欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (4): 752-760.doi: 10.3724/SP.J.1006.2021.04129

• 耕作栽培·生理生化 • 上一篇    下一篇

外源喷施植物生长调节剂对套作大豆碳氮代谢和花荚脱落的影响

罗凯1(), 谢琛1, 汪锦1, 王甜1, 何舜2, 雍太文1,*(), 杨文钰1   

  1. 1四川农业大学农学院 / 农业农村部西南作物生理生态与耕作重点实验室 / 四川省作物带状复合种植工程技术研究中心, 四川温江 611130
    2成都市种子管理站/成都市农产品质量安全中心, 四川青羊 610072
  • 收稿日期:2020-06-16 接受日期:2020-10-14 出版日期:2021-04-12 网络出版日期:2020-11-06
  • 通讯作者: 雍太文
  • 作者简介:E-mail: 592234005@qq.com
  • 基金资助:
    国家重点研发计划项目(2018YFD0201006);国家现代农业(大豆)产业技术体系建设专项(CARS-04-03A)

Effect of exogenous plant growth regulators on carbon-nitrogen metabolism and flower-pod abscission of relay strip intercropping soybean

LUO Kai1(), XIE Chen1, WANG Jin1, WANG Tian1, HE Shun2, YONG Tai-Wen1,*(), YANG Wen-Yu1   

  1. 1College of Agriculture, Sichuan Agriculture University / Key Laboratory of Crop Physiology, Ecology and Cultivation in Southwest China, Ministry of Agriculture and Rural Affairs / Sichuan Engineering Research Center for Crop Strip Intercropping System, Wenjiang 611130, Sichuan, China
    2Chengdu Seed Management Station / Chengdu Agricultural Product Quality and Safety Center, Qingyang 610072, Sichuan, China
  • Received:2020-06-16 Accepted:2020-10-14 Published:2021-04-12 Published online:2020-11-06
  • Contact: YONG Tai-Wen
  • Supported by:
    National Key Research and Development Program of China(2018YFD0201006);China Agriculture Research System (Soybean)(CARS-04-03A)

摘要:

玉米-大豆带状套作模式下, 玉米荫蔽会抑制大豆苗期生长、减少花荚数、降低产量, 探究外源植物生长调节剂对大豆开花结荚和产量的调控效应对套作大豆生产具有重要意义。采用单因素随机区组设计研究套作大豆初花期叶面喷施6-苄基腺嘌呤(6-Benzylaminopurine, 6-BA)、2-N,N-二乙氨基乙基己酸酯(diethyl aminoethyl hexanoate, DTA-6)、烯效唑(S3307)对花荚脱落、叶片碳氮代谢及产量形成的影响。结果表明, 外源调节剂会增强盛荚期和鼓粒期叶片蔗糖合成酶(sucrose synthetase, SS)、蔗糖磷酸合成酶(sucrose phosphate synthase, SPS)及转化酶(invertase, Inv)的酶活性; 提高始粒期茎、叶、荚果的可溶性糖含量, 促进后期茎、叶中可溶性糖向荚果的转移。外源调节剂会增加始荚期叶片碳、氮含量, 降低叶片C/N比值; 增加始粒期叶片碳含量, 减少氮含量, 提高叶片C/N比值。外源调节剂会增加大豆开花结荚数, 降低落荚数、落荚率及花荚脱落率, 以DTA-6效果较好, 其处理下2年大豆单株有效荚数和产量显著高于CK, 较CK分别增加25.4%、41.3%和32.9%、37.6%。套作大豆初花期叶面喷施6-BA、DTA-6、S3307提高叶片SPS、SS和Inv酶活性, 协调大豆各器官碳氮代谢动态平衡, 促进大豆开花结荚、减少大豆落荚, 显著提高大豆的单株有效荚数与产量, 其中DTA-6的增产效果最好。

关键词: 玉米-大豆带状套作, 花荚脱落, 植物生长调节剂, 碳氮代谢, 产量

Abstract:

Maize shading inhibited the growth of soybean at the seedling stage, reduced the number of soybean flowers and pods, and decreased the yield of soybean under maize-soybean relay strip intercropping system. To explore the effect of exogenous plant growth regulators (PGRs) on flowering, pod setting, and yield of soybean is important for relay strip intercropping soybean production. Field experiments were used one-factor randomized block design to investigate the effect of foliage spraying 6-Benzylaminopurine (6-BA), diethyl aminoethyl hexanoate (DTA-6) and uniconazole (S3307) at the beginning of flowering stage on abscission of flowers and pods, leaf carbon and nitrogen metabolism, and yield formation in relay strip intercropping soybean. The results demonstrated that spraying PRGs improved the sucrose synthetase (SS), sucrose phosphate synthetase (SPS) and invertase (Inv) activities in soybean leaves. Exogenous PGRs increased soluble sugar content in stems, leaves, and pods of soybean at the beginning of grain-filling stage, promoted soluble sugar transport from stem and leaves to pods. Exogenous PGRs increased carbon and nitrogen content and decreased the C:N ratio in soybean leaves at the beginning of podding stage. PGRs increased the carbon content, decreased nitrogen content, and increased the C:N ratio in soybean leaves at beginning of grain-filling stage. Foliar spraying PGRs increased the number of flowers and pods, reduced the abscission pod number, and decreased the ratio of pods abscission and flowers-pods abscission, the effect of DTA-6 treatments was better than others. The pods per plant and yield of soybean in 2018 and 2019 under DTA-6 treatment were increased by 25.4%, 41.3% and 32.9%, 37.6% as compared with CK, respectively. Foliar spraying PGRs increased the activities of SPS, SS, and Inv enzymes in soybean leaves, coordinated the carbon-nitrogen metabolism in soybean organs, promoted the soybean flowering and pod-setting, decreased the abscission of pods, increased the pods per plant and yield of relay strip intercropping soybean, the production increasing effect of DTA-6 were better than others.

Key words: maize-soybean relay strip intercropping, flowers and pods abscission, plant growth regulators, carbon and nitrogen metabolism, yield

表1

外源喷施植物生长调节剂对套作大豆可溶性糖含量的影响"

处理
Treatment
R1 R5 R8
茎秆Stem 叶Leaf 茎秆Stem 叶Leaf 荚果Pod 茎秆Stem 叶Leaf 荚果Pod
CK 12.72±1.17 a 11.32±1.23 a 13.23±0.13 b 11.56±0.74 b 8.56±0.92 a 8.33±0.92 a 9.82±0.67 a 20.76±1.84 b
6-BA 12.73±1.15 a 12.03±0.98 a 17.04±0.21 a 13.56±0.69 a 8.84±1.09 a 6.14±0.73 b 7.84±0.33 b 24.23±1.68 a
S3307 12.84±1.42 a 12.04±1.77 a 16.03±0.10 a 13.78±1.48 a 9.56±1.47 a 6.32±1.44 b 8.13±0.51 b 24.79±1.72 a
DTA-6 11.93±1.34 a 11.34±1.03 a 16.64±0.11 a 13.33±0.22 a 9.53±1.73 a 5.89±1.09 b 8.22±0.29 b 24.86±1.23 a

图1

外源喷施植物生长调节剂对套作大豆叶片蔗糖合成酶(SS)、蔗糖磷酸合成酶(SPS)、转化酶(Inv)的影响 不同小写字母表示处理在0.05水平下差异显著。R2: 盛花期; R4: 盛荚期; R6: 鼓粒期。处理同表1。"

表2

外源喷施植物生长调节剂对套作大豆茎、叶、荚皮和籽粒的碳素含量的影响"

处理
Treatment
R3 R5
茎秆
Stem

Leaf
荚皮
Pod husks
茎秆
Stem

Leaf
荚皮
Pod husks
籽粒
Grain
CK 422.22±2.67 b 442.86±6.73 a 416.86±6.91 b 457.93±3.11 a 458.71±1.33 b 440.56±6.93 a 506.22±1.44 b
6-BA 427.67±4.78 b 444.24±5.59 a 417.56±5.12 b 446.59±8.03 a 461.89±6.04 a 441.22±1.12 a 507.74±0.53 b
S3307 437.87±2.33 a 448.18±6.72 a 431.33±4.28 a 453.73±6.36 a 463.03±2.44 a 442.71±2.37 a 510.90±2.64 a
DTA-6 428.94±6.64 b 445.80±2.44 a 421.04±4.13 ab 451.74±8.86 a 464.53±3.24 a 443.42±1.76 a 509.71±4.62 ab

表3

外源喷施植物生长调节剂对大豆茎、叶、荚皮和籽粒的氮素含量的影响"

处理
Treatment
R3 R5
茎秆
Stem

Leaf
荚皮
Pod husks
茎秆
Stem

Leaf
荚皮
Pod husks
籽粒
Grain
CK 20.69±0.23 a 49.87±2.03 b 45.71±0.12 a 13.38±0.02 b 42.16±2.03 a 25.83±1.68 b 77.05±2.11 b
6-BA 20.60±1.04 a 53.78±1.19 a 44.22±0.88 a 18.04±0.16 a 37.37±6.84 ab 32.66±3.03 a 77.64±2.13 ab
S3307 19.79±1.22 a 52.54±2.36 ab 44.51±1.57 a 13.73±0.15 b 32.38±3.03 b 33.06±3.43 a 79.58±4.76 ab
DTA-6 19.89±2.23 a 53.84±0.67 a 43.94±1.83 a 16.70±0.19 a 40.36±5.44 ab 31.72±1.58 a 81.68±1.26 a

表4

外源喷施植物生长调节剂对大豆茎、叶和荚果的C/N的影响"

处理
Treatment
R3 R5
茎秆
Stem

Leaf
荚皮
Pod husks
茎秆
Stem

Leaf
荚皮
Pod husks
籽粒
Grain
CK 20.40±0.11 b 8.88±0.38 a 9.12±0.15 a 34.23±0.22 a 10.88±0.48 b 17.06±0.84 a 6.57±0.17 a
6-BA 20.76±0.86 b 8.26±0.23 b 9.44±0.11 a 24.76±2.08 b 12.36±2.36 ab 13.51±1.28 b 6.54±0.18 a
S3307 22.12±0.47 a 8.53±0.11 ab 9.69±0.28 a 33.05±3.99 a 14.30±1.39 a 13.39±1.45 b 6.42±0.35 a
DTA-6 21.57±0.43 a b 8.28±0.38 b 9.58±0.19 a 27.05±3.08 b 11.51±1.57 ab 13.98±0.77 b 6.24±0.21 a

表5

外源喷施植物生长调节剂对套作大豆花荚脱落数及脱落率的影响"

年份
Year
处理
Treatment
开花数
Number of
flowers
结荚数
Number of pods
落花数
Number of abscission flowers
落荚数
Number of
abscission pods
落花率
Flower
abscission rate (%)
落荚率
Pod abscission rate (%)
花荚脱落率
Flower and pod abscission rate (%)
2018 CK 137.93±5.020 b 75.60±5.03 b 62.33±4.74 a 30.33±4.16 a 45.19±1.79 a 40.12±3.68 a 67.18±2.73 a
6-BA 147.82±5.00 ab 83.82±6.00 ab 64.00±3.00 a 33.00±6.00 a 43.29±1.69 a 39.37±1.48 a 65.62±1.37 ab
S3307 149.97±6.69 a 82.64±6.07 ab 67.33±3.79 a 28.33±4.51 a 44.90±2.63 a 34.28±1.99 b 63.79±1.72 b
DTA-6 152.28±5.79 a 86.95±7.77 a 65.33±1.81 a 29.67±2.08 a 42.90±1.27 a 34.12±1.83 b 62.39±1.90 b
2019 CK 161.36±3.85 b 83.40±2.61 b 77.96±0.64 a 36.55±3.48 a 48.31±1.88 a 43.82±2.58 a 70.97±1.88 a
6-BA 166.00±5.42 ab 89.85±3.27 a 76.15±2.21 a 36.64±1.31 a 45.87±2.22 a 40.77±0.59 a 67.95±1.62 ab
S3307 162.76±4.45 ab 85.32±4.24 ab 77.44±0.39 a 29.02±4.06 b 47.58±1.96 a 34.01±2.85 b 65.41±1.76 bc
DTA-6 169.69±2.85 a 90.17±3.39 a 79.52±2.95 a 27.91±4.56 b 46.86±1.59 a 30.95±2.75 b 63.31±1.45 c
FF-value
年份 Years (Y) 125.07** 8.85* 50.96* 1.26 8.72* 0.01 3.40
调节剂Regulators (R) 10.48* 4.91 0.22 2.11 1.16 1.81 4.53
年份×调节剂 Y×R 1.38 0.32 0.37 0.51 0.78 0.11 0.41

表6

外源喷施植物生长调节剂对大豆产量与产量构成的影响"

年份
Year
处理
Treatment
单株有效荚数
Pods number per plant
单株粒数
Grains number per plant
百粒重
100-grain weight (g)
产量
Yield (kg hm-2)
2018 CK 45.27±1.98 c 76.25±3.76 c 24.78±0.19 b 1752.25±86.36 c
6-BA 50.82±2.31 b 87.52±2.41 b 25.42±0.16 a 2117.40±99.12 b
S3307 54.31±2.19 ab 89.13±3.32 b 25.66±0.11 a 2093.64±68.45 b
DTA-6 56.77±2.31 a 103.37±4.45 a 25.54±0.23 a 2475.65±89.56 a
2019 CK 46.85±2.62 c 78.89±4.50 c 25.25±0.10 b 1886.82±108.03 c
6-BA 53.21±3.07 b 90.72±5.69 b 25.52±0.11 a 2231.02±99.53 b
S3307 56.30±2.99 ab 93.48±4.36 b 25.78±0.12 a 2281.38±93.31 b
DTA-6 62.26±3.12 a 105.05±7.14 a 25.56±0.12 a 2597.13±106.94 a
FF-value
年份 Years (Y) 16.33** 3.95 1.64 13.38*
调节剂 Regulators (R) 39.73** 71.12** 7.24* 61.45**
年份×调节剂 Y×R 2.53 0.12 0.52 0.18
[1] Chen P, Song C, Liu X M, Zhou L, Yang H, Zhang X N, Zhou Y, Du Q, Pang T, Fu Z D, Wang X C, Liu W G, Yang F, Shu K, Du J B, Liu J, Yang W Y, Yong T W. Yield advantage and nitrogen fate in an additive maize-soybean relay intercropping system. Sci Total Environ, 2019,657:987-999.
doi: 10.1016/j.scitotenv.2018.11.376 pmid: 30677964
[2] 蒋利, 雍太文, 张群, 肖静, 杨欢, 杨文钰. 种植模式和施氮水平对大豆花荚脱落及产量的影响. 大豆科学, 2015,34:843-849.
Jiang L, Yong T W, Zhang Q, Xiao J, Yang H, Yang W Y. Effect of different planting patterns and N application rates on abscission of flower and pod of soybean and yield. Soybean Sci, 2015,34:43-849 (in Chinese with English abstract).
[3] Liu B, Qu D N. Effects of shading on spatial distribution of flower and flower abscission in field-grown three soybeans in Northern China. Emirates J Food Agric, 2015,27:629-635.
[4] 崔洪秋, 冯乃杰, 孙福东, 刘涛, 李建英, 杜吉到, 韩毅强, 郑殿峰. DTA-6对大豆花荚脱落纤维素酶和GmAC基因表达的调控. 作物学报, 2016,42:51-57.
doi: 10.3724/SP.J.1006.2016.00051
Cui H Q, Feng N J, Sun F D, Liu T, Li J Y, Du J D, Han Y Q, Zheng D F. Regulation of DTA-6 by abscission cellulase and GmAC gene expression in flowers and pods of soybean. Acta Agron Sin, 2016,42:51-57 (in Chinese with English abstract).
[5] Duarte L, Clemente J, Caixeta I, Senoski M, Aquino L. Dry matter and nutrient accumulation curve in cabbage crop. Revista Caatinga, 2019,32:679-689.
doi: 10.1590/1983-21252019v32n312rc
[6] Zhang J H, He N P, Liu C G, Xu L, Chen Z, Li Y, Wang R M, Yu G R, Sun W, Xiao C W, Reich P. Variation and evolution of C:N ratio among different organs enable plants to adapt to N-limited environments. Global Change Biol, 2020,26:2534-2543.
doi: 10.1111/gcb.v26.4
[7] 胡志辉, 汪艳杰, 陈禅友. 喷施细胞分裂素对豇豆花荚脱落率及花荚酶活性的影响. 植物科学学报, 2016,34:439-445.
doi: 10.11913/PSJ.2095-0837.2016.30439
Hu Z H, Wang Y J, Chen C Y. Effects of spraying cytokinin on abscission rate and enzymic activity of flowers and pods of cowpea. Plant Sci J, 2016,34:439-445 (in Chinese with English abstract).
[8] 万燕, 闫艳红, 杨文钰. 不同氮肥水平下叶面喷施烯效唑对套作大豆生长和氮代谢的影响. 浙江大学学报(农业与生命科学版), 2012,38:185-196.
Wan Y, Yan Y H, Yang W Y. Effects of foliar spraying uniconazole on growth and nitrogen metabolism of relay strip intercropping soybean under different nitrogen levels. J Zhejiang Univ (Agric Life Sci), 2012,38:185-196 (in Chinese with English abstract).
[9] 郑殿峰, 宋春艳. 植物生长调节剂对大豆氮代谢相关生理指标以及产量和品质的影响. 大豆科学, 2011,30:109-112.
Zheng D F, Song C Y. Effects of plant growth regulators on nitrogen metabolism related indicators and yield in soybean. Soybean Sci, 2011,30:109-112 (in Chinese with English abstract).
[10] Zhang M C, Duan L S, Tian X L, He Z P, Li J M, Wang B M, Li Z H. Uniconazole-induced tolerance of soybean to water deficit stress in relation to changes in photosynthesis, hormones and antioxidant system. J Plant Physiol, 2007,164:709-717.
doi: 10.1016/j.jplph.2006.04.008 pmid: 16769153
[11] Wen D X, Li Y, He L F, Zhang C Q. Transcriptome analysis reveals the mechanism by which spraying diethyl aminoethyl hexanoate after anthesis regulates wheat grain filling. BMC Plant Biol, 2019,19:327.
doi: 10.1186/s12870-019-1925-5 pmid: 31324148
[12] Kim J H, Shon J Y, Lee C K, Yang W, Yoon Y W, Yang W H, Kim Y G, Lee B W. Relationship between grain filling duration and leaf senescence of temperate rice under high temperature. Field Crops Res, 2011,122:207-213.
doi: 10.1016/j.fcr.2011.03.014
[13] 闫艳红, 万燕, 杨文钰, 王小春, 雍太文, 刘卫国, 张新全. 叶面喷施烯效唑对套作大豆花后碳氮代谢及产量的影响. 大豆科学, 2015,34:75-81.
Yan Y H, Wan Y, Yang W Y, Wang X C, Yong T W, Liu W G, Zhang X Q. Effect of spraying uniconazole on carbon and nitrogen metabolism and yield of relay strip intercropping soybean. Soybean Sci, 2015,34:75-81 (in Chinese with English abstract).
[14] Zhou W G, Chen F, Zhao S H, Yang C Q, Meng Y J, Shuai H W, Luo X F, Dai Y J, Yin H, Du J B, Liu J, Fan G Q, Liu W G, Yang W Y, Shu K. DA-6 promotes germination and seedling establishment from aged soybean seeds by mediating fatty acid metabolism and glycometabolism. J Exp Bot, 2018,70:101-114.
doi: 10.1093/jxb/ery247 pmid: 29982626
[15] Liu C J, Feng N J, Zheng D F, Cui H Q, Sun F D, Gong X W. Uniconazole and diethyl aminoethyl hexanoate increase soybean pod setting and yield by regulating sucrose and starch content. J Sci Food Agric, 2019,99:748-758.
doi: 10.1002/jsfa.9243 pmid: 29999535
[16] Roitsch T, Ehneß R. Regulation of source/sink relations by cytokinins. Plant Growth Regul, 2000,32:359-367.
doi: 10.1023/A:1010781500705
[17] Choi J, Hwang I. Cytokinin: perception, signal transduction, and role in plant growth and development. J Plant Biol, 2007,50:98-108.
doi: 10.1007/BF03030617
[18] Du J B, Han T F, Gai J Y, Yong T W, Sun X, Wang X C, Yang F, Liu J, Shu K, Liu W G, Yang W Y. Maize-soybean strip intercropping: achieved a balance between high productivity and sustainability. J Integr Agric, 2018,17:747-754.
doi: 10.1016/S2095-3119(17)61789-1
[19] Yang W T, Miao J Q, Wang X W, Xu J C, Lu M J, Li Z X. Corn-soybean intercropping and nitrogen rates affected crop nitrogen and carbon uptake and C:N ratio in upland red soil. J Plant Nutr, 2018,41:1890-1902.
doi: 10.1080/01904167.2018.1476540
[20] Yang F, Huang S, Gao R C, Liu W G, Yong T W, Wang X C, Wu X L, Yang W Y. Growth of soybean seedlings in relay strip intercropping systems in relation to light quantity and red: far-red ratio. Field Crops Res, 2014,155:245-253.
doi: 10.1016/j.fcr.2013.08.011
[21] Liu X, Rahman T, Song C, Su B Y, Yang F, Yong T W, Wu Y S, Zhang C Y, Yang W Y. Changes in light environment, morphology, growth and yield of soybean in maize-soybean intercropping systems. Field Crops Res, 2017,200:38-46.
doi: 10.1016/j.fcr.2016.10.003
[22] Chen P, Du Q, Liu X M, Zhou L, Hussain S, Lei L, Song C, Wang X C, Liu W G, Yang F, Shu K, Liu J, Du J B, Yang W Y, Yong T W. Effects of reduced nitrogen inputs on crop yield and nitrogen use efficiency in a long-term maize-soybean relay strip intercropping system. PLoS One, 2017,12:e0184503.
doi: 10.1371/journal.pone.0184503 pmid: 28910355
[23] 徐光域, 颜军, 郭晓强, 刘嵬, 李晓光, 苟小军. 硫酸-苯酚定糖法的改进与初步应用. 食品科学, 2005,26(8):342-346.
Xu G Y, Yan J, Guo X Q, Liu W, Li X G, Gou X J. The betterment and apply of phenol-sulphate acid method. Food Sci, 2005,26(8):342-346 (in Chinese with English abstract).
[24] 邓小燕, 王小春, 杨文钰, 张群. “麦/玉/豆”模式下氮肥运筹对玉米碳氮代谢的影响. 草业学报, 2012,21(4):52-61.
doi: 10.11686/cyxb20120407
Deng X Y, Wang X C, Yang W Y, Zhang Q. Effects of nitrogen strategies on carbon and nitrogen metabolism of maize in wheat/maize/soybean relay intercropping system. Acta Pratac Sin, 2012,21(4):52-61 (in Chinese with English abstract).
[25] Chopra J, Kaur N, Gupta A K. Ontogenic changes in enzymes of carbon metabolism in relation to carbohydrate status in developing mungbean reproductive structures. Phytochemistry, 2000,53:539-548.
doi: 10.1016/s0031-9422(99)00545-2 pmid: 10724178
[26] Dyer D J, Carlson D R, Cotterman C D, Sikorski J A, Ditson S L. Soybean pod set enhancement with synthetic cytokinin analogs. Plant Physiol, 1987,84:240-243.
doi: 10.1104/pp.84.2.240 pmid: 16665423
[27] Cui L, Yang W Y, Huang N, Liu J, Wang Y L, Wang X H, Liu Y, Yan S. Effects of maize plant types on dry matter accumulation characteristics and yield of soybean in maize-soybean intercropping systems. Chin J Appl Ecol, 2015,26:2414-2420.
[28] Yan Y H, Wan Y, Liu W G, Wang X C, Yong T W, Yang W Y, Zhao L L. Influence of seed treatment with uniconazole powder on soybean growth, photosynthesis, dry matter accumulation after flowering and yield in relay strip intercropping system. Plant Prod Sci, 2015,18:295-301.
doi: 10.1626/pps.18.295
[29] 冯乃杰, 宋莉萍, 刘金辉, 郑殿峰. 不同时期PGRS对大豆花荚脱落率及纤维素酶活性的影响. 中国油料作物学报, 2011,33:253-258.
Feng N J, Song L P, Liu J H, Zheng D F. Regulation of plant growth regulators on abscission rate and cellulase activity of soybean flowers and pods. Chin J Oil Crop Sci, 2011,33:253-258 (in Chinese with English abstract).
[30] 刘海坤, 刘小宁, 黄玉芳, 叶优良. 不同氮水平下小麦植株的碳氮代谢及碳代谢与赤霉病的关系. 中国生态农业学报, 2014,22:782-789.
Liu H K, Liu X N, Huang Y F, Ye Y L. Effect of nitrogen application on carbon and nitrogen metabolisms and relationship between carbon metabolism and wheat scab. Chin J Eco-Agric, 2014,22:782-789 (in Chinese with English abstract).
[31] Liu C G, Wang Y J, Pan K W, Zhu T T, Li W, Zhang L. Carbon and nitrogen metabolism in leaves and roots of Dwarf Bamboo ( Fargesia denudata Yi) subjected to drought for two consecutive years during sprouting period. J Plant Growth Regul, 2014,33:243-255.
doi: 10.1007/s00344-013-9367-z
[32] 赵黎明, 冯乃杰, 郑殿峰. 植物生长调节剂对大豆荚皮同化物代谢及糖分积累的影响. 植物科学学报, 2008,26:407-411.
Zhao L M, Feng N J, Zheng D F. Effects of plant growth regulators on assimilation metabolism and sugar accumulation in pod husks of soybean. Plant Sci J, 2008,26:407-411 (in Chinese with English abstract).
[33] 宋春艳, 冯乃杰, 郑殿峰. 植物生长调节剂对大豆叶片碳代谢相关生理指标及产量品质的影响. 干旱地区农业研究, 2011,29(3):91-95.
Sun C Y, Feng N J, Zheng D F. Effects of plant growth regulators on carbon metabolism related indicators in soybean leaves. Agric Res Arid Areas, 2011,29(3):91-95 (in Chinese with English abstract).
[34] Truong Q, Koch K, Yoon Jo M, Everard J D, Shanks J V. Influence of carbon to nitrogen ratios on soybean somatic embryo (cv. Jack) growth and composition. J Exp Bot, 2013,64:2985-2995.
doi: 10.1093/jxb/ert138 pmid: 23740932
[35] 蒋利. 净套作条件下不同施N量对大豆植株形态、花荚脱落和产量的影响. 四川农业大学硕士学位论文, 四川雅安, 2015.
Jiang L. The Effects of N Application on Plant Morphology, Flower, and Pod Abscission and Yield of Soybean in Monoculture and the Strip Intercropping System. MS Thesis of Sichuan Agriculture University, Ya’an, Sichuan, China, 2015 (in Chinese with English abstract).
[36] 刘春娟, 冯乃杰, 郑殿峰, 宫香伟, 孙福东, 石英, 崔洪秋, 张盼盼, 赵晶晶. 植物生长调节剂S3307和DTA-6对大豆源库碳水化合物代谢及产量的影响. 中国农业科学, 2016,49:657-666.
doi: 10.3864/j.issn.0578-1752.2016.04.005
Liu C J, Feng N J, Zheng D F, Gong X W, Sun F D, Shi Y, Cui H Q, Zhang P P, Zhao J J. Effects of plant growth regulators S3307 and DTA-6 on carbohydrate content and yield in soybean. Sci Agric Sin, 2016,49:657-666 (in Chinese with English abstract).
[37] 刘春娟, 冯乃杰, 郑殿峰, 孙福东, 刘涛, 崔洪秋, 赵晶晶. S3307和DTA-6对大豆叶片生理活性及产量的影响. 植物营养与肥料学报, 2016,22:626-633.
Liu C J, Feng N J, Zheng D F, Sun F D, Liu T, Cui H Q, Zhao J J. Effects of plant growth regulators S3307 and DTA-6 on the leaf physiological activity and yield of soybean. J Plant Nutr Fert, 2016,22:626-633 (in Chinese with English abstract).
[1] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[2] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[3] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[7] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[8] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[9] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[10] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[11] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[12] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[13] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[14] 袁嘉琦, 刘艳阳, 许轲, 李国辉, 陈天晔, 周虎毅, 郭保卫, 霍中洋, 戴其根, 张洪程. 氮密处理提高迟播栽粳稻资源利用和产量[J]. 作物学报, 2022, 48(3): 667-681.
[15] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!