu S N, Anderson J B, Chitsaz F, Derbyshire M K, De Weese-Scott C, Fong J H, Geer L Y, Geer R C, Gonzales N R, Gwadz M, Hurwitz D I, Jackson J D, Ke Z, Lanczycki C J, Lu F, Marchler G H, Mullokandov M, Omelchenko M V, Robertson C L, Song J S, Thanki N, Yamashita R A, Zhang D C, Zhang N G, Zheng C J, Bryant S H. CDD: a conserved domain database for the functional annotation of proteins. Nucleic Acids Res, 2011,39:225-229.
doi: 10.1093/nar/gkq769 pmid: 20823090
[24] Marchler-Bauer A, Derbyshire M K, Gonzales N R, Lu S N, Chitsaz F, Geer L Y, Geer R C, He J, Gwadz M, Hurwitz D I, Lanczycki C J, Lu F, Marchler G H, Song J S, Thanki N, Wang Z X, Yamashita R A, Zhang D C, Zheng C J, Bryant S H. CDD: NCBI’s conserved domain database. Nucleic Acids Res, 2015,43:222-226.
[25] Marchler-Bauer A, Bo Y, Han L Y, He J N, Lanczycki C J, Lu S N, Chitsaz F, Derbyshire M K, Geer R C, Gonzales N R, Gwadz M, Hurwitz D I, Lu F, Marchler G H, Song J S, Thanki N, Wang Z X, Yamashita R A, Zhang D C, Zheng C J, Geer L Y, Bryant S H. CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Res, 2017,45:200-203.
[26] Quevillon E, Silventoinen V, Pillai S, Harte N, Mulder N, Apweiler R, Lopez R. InterProScan: protein domains identifier. Nucleic Acids Res, 2005,33:116-120.
[27] Barragan C A, Wu R, Kim S T, Xi W Y, Habring A, Hagmann J, Van de Weyer A L, Zaidem M, Ho W W H, Wang G, Bezrukov I, Weigel D, Chae E. RPW8/HR repeats control NLR activation in Arabidopsis thaliana. PLoS Genet, 2019,15:e1008313.
doi: 10.1371/journal.pgen.1008313 pmid: 31344025
[28] 刘云飞, 万红建, 李志邈, 叶青静, 王荣青, 阮美颖, 姚祝平, 周国治, 韦艳萍, 杨悦俭. 植物NBS-LRR抗病基因的结构、功能、进化起源及其应用. 分子植物育种, 2014,12:377-389.
Liu Y F, Wan H J, Li Z M, Ye Q J, Wang R Q, Ruan M Y, Yao Z P, Zhou G Z, Wei Y P, Yang Y J. The structure, function, evolutional origin and application of plant NBS-LRR resistance genes. Mol Plant Breed, 2014,12:377-389 (in Chinese with English abstract).
[29] Lupas A, Dyke M V, Stock J, Predicting coiled coils from protein sequences. Science, 1991,252:1162-1164.
doi: 10.1126/science.252.5009.1162 pmid: 2031185
[30] McDonnell A V, Jiang T, Keating A E, Berger B. Paircoil2: improved prediction of coiled coils from sequence. Bioinformatics, 2006,22:356-358.
pmid: 16317077
[31] Jupe F, Pritchard L, Etherington G J, MacKenzie K, Cock P J, Wright F, Sharma S K, Bolser D, Bryan G J, Jones J D, Hein I. Identification and localisation of the NB-LRR gene family within the potato genome. BMC Genomics, 2012,13:75.
pmid: 22336098
[32] 蒋卉, 张晶, 符真珠, 董晓宇, 王慧娟, 李艳敏, 高杰, 王利民, 张和臣. 蝴蝶兰NBS-LRR家族基因挖掘和生物信息学分析. 分子植物育种, 2018,16:2786-2794.
Jiang H, Zhang J, Fu Z Z, Dong X Y, Wang H J, Li Y M, Gao J, Wang L M, Zhang H C. Mining and bioinformatics analysis of NBS-LRR gene family in phalaenopsis. Mol Plant Breed, 2018,16:2786-2794 (in Chinese with English abstract).
[33] Bailey T L, Williams N, Misleh C, Li W W. MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res, 2006,34:369-373.
[34] Chen C J, Chen H, He Y H, Xia R. TBtools, a Toolkit for Biologists integrating various biological data handling tools with a user-friendly interface. BioRxiv, 2018. doi: https://doi.org/10.1101/289660.
doi: 10.1101/2020.06.27.175430 pmid: 32637963
[35] Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol, 2000,17:540-552.
doi: 10.1093/oxfordjournals.molbev.a026334 pmid: 10742046
[36] Talavera G, Castresana J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol, 2007,56:564-577.
doi: 10.1080/10635150701472164 pmid: 17654362
[37] Waterhouse A M, Procter J B, Martin D M A, Clamp M, Barton G J. Jalview Version 2: a multiple sequence alignment editor and analysis workbench. Bioinformatics, 2009,25:1189-1191.
doi: 10.1093/bioinformatics/btp033 pmid: 19151095
[38] Troshin P V, Procter J B, Barton G J. Java bioinformatics analysis web services for multiple sequence alignment—JABAWS: MSA. Bioinformatics, 2011,27:2001-2002.
doi: 10.1093/bioinformatics/btr304 pmid: 21593132
[39] Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol, 2018,35:1547-1549.
doi: 10.1093/molbev/msy096 pmid: 29722887
[40] Hao W, Collier S M, Moffett P, Chai J. Structural basis for the interaction between the potato virus X resistance protein (Rx) and its cofactor Ran GTPase-activating protein 2 (RanGAP2). J Biol Chem, 2013,288:35868-35876.
doi: 10.1074/jbc.M113.517417 pmid: 24194517
[41] Tarr D E, Alexander H M. TIR-NBS-LRR genes are rare in monocots: evidence from diverse monocot orders. BMC Res Notes, 2009,2:197.
doi: 10.1186/1756-0500-2-197 pmid: 19785756
[42] Lozano R, Hamblin M T, Prochnik S, Jannink J L. Identification and distribution of the NBS-LRR gene family in the Cassava genome. BMC Genomics, 2015,16:360.
doi: 10.1186/s12864-015-1554-9 pmid: 25948536
[43] Zhou T, Wang Y, Chen J Q, Araki H, Jing Z, Jiang K, Shen J, Tian D. Genome-wide identification of NBS genes in japonica rice reveals significant expansion of divergent non-TIR NBS-LRR genes. Mol Genet Genomics, 2004,271:402-415.
doi: 10.1007/s00438-004-0990-z pmid: 15014983
[44] Meyers B C, Kozik A, Griego A, Kuang H, Michelmore R W. Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis. Plant Cell, 2003,15:809-834.
doi: 10.1105/tpc.009308 pmid: 12671079
[45] 刘小芳, 袁欣, 聂迎彬, 张晶. 乌拉尔图小麦NBS-LRR家族生物信息学分析. 分子植物育种, 2018,16:7587-7597.
Liu X F, Yuan X, Nie Y B, Zhang J. Bioinformatics Analysis of NBS-LRR gene family in Triticum urartu. Mol Plant Breed, 2018,16:7587-7597 (in Chinese with English abstract).
[46] 王岩, 李兆阳, 唐心龙, 卢姗, 许鹏, 张静, 方奎, 席景会. 拟南芥基因组NBS-LRR类基因家族的生物信息学分析. 中国农学通报, 2009,25(15):40-45.
Wang Y, Li Z Y, Tang X L, Lu S, Xu P, Zhang J, Fang K, Xi J H. Bioinformatic analysis of the NBS-LRR gene family in Arabidopsis thaliana. Chin Agric Sci Bull, 2009,25(15):40-45 (in Chinese with English abstract).
[47] Holub E B. The arms race is ancient history in Arabidopsis, the wildflower. Nat Rev Genet, 2001,2:516-527.
doi: 10.1038/35080508 pmid: 11433358
[48] Liu Z C, Xie J M, Wang H P, Zhong X H, Li H L, Yu J H, Kang J G. Identification and expression profiling analysis of NBS-LRR genes involved in Fusarium oxysporum f. sp. conglutinans resistance in cabbage. 3 Biotech, 2019,9:202.
doi: 10.1007/s13205-019-1714-8 pmid: 31065502
[49] Kohler A, Rinaldi C, Duplessis S, Baucher M, Geelen D, Duchaussoy F, Meyers B C, Boerjan W, Martin F. Genome-wide identification of NBS resistance genes in Populus trichocarpa. Plant Mol Biol, 2008,66:619-636.
doi: 10.1007/s11103-008-9293-9 pmid: 18247136
[50] Ahlenstiel G, Lozano R, Ponce O, Ramirez M, Mostajo N, Orjeda G. Genome-wide identification and mapping of NBS-encoding resistance genes in Solanum tuberosum group phureja. PLoS One, 2012,7:e34775.
doi: 10.1371/journal.pone.0034775 pmid: 22493716
[51] Li T G, Wang B L, Yin C M, Zhang D D, Wang D, Song J, Zhou L, Kong Z Q, Klosterman S J, Li J J, Adamu S, Liu T L, Subbarao K V, Chen J Y, Dai X F. The Gossypium hirsutum TIR-NBS-LRR gene GhDSC1 mediates resistance against verticillium wilt. Mol Plant Pathol, 2019,20:857-876.
doi: 10.1111/mpp.12797 pmid: 30957942
[52] Meyers B C, Morgante M, Michelmore R W. TIR-X and TIR-NBS proteins: two new families related to disease resistance TIR-NBS-LRR proteins encoded in Arabidopsis and other plant genomes. Plant J, 2002,32:77-92.
doi: 10.1046/j.1365-313x.2002.01404.x pmid: 12366802
[53] Wu L, Hickson I D. The Bloom’s syndrome helicase suppresses crossing over during homologous recombination. Nature, 2003,426:870-874.
doi: 10.1038/nature02253 pmid: 14685245
[54] Lakatos L, Csorba T, Pantaleo V, Chapman E J, Carrington J C, Liu Y P, Dolja V V, Calvino L F, López-Moya J J, Burgyán J. Small RNA binding is a common strategy to suppress RNA silencing by several viral suppressors. EMBO J, 2006,25:2768-2780.
doi: 10.1038/sj.emboj.7601164 pmid: 16724105
[55] López C E, Zuluaga A P, Cooke R, Delseny M, Tohme J, Verdie V. Isolation of resistance gene candidates (RGCs) and characterization of an RGC cluster in cassava. Mol Genet Genomics, 2003,269:658-671.
doi: 10.1007/s00438-003-0868-5 pmid: 12827500
[56] Wu S, Lau K H, Cao Q H, Hamilton J P, Sun H H, Zhou C X, Eserman L A, Gemenet D C, Olukolu B A, Wang H Y, Crisovan E, Godden G T, Jiao C, Wang X, Kitavi M, anrique-Carpintero N, Vaillancourt B, Wiegert-Rininger K, Yang X S, Bao K, Schaff J, Wolfgang J K, Gruneberg A K, Ghislain M, Ma D, Jiang J M, Mwanga R O M, Leebens-Mack J, Lachlan J M, Coin G, Yencho G C, Buell C R, Fei Z J. Genome sequences of two diploid wild relatives of cultivated sweetpotato reveal targets for genetic improvement. Nat Commun, 2018,9:4580.
pmid: 30389915
[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623.
[3] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[4] 张海燕, 解备涛, 姜常松, 冯向阳, 张巧, 董顺旭, 汪宝卿, 张立明, 秦桢, 段文学. 不同抗旱性甘薯品种叶片生理性状差异及抗旱指标筛选[J]. 作物学报, 2022, 48(2): 518-528.
[5] 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366.
[6] 赵海涵, 练旺民, 占小登, 徐海明, 张迎信, 程式华, 楼向阳, 曹立勇, 洪永波. 水稻协优9308重组自交系群体白叶枯病抗性的全基因组关联分析[J]. 作物学报, 2022, 48(1): 121-137.
[7] 余慧芳, 张卫娜, 康益晨, 范艳玲, 杨昕宇, 石铭福, 张茹艳, 张俊莲, 秦舒浩. 马铃薯CrRLK1Ls基因家族的鉴定及响应晚疫病菌信号的表达分析[J]. 作物学报, 2022, 48(1): 249-258.
[8] 荐红举, 尚丽娜, 金中辉, 丁艺, 李燕, 王季春, 胡柏耿, Vadim Khassanov, 吕典秋. 马铃薯PIF家族成员鉴定及其对高温胁迫的响应分析[J]. 作物学报, 2022, 48(1): 86-98.
[9] 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449.
[10] 张思梦, 倪文荣, 吕尊富, 林燕, 林力卓, 钟子毓, 崔鹏, 陆国权. 影响甘薯收获期软腐病发生的指标筛选[J]. 作物学报, 2021, 47(8): 1450-1459.
[11] 宋天晓, 刘意, 饶莉萍, Soviguidi Deka Reine Judesse, 朱国鹏, 杨新笋. 甘薯细胞壁蔗糖转化酶基因IbCWIN家族成员鉴定及表达分析[J]. 作物学报, 2021, 47(7): 1297-1308.
[12] 黄宁, 惠乾龙, 方振名, 李姗姗, 凌辉, 阙友雄, 袁照年. 甘蔗β-胡萝卜素异构酶基因家族的鉴定、定位和表达分析[J]. 作物学报, 2021, 47(5): 882-893.
[13] 秦天元, 刘玉汇, 孙超, 毕真真, 李安一, 许德蓉, 王一好, 张俊莲, 白江平. 马铃薯StIgt基因家族的鉴定及其对干旱胁迫的响应分析[J]. 作物学报, 2021, 47(4): 780-786.
[14] 王翠娟, 柴沙沙, 史春余, 朱红, 谭中鹏, 季杰, 任国博. 铵态氮素促进甘薯块根形成的解剖特征及其IbEXP1基因的表达[J]. 作物学报, 2021, 47(2): 305-319.
[15] 马猛, 闫会, 高闰飞, 后猛, 唐维, 王欣, 张允刚, 李强. 紫甘薯SSR标记遗传图谱构建与重要农艺性状QTL定位[J]. 作物学报, 2021, 47(11): 2147-2162.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!