欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (3): 462-471.doi: 10.3724/SP.J.1006.2021.04034

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

甘蓝型油菜耐盐和耐旱相关性状的QTL分析

蒙姜宇(), 梁光伟, 贺亚军*(), 钱伟   

  1. 西南大学农学与生物科技学院, 重庆 400716
  • 收稿日期:2020-02-16 接受日期:2020-10-14 出版日期:2021-03-12 网络出版日期:2020-11-18
  • 通讯作者: 贺亚军
  • 作者简介:E-mail: 1131241810@qq.com
  • 基金资助:
    国家重点研发计划项目(2016YFD0100202);国家自然科学基金项目(31671729);重庆市基础科学与前沿技术研究项目资助(cstc2017jcyjAX0391)

QTL mapping of salt and drought tolerance related traits in Brassica napus L.

MENG Jiang-Yu(), LIANG Guang-Wei, HE Ya-Jun*(), QIAN Wei   

  1. College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
  • Received:2020-02-16 Accepted:2020-10-14 Published:2021-03-12 Published online:2020-11-18
  • Contact: HE Ya-Jun
  • Supported by:
    National Key Research and Development Program of China(2016YFD0100202);National Natural Science Foundation of China(31671729);Chongqing Research Program of Basic Research and Frontier Technology(cstc2017jcyjAX0391)

摘要:

盐胁迫和干旱胁迫是非生物胁迫中影响作物产量的重要因素, 检测与耐盐和耐旱相关的QTL, 可为抗逆油菜品种的选育提供理论依据。本研究利用德国冬性甘蓝型油菜Express和中国半冬性甘蓝型油菜SWU07为亲本构建的包含261个株系的双单倍体(doubled haploid, DH)群体, 分别以1.2% NaCl溶液和20% PEG-6000溶液作为培养液模拟盐胁迫和干旱胁迫, 去离子水为对照, 对2个亲本和DH群体进行发芽试验。播种后7 d测定幼苗根长、鲜重及发芽率, 计算各性状在盐胁迫和干旱胁迫下的相对值, 并作为评价耐盐和耐旱的指标。根据已构建的遗传连锁图谱进行QTL定位。盐胁迫下, 在3次重复中共检测到与盐胁迫相关的QTL 12个, 分布在A02、A03、A05、A09、C01和C09染色体上, 单个QTL可解释的表型变异为3.61%~10.59%, 其中5个QTL在不同的重复中被检测到。干旱胁迫下, 共检测到与干旱胁迫相关的QTL 9个, 分布在A01、A02、A03、A05、A09、A10和C03染色体上, 单个QTL可解释的表型变异为3.94%~12.90%, 其中2个QTL在不同的重复中被检测到。此外, 在A02和A03染色体上检测到与2种胁迫都相关的相互交叠的QTL。这些结果可为油菜耐盐和耐旱性改良提供更多遗传信息。

关键词: 甘蓝型油菜, 耐盐性, 耐旱性, 数量性状位点

Abstract:

Salt and drought stresses are main abiotic stresses affecting crop yield. Detecting the QTLs related to salt and drought tolerance can provide theoretical basis for stress resistance breeding in rapeseed. In this study, a doubled haploid population (DH population), which included 261 lines constructed using the German winter rapeseed cultivar ‘Express’ (female) and the Chinese semi-winter line ‘SWU07’ (male), were used to detect QTLs related to salt and drought tolerance. The seeds were germinated in Petri dishes under 1.2% NaCl and 20% PEG-6000, respectively. The control was under the sterile dH2O. Three tolerance related traits, root length, fresh weight and germination rate of each line were measured on the 7th day after planting. The relative value of root length, fresh weight and germination rate under the salt and drought tolerance condition were calculated. Composite interval mapping (CIM) was used to identify the related QTLs according to the constructed genetic map. A total of 12 QTLs were detected for salt tolerance related traits and located on A02, A03, A05, A09, C01, and C09 chromosome, explaining phenotypic variation ranging from 3.61% to 10.59%. Five of these QTLs were persistently expressed in different repetitions. A total of 9 QTLs were detected for drought tolerance related traits and located on A01, A02, A03, A05, A09, A10, and C03 chromosome, explaining phenotypic variation ranging from 3.94% to 12.90%. Two of these QTLs were persistently expressed in different repetitions. In addition, the overlapped QTLs, located on A02 and A03, were detected under salt stress and drought stress. These results provide more genetic information for improving salt and drought tolerance in rapeseed.

Key words: Brassica napus L., salt tolerance, drought tolerance, QTL

表1

亲本和DH群体在不同胁迫环境下的表型分析"

胁迫环境
Stress environment
性状
Trait
亲本 Parent DH群体 DH population
SWU07 表达
Express
Pt-test 最小值
Min.
最大值
Max.
平均值
Mean
标准差
SD
变异系数
CV (%)
1.2% NaCl 发芽率 Germination rate 0.036 0.173 0 0 0.590 0.151 0.130 86.333
根长 Root length 0.046 0.032 0.007 0.019 0.313 0.082 0.048 58.970
鲜重 Fresh weight 0.155 0.184 0.028 0.119 0.773 0.272 0.104 38.206
20% PEG-6000 发芽率 Germination rate 0.894 0.959 0.017 0.120 0.980 0.845 0.172 20.377
根长 Root length 0.402 0.694 0 0.242 0.995 0.583 0.157 26.840
鲜重 Fresh weight 0.960 0.744 0.001 0.304 0.993 0.744 0.162 21.824

图1

DH群体耐盐相关性状的频率分布图 a、b、c图分别是盐胁迫下发芽率相对值、根长相对值、鲜重相对值的频率分布图。"

图2

DH群体耐旱性状的频率分布图 a、b、c图分别是旱胁迫下发芽率相对值、根长相对值、鲜重相对值的频率分布图。"

表2

DH群体各性状的相关性分析"


性状
Trait
1.2% NaCl 20% PEG-6000
SGR SRL SFW DGR DRL DFW
1.2% NaCl SGR
SRL 0.2564**
SFW 0.1317* 0.4273**
20% PEG-6000 DGR 0.0439 0.1294 0.1817*
DRL 0.0559 0.0166 0.1267 0.3238**
DFW -0.0433 0.0032 0.1729* 0.4494** 0.2656**

表3

DH群体中检测到的耐盐、耐旱相关的QTL"

胁迫环境
Stress
environment
性状
Trait
重复
Repetition
QTL名称
QTL name
染色体
Chr.
位置
Position
加性效应
Additive
贡献率
R2 (%)
LOD 值
LOD score
置信区间
Confidence
interval
1.2% NaCl 发芽率 Germination rate REP1 qSGR-A03-1 A03 27.11 -0.03 7.06 4.13 22.1-32.0
REP1 qSGR-A03-2 A03 35.61 -0.03 4.46 3.07 33.4-38.3
REP1 qSGR-A05 A05 45.11 0.03 3.61 2.53 40.1-52.0
REP1 qSGR-C01-1 C01 37.01 0.04 10.40 4.72 36.0-37.4
REP1 qSGR-C09 C09 8.50 -0.03 3.74 2.61 5.0-16.4
REP 3 qSGR-A03-3 A03 27.11 -0.04 9.37 5.47 22.7-32.0
REP 3 qSGR-A03-4 A03 35.61 -0.03 5.62 3.82 33.4-39.1
REP 3 qSGR-C01-2 C01 37.01 0.04 10.59 4.75 36.0-39.1
根长
Root length
REP 1 qSRL-A03-1 A03 28.81 -0.01 5.14 3.44 22.3-32.0
REP 1 qSRL-A03-2 A03 35.61 -0.01 3.78 2.50 33.4-39.1
REP 1 qSRL-A09 A09 86.41 -0.01 8.53 5.03 77.8-95.0
REP 1 qSRL-C09-1 C09 7.91 -0.01 6.61 4.31 3.5-11.9
REP 1 qSRL-C09-2 C09 14.91 -0.01 4.99 3.06 11.9-17.5
REP 2 qSRL-C09-3 C09 7.91 -0.03 4.14 2.52 3.0-17.4
REP 3 qSRL-A03-3 A03 30.81 0.26 6.30 3.44 28.4-33.4
鲜重
Fresh weight
REP 2 qSFW-C09 C09 19.61 0.00 4.64 2.94 17.5-31.8
REP 3 qSFW-A02 A02 46.00 -0.03 5.79 3.52 44.9-50.0
20% PEG-6000 发芽率 Germination rate REP 1 qDGR-A02 A02 47.00 -0.01 4.41 2.57 44.9-51.0
REP 1 qDGR-A03 A03 35.60 0.01 5.45 3.40 33.4-37.0
REP 1 qDGR-A05-1 A05 65.00 0.04 6.05 3.00 59.0-78.6
REP 2 qDGR-A05-2 A05 66.11 0.04 4.90 3.28 59.3-78.1
根长
Root length
REP 1 qDRL-A02 A02 40.80 0.04 12.90 2.96 40.2-42.1
REP 3 qDRL-A01 A01 10.31 0.16 4.92 2.98 7.9-12.7
REP 3 qDRL-A10 A10 0.51 0.16 4.32 2.62 0-2.7
鲜重
Fresh weight
REP 1 qDFW-A09 A09 73.41 0.00 7.11 4.43 72.2-74.7
REP 2 qDFW-A01-1 A01 25.50 0.07 3.94 2.51 15.6-37.1
REP 2 qDFW-C03 C03 25.60 -0.06 9.21 3.87 21.4-34.1
REP 3 qDFW-A01-2 A01 25.51 0.07 3.97 2.53 15.6-37.1

图3

耐盐、耐旱相关性状QTL在连锁群上的分布 白色填充的框图代表盐胁迫下检测到的QTL。黑色填充的框图代表干旱胁迫下检测到的QTL。"

[1] 王汉中. 我国油菜产业发展的历史回顾与展望. 中国油料作物学报, 2010,32:300-302.
Wang H Z. Review and future development of rapeseed industry in China. Chin J Oil Crop Sci, 2010,32:300-302 (in Chinese with English abstract).
[2] 杨真, 王宝山. 中国盐渍土资源现状及改良利用对策. 山东农业科学, 2015,47(4):125-130.
Yang Z, Wang B S. Present status of saline soil resources and countermeasures for improvement and utilization in China. Shandong Agric Sci, 2015,47(4):125-130 (in Chinese with English abstract).
[3] Kovda V A. Loss of productive land due to salinization. AMBIO-A J Human Environ, 1983,12:91-93.
[4] Ruan C J, da Silva J A T, Mopper S, Qin P, Lutts S. Halophyte improvement for a salinized world. Crit Rev Plant Sci, 2010,29:329-359.
doi: 10.1080/07352689.2010.524517
[5] 戴清明, 吕爱钦, 何维君, 谢年保, 陈欣, 张志远, 匡朝凌, 瞿科. 洞庭湖区油菜主要气象灾害发生规律与减灾避灾对策. 作物研究, 2006,20(1):60-63.
Dai Q M, Lyu A Q, He W J, Xie N B, Chen X, Zhang Z Y, Kuang C L, Qu K. The rule of principle weather disaster for rape planting in Dongting Lake region and the countermeasures to relief and avoid the disaster. Crop Res, 2006,20(1):60-63 (in Chinese with English abstract).
[6] 荐红举, 肖阳, 李加纳, 马珍珍, 魏丽娟, 刘列钊. 利用SNP遗传图谱定位盐、旱胁迫下甘蓝型油菜种子发芽率的QTL. 作物学报, 2014,40:629-635.
doi: 10.3724/SP.J.1006.2014.00629
Jian H J, Xiao Y, Li J N, Ma Z Z, Wei L J, Liu L Z. QTL mapping for germination percentage under salinity and drought stresses in Brassica napus L. using a SNP genetic map. Acta Agron Sin, 2014,40:629-635 (in Chinese with English abstract).
[7] 侯林涛, 王腾岳, 荐红举, 王嘉, 李加纳, 刘列钊. 甘蓝型油菜盐胁迫下幼苗鲜重和干重QTL定位及候选基因分析. 作物学报, 2017,43:179-189.
doi: 10.3724/SP.J.1006.2017.00179
Hou L T, Wang T Y, Jian H J, Wang J, Li J N, Liu L Z. QTL mapping for seedling dry weight and fresh weight under salt stress and candidate genes analysis in Brassica napus L. Acta Agron Sin, 2017,43:179-189 (in Chinese with English abstract).
[8] Lang L, Xu A X, Ding J, Zhang Y, Zhao N, Tian Z S, Liu Y P, Wang Y, Liu X, Liang F H, Zhang B B, Qin M F, Jazira D, Huang Z. Quantitative trait locus mapping of salt tolerance and identification of salt-tolerant genes inBrassica napus L. Front Plant Sci, 2017,8:1000.
doi: 10.3389/fpls.2017.01000 pmid: 28659949
[9] Zhang Y, Xu A X, Lang L N, Wang Y, Liu X, Liang F H, Zhang B B, Qin M F, Jazira D, Huang Z. Genetic mapping of a lobed-leaf gene associated with salt tolerance inBrassica napus L. Plant Sci, 2018,269:75-84.
doi: 10.1016/j.plantsci.2018.01.005 pmid: 29606219
[10] 张蕊, 邓文亚, 杨柳, 王亚萍, 肖芳枝, 禾健, 卢坤. 盐胁迫下甘蓝型油菜发芽期下胚轴和根长的全基因组关联分析. 中国农业科学, 2017,50:15-27.
doi: 10.3864/j.issn.0578-1752.2017.01.002
Zhang R, Deng W Y, Yang L, Wang Y P, Xiao F Z, He J, Lu K. Genome-wide association study of root length and hypocotyl length at germination stage under saline conditions in Brassica napus. Sci Agric Sin, 2017,50:15-27 (in Chinese with English abstract).
[11] 贺亚军, 吴道明, 游婧璨, 钱伟. 油菜耐盐相关性状的全基因组关联分析及其候选基因预测. 中国农业科学, 2017,50:1189-1201.
doi: 10.3864/j.issn.0578-1752.2017.07.002
He Y J, Wu D M, You J C, Qian W. Genome-wide association analysis of salt tolerance related traits in Brassica napus and candidate gene prediction. Sci Agric Sin, 2017,50:1189-1201 (in Chinese with English abstract).
[12] Yong H Y, Wang C L, Bancroft I, Li F, Wu X M, Hiroyasu K, Takeshi N. Identification of a gene controlling variation in the salt tolerance of rapeseed (Brassica napus L.). Planta, 2015,242:313-326.
doi: 10.1007/s00425-015-2310-8 pmid: 25921693
[13] Wan H P, Chen C L, Guo J B, Li Q, Wen J, Yi B, Mao C Z, Tu J X, Fu T D, Shen J X. Genome-wide association study reveals the genetic architecture underlying salt tolerance-related traits in rapeseed (Brassica napus L.). Front Plant Sci, 2017,8:593.
doi: 10.3389/fpls.2017.00593 pmid: 28491067
[14] 李真. 甘蓝型油菜苗期耐湿性和抗旱性相关QTL分析. 华中农业大学硕士学位论文, 湖北武汉, 2008.
Li Z. Study on QTL Associated with Waterlogging Tolerance and Drought Resistance during Seedling Stage in Brassica napus L. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2008 (in Chinese with English abstract).
[15] 杨玉恒. 甘蓝型油菜耐旱性鉴定和耐旱相关性状QTL分析. 西南大学硕士学位论文, 重庆, 2011.
Yang Y H. Identification and QTL Analysis of Drought Tolerant Traits in Brassica napus L. MS Thesis of Southwest University, Chongqing, China, 2011 (in Chinese with English abstract).
[16] 王丹丹, 唐章林, 荆蓉蓉, 文均, 马宇嘶. 甘蓝型油菜遗传图谱构建及苗期耐旱相关性状的QTL定位. 西南大学学报(自然科学版), 2014,36(7):8-16.
Wang D D, Tang Z L, Jing R R, Wen J, Ma Y S. Mapping and QTL analysis of genes to drought tolerance in Brassica napus L. J Southwest Univ (Nat Sci Edn), 2014,36(7) : 8-16 (in Chinese with English abstract).
[17] Fletcher R S, Mullen J L, Heiliger A, McKay J K. QTL analysis of root morphology, flowering time, and yield reveals trade-offs in response to drought in Brassica napus. J Exp Bot, 2015,66:245-256.
doi: 10.1093/jxb/eru423 pmid: 25371500
[18] Fletcher R S, Herrmann D, Mullen J L, Li Q F, Schrider D R, Price N, Lin J J, Grogan K, Kern A, McKay J K. Identification of polymorphisms associated with drought adaptation QTL inBrassica napus by resequencing. G3: Genes Genom Genet, 2016,6:793-803.
[19] 许军红. 甘蓝型油菜苗期耐旱相关性状的QTL分析. 西南大学硕士学位论文, 重庆, 2016.
Xu J H. QTL Analysis of Drought Tolerance Traits at Seedling Stage in Brassica napus L. MS Thesis of Southwest University, Chongqing, China, 2016 (in Chinese with English abstract).
[20] 黄倩, 赵永国, 黄祥伟, 朱宗河, 刘云清, 马海清, 程勇, 邹锡玲, 徐劲松, 张学昆, 陆光远. 甘蓝型油菜蕾薹期抗旱相关性状的QTL分析. 干旱地区农业研究, 2017,35(6):88-94.
Huang Q, Zhao Y G, Huang X W, Zhu Z H, Liu Y Q, Ma H Q, Cheng Y, Zou X L, Xu J S, Zhang X K, Lu G Y. QTL mapping of traits associated with drought resistance at bolting stage in Brassica napus. Agric Res Arid Areas, 2017,35(6):88-94 (in Chinese with English abstract).
[21] Ashraf M, Mcneilly T. Salinity tolerance in brassica oilseeds. Crit Rev Plant Sci, 2011,23:157-174.
doi: 10.1080/07352680490433286
[22] Fu Y, Lu K, Qian L W, Mei J Q, Wei D Y, Peng X, Xu X F, Li J N, Frauen M, Dreyer F, Snowdon R J, Qian W. Development of genic cleavage markers in association with seed glucosinolate content in canola. Theor Appl Genet, 2015,128:1029-1037.
[23] 龙卫华, 浦惠明, 张洁夫, 戚存扣, 张学昆. 甘蓝型油菜发芽期的耐盐性筛选. 中国油料作物学报, 2013,35:271-275.
Long W H, Pu H M, Zhang J F, Qi C K, Zhang X K. Screening of Brassica napus for salinity tolerance at germination stage. Chin J Oil Crop Sci, 2013,35:271-275 (in Chinese with English abstract).
[24] Nasu S, Kitashiba H, Nishio T. ‘Na-no-hana Project’ for recovery from the tsunami disaster by producing salinity-tolerant oilseed rape lines: Selection of salinity-tolerant lines ofBrassica crops. J Integr Field Sci, 2012,9:33-37.
[25] Munns R, James R A. Screening methods for salinity tolerance: a case study with tetraploid wheat. Plant Soil, 2003,253:201-218.
[26] Wang S C, Bastern J, Zeng Z B. Windows QTL Cartographer 2.5. Department of Statistics. Raleigh, NC: North Carolina State University, 2012 [2012-03-08]. http://statgen.ncsu.edu/qtlcart/WQTL Cart.htm.
[27] Churchill G A, Doerge R W. Empirical threshold values for quantitative trait mapping. Genetics, 1994,138:963-971.
[28] McCouch S R, Cho Y G, Yano M, Paul E, Blinstrub M, Morishima H, Kinoshita T. Report on QTL nomenclature. Rice Genet Newsl, 1997,14:11-13.
[29] Anthony A. Molecular biology of salt tolerance in the context of whole-plant physiology. J Exp Bot, 1998,49:915-929.
[30] Flowers T J, Yeo A R. Breeding for salinity resistance in crop plants: where next? Aust J Plant Physiol, 1995,22:875-884.
[31] 陈新军, 胡茂龙, 戚存扣, 浦惠明, 张洁夫, 高建芹, 傅寿仲. 不同甘蓝型油菜品种种子萌发耐盐能力研究. 江苏农业科学, 2007,35(4):26-28.
Chen X J, Hu M L, Qi C K, Pu H M, Zhang J F, Gao J Q, Fu S Z. Comparative study on seed germination ratio of different Brassica napus L varieties under salt stress. Jiangsu Agric Sci, 2007,35(4):26-28 (in Chinese with English abstract).
[32] Altschul S F, Madden T L, Schaffer A A, Zhang J, Zhang Z, Miller W, Lipman D J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res, 1997,25:3389-3402.
pmid: 9254694
[33] Chalhoub B, Denoeud F, Liu S, Parkin I A, Tang H, Wang X, Chiquet J, Belcram H, Tong C, Samans B, Corréa M, Da Silva C, Just J, Falentin C, Koh C S, Le Clainche I, Bernard M, Bento P, Noel B, Labadie K, Alberti A, Charles M, Arnaud D, Guo H, Daviaud C, Alamery S, Jabbari K, Zhao M, Edger P P, Chelaifa H, Tack D, Lassalle G, Mestiri I, Schnel N, Le Paslier MC, Fan G, Renault V, Bayer P E, Golicz A A, Manoli S, Lee T H, Thi V H, Chalabi S, Hu Q, Fan C, Tollenaere R, Lu Y, Battail C, Shen J, Sidebottom C H, Wang X, Canaguier A, Chauveau A, Bérard A, Deniot G, Guan M, Liu Z, Sun F, Lim Y P, Lyons E, Town C D, Bancroft I, Wang X, Meng J, Ma J, Pires J C, King G J, Brunel D, Delourme R, Renard M, Aury J M, Adams K L, Batley J, Snowdon R J, Tost J, Edwards D, Zhou Y, Hua W, Sharpe A G, Paterson A H, Guan C, Wincker P. Early allopolyploid evolution in the post-NeolithicBrassica napus oilseed genome. Science, 2014,345:950-953.
pmid: 25146293
[34] 孙玉燕, 刘磊, 郑峥, 张春芝, 周龙溪, 宗园园, 李涛, 李君明. 番茄耐旱和耐盐遗传改良的研究进展及展望. 园艺学报, 2012,39:2061-2074.
Sun Y Y, Liu L, Zheng Z, Zhang C Z, Zhou L X, Zong Y Y, Li T, Li J M. A review and perspectives on genetic improvement of salt and drought tolerance in tomato. Acta Hortic Sin, 2012,39:2061-2074 (in Chinese with English abstract).
[35] Verslues P E, Agarwal M, Katiyar-Agarwal S, Zhu J H, Zhu J K. Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J, 2006,45:523-539.
doi: 10.1111/j.1365-313X.2005.02593.x pmid: 16441347
[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[3] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
[4] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[5] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[6] 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769.
[7] 胡亮亮, 王素华, 王丽侠, 程须珍, 陈红霖. 绿豆种质资源苗期耐盐性鉴定及耐盐种质筛选[J]. 作物学报, 2022, 48(2): 367-379.
[8] 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510.
[9] 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798.
[10] 王吴彬, 童飞, KHAN Mueen Alam, 张雅轩, 贺建波, 郝晓帅, 邢光南, 赵团结, 盖钧镒. 大豆根部水压胁迫耐逆指数遗传体系解析[J]. 作物学报, 2021, 47(5): 847-859.
[11] 唐鑫, 李圆圆, 陆俊杏, 张涛. 甘蓝型油菜温敏细胞核雄性不育系160S花药败育的形态学特征和细胞学研究[J]. 作物学报, 2021, 47(5): 983-990.
[12] 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598.
[13] 李书宇, 黄杨, 熊洁, 丁戈, 陈伦林, 宋来强. 甘蓝型油菜早熟性状QTL定位及候选基因筛选[J]. 作物学报, 2021, 47(4): 626-637.
[14] 张春, 赵小珍, 庞承珂, 彭门路, 王晓东, 陈锋, 张维, 陈松, 彭琦, 易斌, 孙程明, 张洁夫, 傅廷栋. 甘蓝型油菜千粒重全基因组关联分析[J]. 作物学报, 2021, 47(4): 650-659.
[15] 唐婧泉, 王南, 高界, 刘婷婷, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. 甘蓝型油菜SnRK基因家族生物信息学分析及其与种子含油量的关系[J]. 作物学报, 2021, 47(3): 416-426.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!