欢迎访问作物学报,今天是

作物学报 ›› 2020, Vol. 46 ›› Issue (10): 1526-1538.doi: 10.3724/SP.J.1006.2020.94197

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

甘蓝型油菜响应低氮胁迫的表达谱分析

肖燕(), 姚珺玥(), 刘冬, 宋海星, 张振华*()   

  1. 湖南农业大学资源环境学院 / 南方粮油作物协同创新中心, 湖南长沙 410128
  • 收稿日期:2019-12-16 接受日期:2020-04-15 出版日期:2020-10-12 网络出版日期:2020-05-07
  • 通讯作者: 张振华
  • 作者简介:肖燕, E-mail: xiaoxiaoY8432@163.com;|姚珺玥, E-mail: yjy950606@126.com
  • 基金资助:
    国家重点研发计划项目(2017YFD0200100);国家重点研发计划项目(2017YFD0200103)

Expression profile analysis of low nitrogen stress in Brassica napus

XIAO Yan(), YAO Jun-Yue(), LIU Dong, SONG Hai-Xing, ZHANG Zhen-Hua*()   

  1. College of Resource and Environment, Hunan Agricultural University / Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha 410128, Hunan, China
  • Received:2019-12-16 Accepted:2020-04-15 Published:2020-10-12 Published online:2020-05-07
  • Contact: Zhen-Hua ZHANG
  • Supported by:
    National Key Research and Development Program of China(2017YFD0200100);National Key Research and Development Program of China(2017YFD0200103)

摘要:

随着人们对作物产量的需求不断提高, 氮肥被过量施用, 而作物的氮素利用率(NUE)却在不断降低。本研究从低氮胁迫下油菜的生理变化入手, 结合高通量的数字基因表达谱测序技术, 分析了油菜在低氮0、3、72 h下的转录组差异响应, 鉴定了氮的吸收﹑转运﹑分配和转录因子等方面的差异表达基因。结果表明, 甘蓝型油菜在低氮处理后, 氮优先分配到地上部, 硝酸还原酶(NR)活性显著降低, 而谷氨酞胺合成酶(GS)活性升高, 油菜植株总氮浓度降低, NUE升高。基因基因本位论(GO)功能与京都基因和基因组百科全书(KEGG)代谢通路分析表明, 地上部差异表达基因主要是参与代谢过程、蛋白结合、离子结合、阴离子结合等, 根中差异表达基因主要是参与分子功能、初级代谢过程、离子结合、阴离子结合等。基因表达谱分析表明, 低氮胁迫72 h后, 根中BnaGLNs家族基因表达大部分升高; 根中BnaWRKY33sBnaWRKY70s的基因表达量降低; BnaMYB4sBnaMYB44sBnaMYB51s亚家族中的大部分基因的表达量降低; BnaNIAs家族中的大部分基因表达上调; 在BnaNRT2.1sBnaNRT3.1s亚家族中, 根中BnaA6NRT2.1 (BnaA06g04560D)、BnaA6NRT2.1 (BnaA06g04570D)、BnaA2NRT3.1 (BnaA02g11760D)、BnaC2NRT3.1 (BnaC02g16150D)的表达上调。同时, 地上部和根发生外显子跳跃(SE), 外显子选择性跳跃(MXE)类型的可变剪接积极加强对低氮的适应。总而言之, 在低氮处理下, 甘蓝型油菜可以通过调控BnaNRTs、BnaGLNs、BnaNIAs家族基因提高NUE, 以及调控BnaMYBsBnaWRKYs家族和可变剪接积极适应低氮胁迫。

关键词: 甘蓝型油菜, 低氮胁迫, NO3-, 可变剪接

Abstract:

The nitrogen fertilizer was overapplied with people’s increased demand for crop yield, but the nitrogen utilization efficiency (NUE) of crops was decreasing. In this study, the differentially expressed genes (DEGs) including the nitrogen absorption, transport, distribution and transcription factors were screened under low nitrogen treatment of 0, 3, and 72 h by the physiological changes and RNA-Seq in rapeseed. The results showed that nitrogen were preferentially allocated to the shoots with the increased glutamine?synthetase (GS) and NUE activities and the decreased nitrate reductase (NR) activity and the total nitrogen concentration under low nitrogen treatment. The analysis of Gene Ontology (GO) enrichment and the Kyoto encyclopedia of genes and genomes (KEGG) metabolic pathway showed that DEGs of the shoots were mainly involved in metabolic process, protein binding, ion binding, and anion binding, while DEGs of the roots were mainly involved in molecular function, primary metabolic process, ion binding, and anion binding. The gene expression profile analysis indicated that after low nitrogen treatment for 72 h, the expression of most genes in BnaGLNs increased; the expression of BnaWRKY33s and BnaWRKY70s showed significantly decreased in roots; the expression of most genes in BnaMYB4s, BnaMYB44s, and BnaMYB51s decreased in the roots; the expression of most genes in BnaNIAs family was up-regulated in roots; and in the subfamily of BnaNRT2.1s and BnaNRT3.1s, the expression of BnaA6NRT2.1 (BnaA06g04560D), BnaA6NRT2.1 (BnaA06g04570D), BnaA2NRT3.1 (BnaA02g11760D), and BnaC2NRT3.1 (BnaC02g16150D) increased significantly in roots. At the same time, skipped exon (SE) and mutually exclusive exons (MXE) type occurred in shoots and roots in order to have a better adaptation under low nitrogen stress. In conclusion, the NUE activity was increased by regulating BnaNRTs, BnaGLNs and BnaNIAs genes, and the BnaMYBs, BnaWRKYs genes and alternative splicing favored Brassica napus to adapt the low nitrogen stress.

Key words: Brassica napus, low nitrogen stress, NO3-, alternative splicing

图1

油菜对氮(N)胁迫的生理响应 A: 根部NO3-浓度与地上部NO3-浓度的比值; B: 植株总N浓度; C: 氮利用效率(NUE), NUE=总干重/总N含量; D: 总生物量(单株植物干重 DW); E: 地上部和根部硝酸还原酶(NR)活性; F: 地上部和根部谷氨酰胺合成酶(GS)活性。数值表示平均值(n = 5), 误差条表示标准误差(SE)值。"

表1

数字基因表达谱测序数据概况"

样本名
Sample name
下机原始reads数目
Raw reads
高质量
reads数目
Clean reads
过滤后高质量
数据碱基总数
Clean bases
测序错误率
Error rate (%)
碱基质量值达到Q20以上的碱基
Q20 (%)
碱基质量值达到
Q30以上的碱基
Q30 (%)
过滤前(后)的序列
碱基GC比例
GC content (%)
S0 596,35,738 57,043,591 8.55 0.01 97.05 92.59 47.49
R0 49,108,674.67 47,000,152 7.05 0.02 97.13 92.83 46.14
S3 58,163,928.67 55,612,390 8.34 0.02 97.15 92.79 47.61
R3 44,434,570 42,606,356 6.39 0.02 96.85 92.17 45.61
S72 55,942,618 53,982,678 8.10 0.02 96.72 91.64 47.07
R72 50,080,180 48,523,315 7.28 0.02 97.05 92.46 46.26

图2

油菜幼苗地上部和根系的Pearson相关性系数热图 S0和R0分别表示未做低氮处理的地上部和根; S3和R3分别表示低氮处理3 h后的地上部和根; S72和R72分别表示低氮处理72 h后的地上部和根。"

图3

低氮0, 3, 72 h下油菜地上部和根的差异表达基因 A: 差异表达基因的维恩图分析; B: 差异表达基因数目。S0和R0分别表示未做低氮处理的地上部和根; S3和R3分别表示低氮处理3 h后的地上部和根; S72和R72分别表示低氮处理72 h后的地上部和根。"

图4

油菜地上部和根系中差异表达基因的GO、KEGG富集分析 A: 在低氮72 h条件下, 地上部中的差异表达基因的GO富集分析; B: 在低氮72 h条件下, 根系中差异表达基因的GO富集分析; C: 在低氮72 h条件下, 地上部中的差异表达基因的KEGG富集分析; D: 在低氮72 h条件下, 根系中的差异表达基因的KEGG富集分析。"

图5

BnaGLNs家族基因的数字基因表达谱热图 A: BnaGLNs家族基因的总体表达谱; B: BnaGLN1.1s亚家族基因表达谱; C: BnaGLN1.2s亚家族基因表达谱; D: BnaGLN1.3s亚家族基因表达谱; E: BnaGLN1.4s亚家族基因表达谱; F: BnaGLN1.5s亚家族基因表达谱; G: BnaGLN2s亚家族基因表达谱。S0和R0分别表示未做低氮处理的地上部和根; S3和R3分别表示低氮处理3 h后的地上部和根; S72和R72分别表示低氮处理72 h后的地上部和根。差异表达基因(S3 vs. S0, S72 vs. S0; R3 vs. R0, R72 vs. R0)用星号标注。"

图6

WRKYs家族基因的数字基因表达谱热图 A: 油菜BnaWRKYs家族基因的总体表达谱; B: BnaWRKY33s亚家族基因表达谱; C: BnaWRKY70s亚家族基因表达谱。S0和R0分别表示未做低氮处理的地上部和根; S3和R3分别表示低氮处理3 h后的地上部和根; S72和R72分别表示低氮处理72 h后的地上部和根。差异表达基因(S3 vs. S0, S72 vs. S0; R3 vs. R0, R72 vs. R0)用星号标注。"

图7

MYBs家族基因的数字基因表达谱热图 A: 油菜BnaMYBs家族基因的总体表达谱; B: BnaMYB4s亚家族基因表达谱; C: BnaMYB44s亚家族基因表达谱; D: BnaMYB51s亚家族基因表达谱。S0和R0分别表示未做低氮处理的地上部和根; S3和R3分别表示低氮处理3 h后的地上部和根; S72和R72分别表示低氮处理72 h后的地上部和根。差异表达基因(S3 vs. S0, S72 vs. S0; R3 vs. R0, R72 vs. R0)用星号标注。"

图8

NIAs家族基因的数字基因表达谱热图 A: 油菜BnaNIAs家族基因的总体表达谱; B: BnaNIA1s亚家族基因表达谱; C: BnaNIA2s亚家族基因表达谱。S0和R0分别表示未做低氮处理的地上部和根; S3和R3分别表示低氮处理3 h后的地上部和根; S72和R72分别表示低氮处理72 h后的地上部和根。差异表达基因(S3 vs. S0, S72 vs. S0; R3 vs. R0, R72 vs. R0)用星号标注。"

图9

NRTs 家族基因的数字基因表达谱热图 A: 油菜BnaNRT2.1s和BnaNRT3.1s家族基因的总体表达谱; B: BnaNRT2.1s亚家族基因; C: BnaNRT3.1s亚家族基因在油菜幼苗地上部和根系中的表达谱。S0和R0分别表示未做低氮处理的地上部和根; S3和R3分别表示低氮处理3 h后的地上部和根; S72和R72分别表示低氮处理72 h后的地上部和根。差异表达基因(S3 vs. S0, S72 vs. S0; R3 vs. R0, R72 vs. R0)用星号标注。"

图10

可变剪接分类和数量统计 A: 在低氮3 h后, 地上部的可变剪接类型及数量; B: 在低氮72 h后, 地上部的可变剪接类型及数量; C: 在低氮3 h后, 根的可变剪接类型及数量; D: 低氮72 h后, 根的可变剪接类型及数量。JC only表示只使用Junction Counts进行AS事件检测, JC + reads OnTarget表示同时使用Junction Counts 和 reads on target进行AS事件检测。"

[1] Konishi M, Yanagisawa S. Emergence of a new step towards understanding the molecular mechanisms underlying nitrate- regulated gene expression. J Exp Bot, 2014,65:5589-5600.
doi: 10.1093/jxb/eru267
[2] Hermans C, Hammond J P, White P J, Verbruggen N. How do plants respond to nutrient shortage by biomass allocation? Trends Plant Sci, 2006,11:610-617.
doi: 10.1016/j.tplants.2006.10.007 pmid: 17092760
[3] 冯洋, 陈海飞, 胡孝明, 周卫, 徐芳森, 蔡红梅. 我国南方主推水稻品种氮效率筛选及评价. 植物营养与肥料学报, 2014,20:1051-1062.
doi: 10.11674/zwyf.2014.0501
Feng Y, Chen H F, Hu X M, Zhou W, Xu F S, Cai H M. Nitrogen efficiency screening of rice cultivars popularized in South China. J Plant Nutr Fert, 2014,20:1051-1062 (in Chinese with English abstract).
[4] Grant C A, Bailey L D. Fertility management in canola production. Can J Plant Sci, 1993,73:651-670.
doi: 10.4141/cjps93-087
[5] Rathke G W, Christen O, Diepenbrock W. Effects of nitrogen source and rate on productivity and quality of winter oilseed rape (Brassica napus L.) grown in different crop rotations. Field Crops Res, 2005,94:103-113.
doi: 10.1016/j.fcr.2004.11.010
[6] 荣楠, 韩永亮, 荣湘民, 宋海星, 彭建伟, 谢桂先, 张玉平, 张振华. 油菜NO3的吸收, 分配及氮利用效率对低氮胁迫的响应. 植物营养与肥料学报, 2017,23:1104-1111.
Rong N, Han Y L, Rong X M, Song H X, Peng J W, Xie G X, Zhang Y P, Zhang Z H. Response of NO3 uptake and distribution and nitrogen use efficiency in oilseed rape to limited nitrogen stress. J Plant Nutr Fert, 2017,23:1104-1111 (in Chinese with English abstract).
[7] Clément G, Moison M, Soulay F, Reisdorf Cren M, Masclaux Daubresse C. Metabolomics of laminae and midvein during leaf senescence and source-sink metabolite management in Brassica napus L. leaves. J Exp Bot, 2017,69:891-903.
doi: 10.1093/jxb/erx253 pmid: 28992054
[8] Wang X, Wang H, Wang J, Sun R, Wu J, Liu S, Bai Y, Mun J H, Bancroft I, Cheng F. The genome of the mesopolyploid crop species Brassica rapa. Nat Genet, 2011,43:1035.
doi: 10.1038/ng.919 pmid: 21873998
[9] Bayer P E, Hurgobin B, Golicz A, Chan C K, Yuan Y, Lee H T, Renton M, Meng J, Li R, Long Y, Zou J, Bancroft I, Chalhoub B, King G J, Batley J, Edwards D. Assembly and comparison of two closely related Brassica napus genomes. Plant Biotechnol J, 2017,10:1-9.
doi: 10.1111/pbi.2011.10.issue-1
[10] Han Y L, Liu Q, Gu J D, Gong J M, Guan C Y, Lepo J E, Rong X M, Song H X, Zhang Z H. V-ATPase and V-PPase at the tonoplast affect NO3-content in Brassica napus by controlling distribution of NO3-between the cytoplasm and vacuole. J Plant Growth Regul, 2015,34:22-34.
doi: 10.1007/s00344-014-9439-8
[11] 薛飞洋. 谷子苗期低氮胁迫转录组测序及蛋白磷酸酶2C(PP2C)基因家族的特性分析. 西北农林科技大学硕士学位论文, 陕西杨陵, 2013.
Xue F Y. Transcriptome of Seeding Foxtall Millet Response to Low Nitrogen Stress and Characteristics Analysis of Protein Phosphatease 2C (PP2C) Gene Family in Foxtall Millet. MS Thesis of Northwest A&F University, Yangling, Shaanxi, China, 2013 (in Chinese with English abstract).
[12] Chen W, Provart N J, Glazebrook J, Katagiri F, Chang H S, Eulgem T, Budworth P R. Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses. Plant Cell, 2002,14:559-574.
doi: 10.1105/tpc.010410 pmid: 11910004
[13] Tran L S P, Nakashima K, Sakuma Y, Simpson S D, Fujita Y, Maruyama K, Yamaguchi Shinozaki K. Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell, 2004,16:2481-2498.
doi: 10.1105/tpc.104.022699 pmid: 15319476
[14] Singh K B, Foley R C, Oñate Sánchez L. Transcription factors in plant defense and stress responses. Curr Opin Plant Biol, 2002,5:430-436.
doi: 10.1016/s1369-5266(02)00289-3 pmid: 12183182
[15] Zhao M H, Zhang W Z, Xu Z J, Wang J Y, Zhang L, Chen W F. Altered expression of transcription factor genes in rice flag leaf under low nitrogen stress. Rice Sci, 2012,19:100-107.
[16] Shamloo Dashtpagerdi R, Razi H, Ebrahimie E, Niazi A. Molecular characterization of Brassica napus stress related transcription factors, BnMYB44 and BnVIP1, selected based on comparative analysis of Arabidopsis thaliana and Eutrema salsugineum transcriptomes. Mol Biol Rep, 2018,45:1111-1124.
doi: 10.1007/s11033-018-4262-0 pmid: 30039430
[17] Hoagland D R, Arnon D I. The water-culture method for growing plants without soil. Circ Calif Agric Exp Stn, 1950,347:1-39.
[18] Hua Y P, Zhang D D, Zhou T, He M L, Ding G D, Shi L, Xu F S. Transcriptomics assisted quantitative trait locus fine mapping for the rapid identification of a nodulin 26-like intrinsic protein gene regulating boron efficiency in allotetraploid rapeseed. Plant Cell Environ, 2016,39:1601-1618.
doi: 10.1111/pce.12731 pmid: 26934080
[19] Ehlting B, Dluzniewska P, Dietrich H, Selle A, Teuber M, Hänsch R, Gessler A. Interaction of nitrogen nutrition and salinity in Grey poplar (Populus tremula × alba). Plant Cell Environ, 2007,30:796-811.
doi: 10.1111/j.1365-3040.2007.01668.x pmid: 17547652
[20] Wang L, Zhou Q, Ding L, Sun Y. Effect of cadmium toxicity on nitrogen metabolism in leaves of Solanum nigrum L. as a newly found cadmium hyperaccumulator. J Hazard Mater, 2008,154:818-825.
[21] Patterson K, Cakmak T, Cooper A, Lager I, Rasmusson A G, Escobar M A. Distinct signalling pathways and transcriptome response signatures differentiate ammonium- and nitrate-supplied plants. Plant Cell Environ, 2010,33:1486-1501.
doi: 10.1111/j.1365-3040.2010.02158.x pmid: 20444219
[22] Wang R C, Xing X J, Wang Y, Tran A, Crawford N M. A genetic screen for nitrate regulatory mutants captures the nitrate transporter gene NRT1.1. Plant Physiol, 2009,151:472-478.
doi: 10.1104/pp.109.140434 pmid: 19633234
[23] Li H, Li M, Luo J, Cao X, Qu L, Gai Y, Polle A, Peng C, Luo Z B. N-fertilization has different effects on the growth, carbon and nitrogen physiology, and wood properties of slow- and fast-growing Populus species. J Exp Bot, 2012,63:6173-6185.
doi: 10.1093/jxb/ers271
[24] Jain A K, Murty M N, Flynn P J. Data clustering: a review. ACM Comput Surv, 1999,31:264-323.
doi: 10.1145/331499.331504
[25] Saldanha A J. Java Treeview-extensible visualization of microarray data. Bioinformatics, 2004,20:3246-3248.
doi: 10.1093/bioinformatics/bth349 pmid: 15180930
[26] Ye J, Fang L, Zheng H K, Zhang Y, Chen J, Zhang Z J, Wang J, Li S T, Li R Q, Bolund L, Wang J. WEGO: a web tool for plotting GO annotations. Nucleic Acids Res, 2006,34:D293-D297.
[27] Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T, Yamanishi Y. KEGG for linking genomes to life and the environment. Nucleic Acid Res, 2008,36:D480-D484.
doi: 10.1093/nar/gkm882 pmid: 18077471
[28] Tarazona S, García Alcalde F, Dopazo J, Ferrer A, Conesa A. Differential expression in RNA-seq: a matter of depth. Genome Res, 2011,21:2213-2223.
doi: 10.1101/gr.124321.111
[29] Eisen M B, Spellman P T, Brown P O, Botstein D. Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA, 1998,95:14863-14868.
doi: 10.1073/pnas.95.25.14863 pmid: 9843981
[30] Ding L, Wang K J, Jiang G M, Biswas D K, Xu H, Li L F, Li Y H. Effects of nitrogen deficiency on photosynthetic traits of maize hybrids released in different years. Ann Bot, 2005,96:925-930.
doi: 10.1093/aob/mci244 pmid: 16103036
[31] Tobin A K, Yamaya T. Cellular compartmentation of ammonium assimilation in rice and barley. J Exp Bot, 2001,52:591-604.
pmid: 11373307
[32] Jiang Y, Duan Y, Yin J, Ye S, Zhu J, Zhan F, Luo K. Genome-wide identification and characterization of the populus WRKY transcription factor family and analysis of their expression in response to biotic and abiotic stresses. J Exp Bot, 2014,65:6629-6644.
doi: 10.1093/jxb/eru381
[33] He Y J, Mao S S, Gao Y L, Zhu L Y, Wu D M, Cui Y X, Li J N, Qian W. Genome-wide identification and expression analysis of WRKY transcription factors under multiple stresses in Brassica napus. PLoS One, 2016,11:e0157558.
doi: 10.1371/journal.pone.0157558 pmid: 27322342
[34] Cheng C L, Dewdney J, Nam H G, Den Boer B G, Goodman H M. A new locus (NIA 1) in Arabidopsis thaliana encoding nitrate reductase. EMBO J, 1988,7:3309-3314.
pmid: 2905260
[35] Wang Y Y, Hsu P K, Tsay Y F. Uptake, allocation and signaling of nitrate. Trends Plant Sci, 2012,17:458-467.
doi: 10.1016/j.tplants.2012.04.006 pmid: 22658680
[36] Feng H, Yan M, Fan X, Li B, Shen Q, Miller A J, Xu G. Spatial expression and regulation of rice high-affinity nitrate transporters by nitrogen and carbon status. J Exp Bot, 2011,62:2319-2332.
doi: 10.1093/jxb/erq403
[37] Lopez A J. Alternative splicing of pre-mRNA: developmental consequences and mechanisms of regulation. Annu Rev Genet, 1998,32:279-305.
doi: 10.1146/annurev.genet.32.1.279 pmid: 9928482
[38] Good A G, Shrawat A K, Muench D G. Can less yield more is reducing nutrient input into the environment compatible with maintaining crop production? Trends Plant Sci, 2004,9:597-605.
doi: 10.1016/j.tplants.2004.10.008 pmid: 15564127
[39] Filleur S, Daniel Vedele F. Expression analysis of a high-affinity nitrate transporter isolated from Arabidopsis thaliana by differential display. Planta, 1999,207:461-469.
doi: 10.1007/s004250050505 pmid: 9951738
[40] Birkenbihl R P, Diezel C, Somssich I E. Arabidopsis WRKY33 is a key transcriptional regulator of hormonal and metabolic responses towards Botrytis cinerea infection. Plant Physiol, 2012,159:266-285.
doi: 10.1104/pp.111.192641
[41] Li J, Brader G, Kariola T, Tapio P E. WRKY70 modulates the selection of signaling pathways in plant defense. Plant J, 2006,46:477-491.
doi: 10.1111/j.1365-313X.2006.02712.x pmid: 16623907
[42] Stracke R, Werber M, Weisshaar B. The R2R3-MYB gene family in Arabidopsis thaliana. Curr Opin Plant Biol, 2001,4:447-456.
doi: 10.1016/s1369-5266(00)00199-0 pmid: 11597504
[43] Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L. MYB transcription factors in Arabidopsis. Trends Plant Sci, 2010,15:573-581.
doi: 10.1016/j.tplants.2010.06.005 pmid: 20674465
[44] 王玉明, 曹廷, 冯瑜, 柴友荣. 甘蓝型油菜myb4基因RNA干扰载体构建. 作物杂志, 2010, (2):23-27.
Wang Y M, Cao T, Feng Y, Chai Y R. Construction of RNAi vector of Brassica napusMYB4gene. Crops, 2010, (2):23-27 (in Chinese with English abstract).
[45] Jung C, Seo J S, Han S W, Koo Y J, Kim C H, Song S I, Nahm B H, Choi Y D, Cheong J J. Overexpression of AtMYB44 enhances stomatal closure to confer abiotic stress tolerance in transgenic Arabidopsis. Plant Physiol, 2008,146:623-635.
doi: 10.1104/pp.107.110981 pmid: 18162593
[46] Shim J S, Jung C, Lee S, Min K, Lee Y W, Choi Y, Choi Y D. AtMYB44 regulates WRKY70 expression and modulates antagonistic interaction between salicylic acid and jasmonic acid signaling. Plant J, 2013,73:483-495.
doi: 10.1111/tpj.12051
[47] Celenza J L, Quiel J A, Smolen G A, Merrikh H, Silvestro A R, Normanly J, Bender J. The Arabidopsis ATR1 MYB transcription factor controls indolic glucosinolate homeostasis. Plant Physiol, 2005,137:253-262.
doi: 10.1104/pp.104.054395 pmid: 15579661
[48] Gigolashvili T, Yatusevich R, Berger B, Müller C, Flügge U I. The R2R3-MYB transcription factor HAG1/MYB28 is a regulator of methionine-derived glucosinolate biosynthesis in Arabidopsis thaliana. Plant J, 2007,51:247-261.
doi: 10.1111/j.1365-313X.2007.03133.x pmid: 17521412
[49] Malitsky S, Blum E, Less H, Venger I, Elbaz M, Morin S, Eshed Y, Aharoni A. The transcript and metabolite networks affected by the two clades of Arabidopsis glucosinolate biosynthesis regulators. Plant Physiol, 2008,148:2021-2049.
doi: 10.1104/pp.108.124784 pmid: 18829985
[50] Frerigmann H, Gigolashvili T. MYB34, MYB51, and MYB122 distinctly regulate indolic glucosinolate biosynthesis in Arabidopsis thaliana. Mol Plant, 2014,7:814-828.
doi: 10.1093/mp/ssu004
[51] Kirik V, Kölle K, Miséra S, Bäumlein H. Two novel MYB homologues with changed expression in late embryogenesis-defective Arabidopsis mutants. Plant Mol Biol, 1998,37:819-827.
doi: 10.1023/a:1006011002499 pmid: 9678577
[52] Sun Q, Lin L, Liu D, Wu D, Fang Y, Wu J, Wang Y. CRISPR/Cas9-mediated multiplex genome editing of the BnWRKY11 and BnWRKY70 genes in Brassica napus L. Int J Mol Sci, 2018,19:2716.
doi: 10.3390/ijms19092716
[53] Boue S, Letunic I, Bork P. Alternative splicing and evolution. Bioessays, 2003,25:1031-1034.
doi: 10.1002/bies.10371 pmid: 14579243
[54] Staiger D, Brown J W S. Alternative splicing at the intersection of biological timing, development, and stress responses. Plant Cell, 2013,25:3640-3656.
doi: 10.1105/tpc.113.113803
[55] Filichkin S, Priest H D, Megraw M, Mockler T C. Alternative splicing in plants: directing traffic at the crossroads of adaptation and environmental stress. Curr Opin Plant Biol, 2015,24:125-135.
doi: 10.1016/j.pbi.2015.02.008 pmid: 25835141
[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
[3] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[4] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[5] 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769.
[6] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[7] 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510.
[8] 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798.
[9] 唐鑫, 李圆圆, 陆俊杏, 张涛. 甘蓝型油菜温敏细胞核雄性不育系160S花药败育的形态学特征和细胞学研究[J]. 作物学报, 2021, 47(5): 983-990.
[10] 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598.
[11] 李书宇, 黄杨, 熊洁, 丁戈, 陈伦林, 宋来强. 甘蓝型油菜早熟性状QTL定位及候选基因筛选[J]. 作物学报, 2021, 47(4): 626-637.
[12] 张春, 赵小珍, 庞承珂, 彭门路, 王晓东, 陈锋, 张维, 陈松, 彭琦, 易斌, 孙程明, 张洁夫, 傅廷栋. 甘蓝型油菜千粒重全基因组关联分析[J]. 作物学报, 2021, 47(4): 650-659.
[13] 唐婧泉, 王南, 高界, 刘婷婷, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. 甘蓝型油菜SnRK基因家族生物信息学分析及其与种子含油量的关系[J]. 作物学报, 2021, 47(3): 416-426.
[14] 蒙姜宇, 梁光伟, 贺亚军, 钱伟. 甘蓝型油菜耐盐和耐旱相关性状的QTL分析[J]. 作物学报, 2021, 47(3): 462-471.
[15] 李倩, Nadil Shah, 周元委, 侯照科, 龚建芳, 刘珏, 尚政伟, 张磊, 战宗祥, 常海滨, 傅廷栋, 朴钟云, 张椿雨. 抗根肿病甘蓝型油菜新品种华油杂62R的选育[J]. 作物学报, 2021, 47(2): 210-223.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!