欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (2): 197-209.doi: 10.3724/SP.J.1006.2021.02034

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

OsPAL2;3对水稻化感抑制稗草能力的调控作用

李兰兰(), 母丹, 严雪, 杨陆可, 林文雄*(), 方长旬*()   

  1. 福建农林大学生命科学学院农业生态研究所 / 福建省农业生态过程与安全监控重点实验室, 福建福州 350002
  • 收稿日期:2020-05-14 接受日期:2020-08-19 出版日期:2021-02-12 网络出版日期:2020-11-19
  • 通讯作者: 林文雄,方长旬
  • 作者简介:E-mail: 1244311185@qq.com
  • 基金资助:
    国家自然科学基金项目(31871556);福建农林大学杰出青年科研人才计划项目(xjq201805);福建农林大学科技创新专项基金项目(CXZX2018042)

Effect of OsPAL2;3 in regulation of rice allopathic inhibition on barnyardgrass (Echinochloa crusgalli L.)

LI Lan-Lan(), MU Dan, YAN Xue, YANG Lu-Ke, LIN Wen-Xiong*(), FANG Chang-Xun*()   

  1. Institute of Agroecology, School of Life Sciences, Fujian Agriculture and Forestry University / Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fuzhou 350002, Fujian, China
  • Received:2020-05-14 Accepted:2020-08-19 Published:2021-02-12 Published online:2020-11-19
  • Contact: LIN Wen-Xiong,FANG Chang-Xun
  • Supported by:
    National Natural Science Foundation of China(31871556);Outstanding Youth Scientific Fund of Fujian Agriculture and Forestry University(xjq201805);Science and Technology Innovation of Fujian Agriculture and Forestry University(CXZX2018042)

摘要: 苯丙氨酸解氨酶(phenylalanine ammonia-lyase, PAL, EC 4.3.1.5)是调控酚酸类化感物质合成的关键酶。PAL在水稻中为多基因家族, 化感水稻 PI312777 和非化感水稻 Lemont 中, 相同 PAL 基因成员的启动子组成序列均存在差异, 并以 OsPAL2;3OsPAL2;4 基因启动子序列的差异最大, 且 PI321777 的 OsPAL2;3 基因启动子的驱动活性高于Lemont。过表达 OsPAL2;3 基因, 使 PI312777 和 Lemont 的抑草率分别提高 11.11%和 5.56%。过表达 OsPAL2;3 同时增强 OsPAL2;3OsC4HOsCCAOsCOLOsOMT 等基因的表达, 增加水稻的原儿茶酸和香草酸含量。Co-IP 结合质谱鉴定结果显示, OsPAL2;3 蛋白与转酮醇酶、碳酸酐酶、果糖二磷酸醛缩酶、ATP 合酶 α 亚基、ATP 合酶 β 亚基等相互作用, 调控水稻的苯丙氨酸代谢途径。本研究表明, OsPAL2;3 的转录水平高低是 P1312777 和 Lemont 化感抑草能力差异的原因之一; OsPAL2;3 与多个蛋白互作共同调控酚酸类化合物合成, 该基因可用于提高水稻化感抑草能力的育种研究。

关键词: 水稻, 化感作用, PAL基因, 启动子, 酚酸, 蛋白互作

Abstract:

Phenylalanine ammonia-lyase (PAL, EC 4.3.1.5) is the key enzyme in regulation of the synthesis of phenolic acid allelochemicals. PAL gene in rice belongs to a multigene family. In allelopathic accession rice PI312777 and non-allelopathic rice accession Lemont, the promoter sequences of the same PAL gene member were different, and there was the largest difference in OsPAL2;3 and OsPAL2;4 gene promoter sequence. Gene promoter of OsPAL2;3 from PI3127777 showed higher activity than the corresponding promoter from Lemont. Overexpression of OsPAL2;3 in PI312777 and Lemont resulted in increasing allelopathic inhibition on barnyardgrass (Echinochloa crusgalli L.), and the inhibitory ratios was increased by 11.11% in PI312777 and 5.56% in Lemont. Gene expression level of OsPAL2;3, OsC4H, OsCCA, OsCOL, and OsOMT was up-regulated in the OsPAL2;3-overexpressed transgenic rice compared with that of wild-type rice, and the contents of protocatechuic acid and vanillic acid were also increased. The results from Co-IP combined with mass spectrometry showed that transketolase, carbonic anhydrase, fructose-bisphospate aldolase isozyme, ATP synthase subunit alpha and ATP synthase subunit beta were interacted with OsPAL2;3 protein, resulting in regulating the phenylalanine pathway in rice. Our study indicated that the transcriptional activity of OsPAL2;3 contributed to the alleloapthic activity between PI312777 and Lemont, OsPAL2;3 was interacted with a couple of proteins to jointly regulate the synthesis of phenolic acids, and OsPAL2;3 could be considered as a candidate gene to improve the allelopathy of rice in breeding.

Key words: rice, allelopathy, PAL gene, promoter, phenolic acid, protein interaction

表1

本研究中所用到的引物"

功能
Function
基因名称
Gene name
正向引物
Forward primer (5'-3')
反向引物
Reverse primer (5'-3')
启动子克隆
Promoter cloning
OsPAL2;1 GGTAGTGCTAGATATGAAGGGCTGC CACGAGGAGAAGAGAGGATTCGAT
OsPAL2;2 GTTTTCCGAACGGGTAACCGATGTG CTCACAGATGCAGTAGTAGCACACG
OsPAL2;3 GGTACTGGTACCGCCAGTACGCATA AGTTAGCTAGACGGCCGGAGAGAAC
OsPAL2;4 GGGTCATATGTGACACGTCATCACA CAGAAGATGGATCGGTTAACCTAGC
OsPAL4;1 ATGAGCTGTGAGGCCCAGCAAGCAG AACAACGACGAGGAGGAGGAGGAGG
OsPAL4;2 CGTCCCGTAATACAGGGGATTTTGG GAAGCAGAGGGGAGATCGATGTGTA
OsPAL11 TAGAAGATCAGTTCGCTCCCAGGCT TACAGGTCGCCGAGTACGTACGTAT
荧光定量PCR
qRT-PCR
OsPAL2;3 CCGTGCTCTTTGAGGCTAAC GCTTGTGAGTCAGGTGGTCG
OsC4H ACCGCAGCGTCTCCTTC ACCACCCGAGCATCCAG
OsCOL TGGTGGAGTGCGTGCTG AGGCGTTGGCGTAGATG
OsOMT TGTCCTGTGAAATGGGTG CCTCGGAACAAGAACTG
OsCAD TCGGCGTCGCTAATTTCATCC TCGATGGAAGAACGGGCAGAG
β-actin CTGCGGGTATCCATGAGACT GCAATGCCAGGGAACATAGT
基因过表达载体
Gene overexpression vector
OsPAL2;3 cgactctagaggatccATGGCGTGCGAGA ACGGTCAG ccatactagtggatccGCAGATGGGCAGGG GCGCGC
转基因水稻PCR鉴定
PCR identification of transgenic rice line
OsPAL2;3-OX CTGAAGCTCATGTCCTCCACGTTC GATGTTGCCGTCCTCCTTGAAGTC
双分子荧光互补载体
Bimolecular fluorescent complimentary vector
OsPAL2;3 atggcgcgccactagtATGGCGTGCGAGA ACGGTCAG cacctcctccactagtGCAGATGGGCAGGGG CGCGC
ATP synthase subunit alpha atggcgcgccactagtATGGCAACCCTTCG AGTCGACGA cacctcctccactagtAAGGGAAAACCGTTC GAGTTGTTCC
ATP synthase subunit beta atggcgcgccactagtATGGCGACTCGCCG GGCCCTCT cacctcctccactagtTGAAGCCGACTCCTTG GCGATC
Transketolase atggcgcgccactatATGGCCGCGCACTCC GTCG cacctcctccactagtCAGGCTCTTTGCTGTT GCGAT
Carbonic anhydrase atggcgcgccactagtATGTCGACCGCCGC CGCCGC cacctcctccactagtGGGCTCCCATAAGTCC AAGTTG
Frutose-bisphosphate
aldolase
atggcgcgccactagtATGGCGTCTGCTAC TCTCCTCAA cacctcctccactagtGTAGACGTAGTTCTTG ACGAACA

图1

PI312777与Lemont的PAL基因成员启动子片段的凝胶电泳检测及部分差异序列 (a) PAL基因启动子片段的凝胶电泳检测; (b) PI312777与Lemont的OsPAL2;3及OsPAL2;4基因启动子的差异序列。"

图2

PI312777与Lemont的OsPAL2;3、OsPAL2;4基因启动子驱动的GFP荧光强度检测"

图3

OsPAL2;3过表达水稻中的eYFP融合蛋白的表达以及eYFP的荧光检测 (a) Western-blotting检测eYFP表达丰度; (b) 激光共聚焦显微镜检测eYFP荧光强度。"

图4

OsPAL2;3过表达水稻与野生型株系的OsPAL、OsOMT、OsC4H、OsCOL、OsCAD基因表达差异"

表2

OsPAL2;3过表达水稻与野生型植株中的酚酸类化合物的含量"

水稻株系
Rice lines
酚酸含量Contents of phenolic acid (μg g-1)
原儿茶酸Protocatechuic acid 对羟基苯甲酸
p-hydroxybenzoic acid
香草酸
Vanillic acid
丁香酸
Syringic acid
4-香豆酸
4-coumaric acid
阿魏酸
Ferulic acid
水杨酸
Salicylic acid
肉桂酸
Cinnamic acid
PI32777野生型
Wild type of PI312777
161.78±32.74 2.18±0.14 6.98±1.68 3.19±0.71 25.26±1.65 19.65±0.57 15.34±2.43 8.19±0.62
过表达OsPAL2;3转基因PI312777
OsPAL2;3-OX
transgenic PI312777
165.11±2.41 1.74±0.41 10.05±0.97 4.77±2.40 31.42±2.30 15.56±0.60 10.64±0.92 8.07±0.20
Lemont野生型
Wild type of Lemont
18.19±1.38 2.04±0.47 5.47±0.40 6.64±0.35 11.31±0.15 21.07±1.89 15.03±0.13 1.60±0.13
过表达OsPAL2;3转基因Lemont
OsPAL2;3-OX
transgenic Lemont
26.29±1.81 1.83±0.14 6.45±0.65 3.61±0.37 9.01±4.28 17.64±1.74 17.06±5.61 0.85±0.56

图5

OsPAL2;3过表达水稻及其野生型株系根系分泌液中种植的稗草的生长情况"

表3

OsPAL2;3转基因水稻及其野生型植株根系分泌液培养的稗草形态指标"

处理方式
Treatment
根长
Root length (cm)
根长抑制率
IR of root length (%)
株高
Plant height (cm)
株高抑制率
IR of plant height (%)
干重
Dry weight
(g)
干重抑制率
IR of dry weight (g)
PI312777根系分泌物培养的稗草
Barnyardgrass cultured in the solution with PI31277 root exudates
9.20±1.43 b 18.73 27.84±3.77 b 14.69 0.12±0.02 b 33.33
过表达OsPAL2;3转基因PI312777根系分泌物培养的稗草
Barnyardgrass cultured in the solution with OsPAL2;3-OX PI31277 root exudates
6.87±2.00 c 39.31 27.57±2.87 b 15.61 0.10±0.02 b 44.44
对照组稗草
Control group of barnyardgrass
11.32±2.11 a 32.67±3.18 a 0.18±0.01 a
Lemont根系分泌物培养的稗草
Barnyardgrass cultured in the solution with Lemont root exudates
9.94±1.20 b 12.19 28.89±3.19 b 11.57 0.14±0.02 b 22.22
过表达OsPAL2;3转基因Lemont根系分泌物培养的稗草
Barnyardgrass cultured in the solution with OsPAL2;3-OX Lemont root exudates
10.36±1.28 b 8.48 27.32±3.33 b 16.38 0.13±0.01 b 27.78

图6

OsPAL2;3蛋白在过表达水稻体内的互作蛋白"

表4

OsPAL2;3互作蛋白的鉴定结果"

蛋白登录号
Protein accession number
蛋白名称
Protein name
全部肽段
Peptide count
匹配的肽段
Unique peptide count
覆盖率
Coverage
(%)
分子量
Molecular weight (kD)
等电点
Isoelectric point
LOC_Os02g41670.1 Phenylalanine ammonia-lyase 31 26 36.19 76.58 5.84
LOC_Os10g21268.1 Ribulose bisphosphate carboxylase large chain precursor 29 16 30.99 53.71 6.58
LOC_Os04g16740.1 ATP synthase subunit alpha 15 15 27.22 55.66 5.95
LOC_Os01g45274.3 Carbonic anhydrase, chloroplast precursor 25 14 42.37 28.04 6.99
LOC_Os02g41650.3 Phenylalanine ammonia-lyase 15 13 17.69 77.75 6.04
LOC_Os10g21266.1 ATP synthase subunit beta 14 13 29.92 53.98 5.38
LOC_Os11g07020.1 Fructose-bisphospate aldolase isozyme 11 11 27.06 42.00 6.39
LOC_Os12g10580.1 Ribulose bisphosphate carboxylase large chain precursor 18 10 18.94 56.06 9.04
LOC_Os04g38600.2 Glyceraldehyde-3-phosphate
dehydrogenase
12 10 24.94 43.01 7.61
LOC_Os04g43800.1 Phenylalanine ammonia-lyase 11 10 13.59 76.93 5.93
LOC_Os06g04270.1 Transketolase, chloroplast precursor 11 10 14.67 80.02 6.12
LOC_Os05g41640.2 Phosphoglycerate kinase protein 10 10 21.28 50.13 6.29
LOC_Os12g37260.1 Lipoxygenase 2.1, chloroplast precursor 10 10 9.00 10.46 5.87

图7

BiFC检测OsPAL2;3及其互作蛋白的有效互作"

[1] Rice E L. Allelopathy, 2nd edn. Orlando: Academic Press, 1984. pp 1-50.
[2] Lin W X, Fang C X, Chen T, Lin R Y, Xiong J, Wang H B. Rice allelopathy and its properties of molecular ecology. Front Biol, 2010,5:255-262.
[3] Weston L A, Duke S O. Weed and crop allelopathy. Crit Rev Plant Sci, 2003,22:367-389.
[4] 王海斌, 俞振明, 何海斌, 郭徐魁, 黄锦文, 周阳, 徐志斌, 林文雄. 不同化感潜力水稻化感效应与产量的关系. 中国生态农业学报, 2012,20:75-79.
Wang H B, Yu Z M, He H B, Guo X K, Huang J W, Zhou Y, Xu Z B, Lin W X. Relationship between allelopathic potential and grain yield of different allelopathic rice accessions Chin[J] Eco-Agric, 2012,20:75-79 (in Chinese with English abstract).
[5] 徐正浩, 谢国雄, 周宇杰, 高屾. 三种栽植方式下不同株型和化感特性水稻对无芒稗的干扰控制作用. 作物学报, 2013,39:537-548.
doi: 10.3724/SP.J.1006.2013.00537
Xu Z H, Xie G X, Zhou Y J, Gao S. Interference of rice with different morphological types and allelopathy on barnyardgrass under three planting patterns. Acta Agron Sin, 2013,39:537-548 (in Chinese with English abstract).
[6] Ye C Y, Tang W, Wu D, Jia L, Qiu J, Chen M, Mao L, Lin F, Xu H, Yu X, Lu Y, Wang Y, Olsen K M, Timko M P, Fan L. Genomic evidence of human selection on Vavilovian mimicry. Nat Ecol Evol, 2019,3:1474-1482.
pmid: 31527731
[7] Li L L, Zhao H H, Kong C H. (-)-Loliolide, the most ubiquitous lactone, is involved in barnyardgrass-induced rice allelopathy. J Exp Bot, 2020,71:1540-1550.
doi: 10.1093/jxb/erz497 pmid: 31677347
[8] Kato-Noguchi H, Peters R J. The role of momilactones in rice allelopathy. J Chem Ecol, 2013,39:175-185.
pmid: 23385366
[9] Kong C H, Zhao H, Xu X H, Wang P, Gu Y. Activity and allelopathy of soil of flavone O-glycosides from rice. J Agric Food Chem, 2007,55:6007-6012.
doi: 10.1021/jf0703912 pmid: 17602647
[10] Rimando A M, Duke S O. Studies on rice allelochemicals. In: Smith C W, Dilday R H, eds. Rice: Origin, History, Technology and Production. New York: Wiley, 2003. pp 221-244.
[11] Zhang Q, Li L, Li J Y, Wang H B, Fang C X, Yang X Y, He H B. Increasing rice allelopathy by induction of barnyardgrass (Echinochloa crus-galli) root exudates. J Plant Growth Regul, 2018,37:745-754.
[12] Fang C X, Li Y Z, Li C X, Li B L, Ren Y J, Zheng H P, Zeng X M, Shen L H, Lin W X. Identification and comparative analysis of microRNAs in barnyardgrass (Echinochloa crus-galli) in response to rice allelopathy. Plant Cell Environ, 2015,38:1368-1381.
doi: 10.1111/pce.12492 pmid: 25438645
[13] Fang C X, Yu Y, Chen W S, Jian X, Wang Q S, Zheng H P, Lin W X. Role of allene oxide cyclase in the regulation of rice phenolic acids synthesis and allelopathic inhibition on barnyardgrass. Plant Growth Regul, 2016,79:265-273.
doi: 10.1007/s10725-015-0131-1
[14] He H B, Wang H B, Fang C X, Lin Z H, Yu Z M, Lin W X. Separation of allelopathy from resource competition using rice/barnyardgrass mixed-cultures. PLoS One, 2012,7:e37201.
doi: 10.1371/journal.pone.0037201 pmid: 22590655
[15] He H B, Wang H B, Fang CX, Wu H W, Guo X K, Lin C H, Lin Z H, Lin W X. Barnyardgrass stress up regulates the biosynthesis of phenolic compounds in allelopathic rice. J Plant Physiol, 2012,169:1747-1753.
pmid: 22939271
[16] Seal A N, Haig T, Pratley J E. Evaluation of putative allelochemicals in rice roots exudates for their role in the suppression of arrowhead root growth. J Chem Ecol, 2004,30:1663-1678.
doi: 10.1023/b:joec.0000042075.96379.71 pmid: 15537166
[17] Seal A N, Pratley J E, Haig T, An M. Identification and quantitation of compounds in a series of allelopathic and non-allelopathic rice root exudates. J Chem Ecol, 2004,30:1647-1662.
doi: 10.1023/b:joec.0000042074.96036.14 pmid: 15537165
[18] Kim K W, Kim K U. Searching for rice allelochemicals. In: Kim K U, Shin D H, eds. Rice Allelopathy. Korea: Kyungpook National University, 2000. pp 83-95.
[19] Mattice J, Lavy T, Skulman B, Dilday R. Searching for Allelochemicals in Rice that Control Ducksalad. Manila: International Rice Research Institute, 1998. pp 81-98.
[20] Chou C H, Chiou S J. Autointoxication mechanism of Oryza sativa: II. Effects of culture treatments on the chemical nature of paddy soil and on rice productivity. J Chem Ecol, 1979,5:839-859.
[21] Chou C H, Lin H J. Autointoxication mechanism of Oryza sativa: I. Phytotoxic effects of decomposing rice residues in soil. J Chem Ecol, 1976,2:353-367.
[22] Kuwatsuka S, Shindo H. Behavior of phenolic substances in the decaying process of plants: I. Identification and quantitative determination of phenolic acids in rice straw and its decayed product by gas chromatography. Soil Sci Plant Nutr, 1973,19:219-227.
doi: 10.1080/00380768.1973.10432591
[23] Zheng X, Chen S, Li Q, Lin R, Lin W. Determination of phenolic acids in root exudates of allelopathic rice by solid phase extraction-ion chromatography with conductivity detection. Anal Lett, 2014,47:2156-2164.
doi: 10.1080/00032719.2014.900778
[24] Li J Y, Zhang Q, Yang X Y, Wu H M, Lin R L, He H B. A reappraisal of the content and the differences of phenolic acids between allelopathic and non-allelopathic rice accessions. Allelopathy J, 2017,40:35-46.
[25] Bi H H, Zeng R S, Su L M, An M, Luo S M. Rice allelopathy induced by methyl jasmonate and methyl salicylate. J Chem Ecol, 2007,33:1089-1103.
doi: 10.1007/s10886-007-9286-1 pmid: 17415624
[26] Song B Q, Xiong J, Fang C X, Qiu L, Lin R Y, Liang Y Y, Lin W X. Allelopathic enhancement and differential gene expression in rice under low nitrogen treatment. J Chem Ecol, 2008,34:688-695.
doi: 10.1007/s10886-008-9455-x pmid: 18392895
[27] Fang C X, He H B, Wang Q S, Qiu L, Wang H B, Zhuang Y E, Xiong J, Lin W X. Genomic analysis of allelopathic response to low nitrogen and barnyardgrass competition in rice (Oryza sativa L.). Plant Growth Regul, 2010,61:277-286.
[28] Fang C X, Xiong J, Qiu L, Wang H B, Song B Q, He H B, Lin R Y, Lin W X. Analysis of gene expressions associated with increased allelopathy in rice induced by exogenous salicylic acid. Plant Growth Regul, 2009,57:163-172.
[29] 方长旬, 王清水, 余彦, 罗美蓉, 黄力坤, 熊君, 沈荔花, 林文雄. 不同胁迫条件下化感与非化感水稻PAL多基因家族的差异表达. 生态学报, 2011,31:4760-4767.
Fang C X, Wang Q S, Yu Y, Luo M R, Huang L K, Xiong J, Shen L H, Lin W X. Differential expression of PAL multigene family in allelopathic rice and its counterpart exposed to stressful conditions. Acta Ecol Sin, 2011,31:4760-4767 (in Chinese with English abstract).
[30] Ayoubi T A, Van De Ven W J. Regulation of gene expression by alternative promoters. FASEB J, 1996,10:453-460.
pmid: 8647344
[31] Yoo S D, Cho Y H, Sheen J. Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc, 2007,2:1565-1572.
[32] Zhang Y, Su J, Duan S, Ao Y, Dai J R, Liu J, Wang P, Li Y G, Liu B, Feng D R, Wang J F, Wang H B. A highly efficient rice green tissue protoplast system for transient gene expression and studying light/chloroplast-related processes. Plant Methods, 2011,7:30.
doi: 10.1186/1746-4811-7-30 pmid: 21961694
[33] 陈秋红, 陈太钰, 林拥军, 陈浩. 根癌农杆菌介导的粳稻遗传转化. 见: 袁猛, 都浩, 李香花主编. 水稻实验手册. 北京: Bio-protocol, 2018. pp 245-254. Bio-101: e1010174. doi: 10.21769/BioProtoc.1010174.
Chen Q H, Chen T Y, Lin Y J, Chen H. Agrobacterium-mediated genetic transformation of japonica rice. In: Yuan M, Du H, Li X H, eds. Rice Protocol eBook. Beijing: Bio-protocol, 2018. pp 245-254. Bio-101: e1010174. doi: 10.21769/BioProtoc.1010174.
[34] 刘瑜, 凌飞, 林拥军, 陈浩. 农杆菌介导的籼稻遗传转化. 见: 袁猛, 都浩, 李香花主编. 水稻实验手册. 北京: Bio-protocol, 2018. pp 255-264. Bio-101: e1010175. doi: 10.21769/BioProtoc. 1010175.
Liu Y, Ling F, Lin Y J, Chen H. Agrobacterium-mediated transformation of indica rice. In: Yuan M, Du H, Li X H, eds. Rice Protocol eBook. Beijing: Bio-protocol, 2018. pp 255-264. Bio-101: e1010175. doi: 10.21769/BioProtoc.1010175. (in Chinese)
[35] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method . Methods, 2001,25:402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609
[36] Fang C X, Yang L K, Chen W X, Li L L, Zhang P L, Li Y Z, He H B, Lin W X. MYB57 transcriptionally regulates MAPK11 to interact with PAL2;3 and modulate rice allelopathy. J Exp Bot, 2020,71:2127-2141.
pmid: 31811717
[37] Fang C X, Zhuang Y E, Xu T C, Lin Y Z, Li Y, Lin W X. Changes in rice allelopathy and rhizosphere microflora by inhibiting rice phenylalanine ammonia-lyase gene expression. J Chem Ecol, 2013,39:204-212.
doi: 10.1007/s10886-013-0249-4 pmid: 23385369
[38] Zhou X G, Liao H C, Chern M, Yin J J, Chen Y F, Wang J P, Zhu X B, Chen Z X, Yuan C, Zhao W, Wang J, Li W T, He M, Ma B T, Wang J C, Qin P, Chen W L, Wang Y P, Liu J L, Qian Y W, Wang W M, Wu X J, Li P, Zhu L H, Li S G, Ronald P C, Chen X W. Loss of function of a rice TPR-domain RNA-binding protein confers broad-spectrum disease resistance. Proc Natl Acad Sci USA, 2018,115:3174-3179.
pmid: 29432165
[39] Van Dam N M, Bouwmeester H J. Metabolomics in the rhizosphere: tapping into belowground chemical communication. Trends Plant Sci, 2016,21:256-265.
pmid: 26832948
[40] Bertin C, Yang X, Weston L A. The role of root exudates and allelochemicals in the rhizosphere. Plant Soil, 2003,256:67-83.
[41] Lin R Y, Wang H B, Guo X K, Ye C Y, He H B, Zhou Y, Lin W X. Impact of applied phenolic acids on the microbes, enzymes and available nutrients in paddy soils. Allelopathy J, 2011,28:225-236.
[42] MacDonald M J, D’Cunha G B. Amodern view of phenylalanine ammonia lyase. Biochem Cell Biol, 2007,85:273-282.
doi: 10.1139/o07-018 pmid: 17612622
[43] Junge W, Lill H, Engelbrecht S. ATP synthase: an electrochemical transducer with rotatory mechanics. Trends Biochem Sci, 1997,22:420-423.
pmid: 9397682
[44] Henkes S, Sonnewald U, Badur R, Flachmann R, Stittet M. A small decrease of plastid transketolase activity in antisense tobacco transformants has dramatic effects on photosynthesis and phenylpropanoid metabolism. Plant Cell, 2001,13:535-551.
doi: 10.1105/tpc.13.3.535 pmid: 11251095
[45] Sasaki H, Hirose T, Watanabe Y, Ohsugi R. Carbonic anhydrase activity and CO2-transfer resistance in Zn-deficient rice leaves. Plant Physiol, 1998,118:929-934.
doi: 10.1104/pp.118.3.929 pmid: 9808737
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[14] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[15] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!