欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (9): 1690-1702.doi: 10.3724/SP.J.1006.2021.04137

• 研究论文 • 上一篇    下一篇

涝害对不同大豆品种根际微生物群落结构特征的影响

禹桃兵(), 石琪晗, 年海*(), 连腾祥*()   

  1. 华南农业大学农学院 / 国家大豆改良中心广东分中心, 广东广州 510642
  • 收稿日期:2020-06-23 接受日期:2020-09-13 出版日期:2021-09-12 网络出版日期:2020-09-22
  • 通讯作者: 年海,连腾祥
  • 作者简介:E-mail: 277885643@qq.com
  • 基金资助:
    国家重点研发计划项目“大田经济作物优质丰产的生理基础与调控”(2018YFD1000900)

Effects of waterlogging on rhizosphere microorganisms communities of different soybean varieties

YU Tao-Bing(), SHI Qi-Han, NIAN-Hai *(), LIAN Teng-Xiang*()   

  1. College of Agriculture, South China Agricultural University / Guangdong Subcenter of National Soybean Improvement Center, Guangzhou 510642, Guangdong, China
  • Received:2020-06-23 Accepted:2020-09-13 Published:2021-09-12 Published online:2020-09-22
  • Contact: NIAN-Hai ,LIAN Teng-Xiang
  • Supported by:
    National Key Research and Development Program of China “Physiological Basis and Agronomic Management for High-quality and High-yield of Field Cash Crops”(2018YFD1000900)

摘要:

淹水影响不同大豆品种根际微生物群落组成, 不同基因型大豆植株耐涝性差异较大。本研究选取耐涝(waterlogging-tolerant, W-T)基因型大豆齐黄34和涝害敏感(waterlogging-sensitive, W-S)基因型大豆冀豆17为材料, 采用荧光定量PCR、Illumina MiSeq高通量测序技术, 分析了不同淹水时间下2个基因型根际细菌多样性、群落组成和网络特征。结果表明, 耐涝基因型大豆的生物量和细菌丰度明显高于涝害敏感基因型大豆。主坐标分析(PCoA)表明, 耐涝基因型与敏感基因型大豆微生物群落组成的差异随淹水时间的增加而变化(P< 0.05)。在淹水条件下, 耐涝基因型大豆富集了Yonghaparkia属和Unclassified-WD2101属以及OTU274 (Clostridium)和OTU2334 (Desulfosporosinus)等物种, 这些细菌的富集可能与耐涝性有关, 本研究提供了大豆根际微生物抗涝潜力的证据。

关键词: 大豆, 耐涝, 根际微生物, 16S rRNA, 网络分析

Abstract:

Waterlogging affects the composition of rhizosphere microbial community of different soybean varieties. The tolerance of soybean plant with different genotypes to waterlogging is quite different. In this study, waterlogging tolerant soybean genotype (Qihuang 34) and waterlogging sensitive soybean genotype (Jidou 17) were selected. The bacterial diversity, community composition, and network characteristics in the rhizosphere of the two genotypes under different waterlogging time were analyzed via fluorescence quantitative qPCR and Illumina Miseq high-throughput sequencing. The results showed that the biomass of waterlogging tolerant genotype and bacterial abundance in its rhizosphere were significantly higher than those for waterlogging sensitive genotype. The PCoA analysis showed that the difference in microbial community composition between waterlogging tolerant and sensitive soybean genotypes changed with waterlogging time (P < 0.05). Under the condition of waterlogging, Yonghaparkia and Unclassified-WD2101, OTU274 (Clostridium) and OTU2334 (Desulfosporosinus) enriched in the rhizosphere of the waterlogging tolerant genotype. The enrichment of these bacteria might be related to waterlogging tolerance. This study provides evidence of the microbial potential in the rhizosphere of soybean against waterlogging.

Key words: soybean, waterlogging tolerance, rhizosphere microorganism, 16S rRNA, network analysis

图1

不同淹水时长对耐涝和涝害敏感基因型大豆Chao 1丰度(a)、Shannon多样性(b)、生物量(c)和细菌丰度(d)的影响 不同字母表示相同处理下2个品种间差异显著(P< 0.05)。W-TCK; 耐涝品种淹水0 d; W-SCK: 涝害敏感品种淹水0 d; W-T1D: 耐涝品种淹水1 d; W-S1D: 涝害敏感品种淹水1 d; W-T5D: 耐涝品种淹水5 d; W-S5D: 涝害敏感品种淹水5 d。 "

图2

不同淹水时长处理下的门相对丰度 处理同图1。 "

图3

淹水时长0 d (a)、1 d (b)、5 d (c)下W-T和W-S基因型大豆根际细菌属的相对丰度 误差条表示6个重复样本的标准差。采用Benjamini-Hochberg法校正P值(P < 0.05)。处理同 图1。 "

图4

与无淹水对照相比, 不同淹水时长及大豆基因型富集和降低的OTU a: 耐涝品种淹水1 d和不淹水的对比分析; b: 耐涝品种淹水5 d和不淹水的对比分析; c: 涝害敏感品种淹水1 d和不淹水的对比分析; d: 涝害敏感品种淹水5 d和不淹水的对比分析; e: 不同淹水处理下根际土壤细菌在OTU水平的Venn分析。处理同图1。 "

图5

耐涝基因型大豆相关的OTU相对丰度 W-T: 耐涝基因型大豆; W-S: 涝害敏感基因型大豆。不同字母表示相同处理下2个品种间差异显著(P< 0.05)。处理同图1。 "

图6

不同淹水处理下的根际土壤细菌群落主坐标分析 处理同图1。 "

表1

通过变异多变量方差分析(PERMANOVA)评估大豆基因型对根际细菌群落结构的影响"

配对比较
Pairwise comparison
统计值
F-value
决定系数
R2
P
P-value
W-TCK vs. W-SCK 1.657 0.142 0.045*
W-T1D vs. W-S1D 1.970 0.165 0.003**
W-T5D vs. W-S5D 1.972 0.165 0.020*

图7

不同淹水时长和大豆基因型的根际细菌群落的共现网络结构 a: 耐涝品种淹水0 d时根际细菌网络结构; b: 涝害敏感品种淹水0 d时根际细菌网络结构; c: 耐涝品种淹水1 d时根际细菌网络结构; d: 涝害敏感品种淹水1 d时根际细菌网络结构; e: 耐涝品种淹水5 d时根际细菌网络结构; f: 涝害敏感品种淹水5 d时根际细菌网络结构。图上不同的颜色节点表示不同的门。红色连接线表示2个节点正相关, 蓝色连接线表示2个节点负相关。处理同图1。 "

表2

根际细菌网络的拓扑结构"

网络指标
Network metrics
W-SCK W-TCK W-S1D W-T1D W-S5D W-T5D
节点数Number of nodes 81 79 79 74 89 86
边数Number of edges 338 346 536 317 521 579
正相关数Number of positive correlation 218 216 433 224 321 353
负相关数Number of negative correlations 120 130 103 93 200 226
平均路径长度Average path length 3.816 3.058 2.626 3.688 3.192 3.195
图密度Graph density 0.104 0.112 0.174 0.117 0.133 0.158
网络直径Network diameter 10 7 7 9 9 9
平均聚类系数Average clustering coefficient 0.641 0.594 0.72 0.688 0.638 0.649
平均加权度Average degree 2.301 2.931 8.219 3.459 2.723 3
连接部件Number of modules 4 4 5 5 3 3
模块化Modularity 8.518 6.313 0.613 2.164 4.412 3.709
[1] Loreti E, Van V H, Perata P. Plant responses to flooding stress. Plant Biol, 2016, 33:64-71.
[2] Duggan B L, Domitruk D R, Fowler D B. Yield component variation in winter grown under drought stress. Can J Plant Sci, 2000, 80:739-745.
doi: 10.4141/P00-006
[3] Bagci S A, Ekiz H, Yilmaz A, Cakmak I. Effects of zinc deficiency and drought on grain yield of field-grown wheat cultivars in Central Anatolia. J Agron Crop Sci, 2007, 193:198-206.
doi: 10.1111/jac.2007.193.issue-3
[4] Jiang D, Fan X, Dai T, Cao W. Nitrogen fertilizer rate and post anthesis waterlogging effects on carbohydrate and nitrogen dynamics in wheat. Plant Soil, 2008, 304:301-314.
doi: 10.1007/s11104-008-9556-x
[5] Yang M, Wangr F. Effects of tea and fungus intercropping on soil microbial community of tea. South China Agric, 2010, 11:13-16.
[6] Fukao T, Bailey S J. Submergence tolerance conferred by Sub1A is mediated by SLR1 and SLRL1 restriction of gibberellin responses in rice. Proc Natl Acad Sci USA, 2008, 105:16814-16819.
doi: 10.1073/pnas.0807821105
[7] Setter T L, Waters I. Review of prospects for germplasm improvement for waterlogging tolerance in wheat barley and oats. Plant Soil, 2003, 253:1-34.
doi: 10.1023/A:1024573305997
[8] Herzog M, Striker G G, Colmer T D, Pedersen O. Mechanisms of waterlogging tolerance in wheat: a review of root and shoot physiology. Plant Cell Environ, 2016, 39:1068-1086.
doi: 10.1111/pce.12676
[9] Grayston S, Wang J, Campbell C D S, Edwards A C. Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biol Biochem, 1998, 30:369-378.
doi: 10.1016/S0038-0717(97)00124-7
[10] Sairam R K, Dharmar K, Chinnusamy V, Meena R C. Waterlogging-induced increase in sugar mobilization, fermentation, and related gene expression in the roots of mung bean ( Vigna radiata). J Plant Physiol, 2009, 166:602-616.
doi: 10.1016/j.jplph.2008.09.005
[11] Ngumbi E, Kloepper J. Bacterial-mediated drought tolerance: current and future prospects. Appl Soil Ecol, 2016, 105:109-125.
doi: 10.1016/j.apsoil.2016.04.009
[12] Nguyen L T T, Osanai Y, Lai K, Anderson I C, Bange M P, Tissue D T, Singh B K. Responses of the soil microbial community to nitrogen fertilizer regimes and historical exposure to extreme weather events: flooding or prolonged-drought. Soil Biol Biochem, 2018, 118:227-236.
doi: 10.1016/j.soilbio.2017.12.016
[13] Fleury D, Jefffferies S, Kuchel H, Langridge P. Genetic and genomic tools to improve drought tolerance in wheat. J Exp Bot, 2010, 61:3211-3222.
doi: 10.1093/jxb/erq152
[14] Quiza L, St-Arnaud M, Yergeau E. Harnessing phytomicrobiome signaling for rhizosphere microbiome engineering. Front Plant Sci, 2015, 6:507-516.
[15] Coleman D D, Tringe S G. Building the crops of tomorrow: advantages of symbiont-based approaches to improving abiotic stress tolerance. Front Microbiol, 2014, 5:283-295.
doi: 10.3389/fmicb.2014.00283 pmid: 24936202
[16] Budak H, Akpinar B A, Unver T, Turktas M. Proteome changes in wild and modern wheat leaves upon drought stress by two-dimensional electrophoresis and nanoLC-ESI-MS/MS. Plant Mol Biol, 2013, 83:89-103.
doi: 10.1007/s11103-013-0024-5
[17] Swamy B P M, Kumar A. Genomics-based precision breeding approaches to improve drought tolerance in rice. Biotechnol Adv, 2013, 31:1308-1318.
doi: 10.1016/j.biotechadv.2013.05.004
[18] Waterer D, Benning N T, Wu G, Luo X, Liu X, Gusta M. Evaluation of abiotic stress tolerance of genetically modified potatoes ( Solanum tuberosumcv. Desiree). Mol Breed, 2010, 25:527-540.
doi: 10.1007/s11032-009-9351-2
[19] Sanaullah M, Blagodatskaya E, Chabbi A, Rumpel C, Kuzyakov Y. Drought effects on microbial biomass and enzyme activities in the rhizosphere of grasses depend on plant community composition. Appl Soil Ecol, 2011, 48:38-44.
doi: 10.1016/j.apsoil.2011.02.004
[20] Canarini A, Dijkstra F. Dry-rewetting cycles regulate wheat carbon rhizodeposition, stabilization and nitrogen cycling. Soil Biol Biochem, 2015, 81:195-203.
doi: 10.1016/j.soilbio.2014.11.014
[21] Grayston S J, Wang S, Campbell C D, Edwards A C. Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biol Biochem, 1998, 30:369-378.
doi: 10.1016/S0038-0717(97)00124-7
[22] Lau J A, Lennon J T. Rapid responses of soil microorganisms improve plant fitness in novel environments. Proc Natl Acad Sci USA, 2012, 35:14058-14062.
[23] Kaisermann A, Vries F T, Grifths R I, Bardgett R D. Legacy effects of drought on plant-soil feedbacks and plant-plant interactions. New Phytol, 2017, 215:1413-1424.
doi: 10.1111/nph.2017.215.issue-4
[24] Castrillo G, Teilxeira P, Paredes S, Theresa F L, Laura L, Meghan E, Feltcher O M, Finkel N W, Breakfield P M, Corbin D J, Javier P A, Jeffery L. Root microbiota drive direct integration of phosphate stress and immunity. Nature, 2017, 543:513-518.
doi: 10.1038/nature21417 pmid: 28297714
[25] Saleem M, Arshad M, Hussain S, Bhatti A S. Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J Ind Microbiol Biotechnol, 2007, 34:635-648.
doi: 10.1007/s10295-007-0240-6
[26] Barnawal D, Bharti N, Maji D, Chanotiya C S, Kalra A. 1-Aminocyclopropane-1-carboxylic acid (ACC) deaminase-containing rhizobacteria protect Ocimum sanctum plants during waterlogging stress via reduced ethylene generation. Plant Physiol Biochem, 2012, 58:227-235.
doi: 10.1016/j.plaphy.2012.07.008
[27] Grichko V P, Glick B R. Flooding tolerance of transgenic tomato plants expressing the bacterial enzyme ACC deaminase controlled by the 35S, rolD or PRB-1b promoter. Plant Physiol Biochem, 2001, 39: 19-25.
doi: 10.1016/S0981-9428(00)01217-1
[28] Zahir Z A, Munir A, Asghar H N, Shaharoona B, M Arshad. Effectiveness of rhizobacteria containing ACC-deaminase for growth promotion of pea ( Pisum sativum) under drought conditions. Microbiol Biotechnol, 2007, 18:958-963.
[29] Mayak S, Tirosh T, Glick B R. Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem, 2004, 42:565-572.
doi: 10.1016/j.plaphy.2004.05.009
[30] Lebeis S L, Paredes S H, Lundberg D S, Breakfield N, Gehring J, McDonald M, Malfatti S T, Tijana G, Corbin D, Susannah G, Jeffery L. Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. Science, 2015, 349:860-864.
doi: 10.1126/science.aaa8764
[31] Lian T X, Ma Q B, Shi Q H, Cai Z D, Zhang Y F, Cheng Y B, Nian H. High aluminum stress drives different rhizosphere soil enzyme activities and bacterial community structure between aluminum-tolerant and aluminum-sensitive soybean genotypes. Plant Soil, 2019, 440:409-425.
doi: 10.1007/s11104-019-04089-8
[32] 赵青松, 闫龙, 刘兵强, 邸锐, 史晓蕾, 赵双进, 张孟臣, 杨春燕. 高产广适优质大豆品种冀豆17. 大豆科学, 2015, 34:736-739.
Zhao Q S, Yan L, Liu B Q, Di R, Shi X L, Zhao S J, Zhang M C, Yang C Y. High yield wide adaptability and high quality soybean variety Jidou 17. Soybean Sci, 2015, 34:736-739 (in Chinese with English abstract).
[33] 徐冉, 王彩洁, 张礼凤, 李伟, 戴海英, 张军. 高产优质多抗广适大豆新品种齐黄34的选育. 山东农业科学, 2013, 45(3):107-108.
Xu R, Wang C J, Zhang L F, Li W, Dai H Y, Zhang J. Breeding of a new soybean variety Qihuang 34 with high yield, high quality and multi resistance. Shandong Agric Sci, 2013, 45(3):107-108 (in Chinese with English abstract).
[34] Castrillo G, Teilxeira P, Paredes S, Law T, Lorenzo L, Feltcher M, Finkel O, Breakfield N, Mieczkowski P, Jones C, Paz J, Dangl J. Root microbiota drive direct integration of phosphate stress and immunity. Nature, 2017, 543:513-518.
doi: 10.1038/nature21417 pmid: 28297714
[35] Caporaso J G, Kuczynski J, Stombaugh J, Bittinger K, Bushman F D, Costello E K, Noah F, Antonio G P, Julia K G, Jeffrey I G, Gavin A H, Scott T K, Dan K, Jeremy E K. QIIME allows analysis of high-throughput community sequencing data. Nat Methods, 2010, 7:335-336.
doi: 10.1038/nmeth.f.303 pmid: 20383131
[36] Magoc T, Salzberg S L. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics, 2011, 27:2957-2963.
doi: 10.1093/bioinformatics/btr507
[37] Edgar R, Haas B, Clemente J, Quince C, Knight R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics, 2011, 27:2194-2200.
doi: 10.1093/bioinformatics/btr381
[38] Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics, 2006, 22:1658-1659.
doi: 10.1093/bioinformatics/btl158
[39] Abarenkov K, Nilsson R H, Larsson K H, Alexander I J, Eberhardt U, Erland S, Klaus H, Rasmus K, Ellen L, Taina P, Robin S, Andy F S, Taylor L, Björn M U, Trude V. The UNITE database for molecular identification of fungi recent updates and future perspectives. New Phytol, 2010, 186:281-285.
doi: 10.1111/nph.2010.186.issue-2
[40] Wang Q, Garrity G M, Tiedje J M, Cole J R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol, 2007, 73:5261-5267.
doi: 10.1128/AEM.00062-07
[41] Muyzer G, Waal E D, Uitterlinden A G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction amplified genes coding for 16S rRNA. Appl Environmen Microbiol, 1993, 59:695-700.
[42] Li J, Lin J, Pei C, Kaitao L, Thomas C J, Guang D T. Variation of soil bacterial communities along a chronosequence of Eucalyptus plantation. Peer J, 2018, 6:5648-5657.
[43] Revelle W. Procedures for personality and psychological research. Nort Univ, 2017, 7:136-142.
[44] Bastian M, Heymann S, Jacomy M. Gephi: an open source software for exploring and manipulating networks. San Jose CA, 2009, 361-362.
[45] Berry D, Widder S. Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Front Microbiol, 2014, 5:219-232.
[46] Agler M T, Ruhe J, Kroll S, Morhenn C, Kim S T, Weigel D, Eric M K. Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLoS Biol, 2016, 14:e1002352.
doi: 10.1371/journal.pbio.1002352
[47] Azarbad H, Constant P, Giard L C, Bainard L D, Yergeau E. Water stress history and wheat genotype modulate rhizosphere microbial response to drought. Soil Biol Biochem, 2018, 126:228-236.
doi: 10.1016/j.soilbio.2018.08.017
[48] 郭太忠, 袁刘正, 赵月强, 柳家友, 谷川. 渍涝对玉米产量和根际土壤微生物的影响. 湖北农业科学, 2014, 53:505-507.
Guo T Z, Yuan L Z, Zhao Y Q, Liu J Y, Gu C. Effects of waterlogging on maize yield and the rhizosphere soil microorganism. Hubei Agric Sci, 2014, 53:505-507 (in Chinese with English abstract).
[49] 曾成城, 陈锦平, 魏虹, 刘媛, 马文超, 王婷, 周翠. 水淹生境下秋华柳对Cd污染土壤微生物数量及酶活性的影响. 生态学报, 2017, 37:4327-4334.
Zeng C C, Chen J P, Wei H, Liu Y, Mao W C, Wang T, Zhou C. Effects of Salix variegata on soil microorganisms and enzymatic activity in contaminated soils under flooding conditions. Acta Ecol Sin, 2017, 37:4327-4334 (in Chinese with English abstract).
[50] 赵可夫. 植物对水涝胁迫的适应. 生物学通报, 2003, 38(12):11-14.
Zhao K F. Adaptation of plants to waterlogging stress. Biol Bull, 2003, 38(12):11-14 (in Chinese with English abstract).
[51] Went F W. Effect of root system on tomato stem growth. Plant Physiol, 1943, 18:51-65.
pmid: 16653830
[52] 倪君蒂, 李振国. 淹水对大豆生长的影响. 大豆科学, 2000, 19:42-48.
Ni J D, Li Z G. Effects of flooding on soybean growth. Soybean Sci, 2000, 19:42-48 (in Chinese).
[53] 宋晓慧, 滕占林, 箫长亮, 李冬梅, 李文滨, 张代平. 淹水胁迫对不同耐涝性大豆品种苗期根部形态及叶部生理指标的影响. 大豆科学, 2014, 32:130-132.
Song X H, Teng Z L, Xiao C L, Li D M, Li W B, Zhang D P. Effect of waterlogging on root morphology and foliar physiological indexes of soybean varieties. Soybean Sci, 2014, 32:130-132 (in Chinese with English abstract).
[54] Constant P, Chowdhury S P, Hesse L, Pratscher J, Conrad R. Genome data mining and soil survey for the novel group 5 [NiFe]-hydrogenase to explore the diversity and ecological importance of presumptive high affinity H2-oxidizing bacteria. Appl Environ Microbiol, 2011, 77:6027-6035.
doi: 10.1128/AEM.00673-11
[55] Duarte C I, Mertz H L M, Aurelian D S, Nepomuceno A, Moraes L, Alexandra C, Marcolino G J, Richter C, Colnago L A. Flooded soybean metabolomic analysis reveals important primary and secondary metabolites involved in the hypoxia stress response and tolerance. Environ Exp Bot, 2018, 153:176-187.
doi: 10.1016/j.envexpbot.2018.05.018
[56] Greening C, Biswas A, Carere C R, Jackson C J, Taylor M C, Stott M B, Cook G M, Morales S E. Genomic and metagenomic surveys of hydrogenase distribution indicate H is a widely utilised energy source for microbial growth and survival. ISME J, 2016, 10:761-777.
doi: 10.1038/ismej.2015.153 pmid: 26405831
[57] Evans S E, Wallenstein M D. Soil microbial community response to drying and rewetting stress: does historical precipitation regime matter. Biogeochemistry, 2012, 109:101-116.
doi: 10.1007/s10533-011-9638-3
[58] Preece C, Peñuelas J. Rhizodeposition under drought and consequences for soil communities and ecosystem resilience. Plant Soil, 2016, 409:1-17.
doi: 10.1007/s11104-016-3090-z
[59] Unger I M, Kennedy A C, Muzika R M. Flooding effects on soil microbial communities. Appl Soil Ecol, 2009, 42:1-8.
doi: 10.1016/j.apsoil.2009.01.007
[60] Fierer N, Schimel J, Holden P. Variations in microbial community composition through two soil depth profiles. Soil Biol Biochem, 2003, 35:167-176.
doi: 10.1016/S0038-0717(02)00251-1
[61] Moyano F E, Manzoni S, Chenu C. Responses of soil heterotrophic respiration to moisture availability: an exploration of processes and models. Soil Biol Biochem, 2013, 59:72-85.
doi: 10.1016/j.soilbio.2013.01.002
[62] Meisner A, Leizeaga A, Rousk J, Bååth E. Partial drying accelerates bacterial growth recovery to rewetting. Soil Biol Biochem, 2017, 112:269-276.
doi: 10.1016/j.soilbio.2017.05.016
[63] Fuchslueger L, Bahn M, Fritz K, Hasibeder R, Richter A. Experimental drought reduces the transfer of recently fixed plant carbon to soil microbes and alters the bacterial community composition in a mountain meadow. New Phytol, 2014, 201:916-927.
doi: 10.1111/nph.2014.201.issue-3
[64] Kozlowski T T. Flooding and plant growth. Ann Bot-London, 1994, 91:107.
doi: 10.1093/aob/mcg014
[65] Coutinho I D, Baker J M, Ward J L, Beale M H, Creste S, Cavalheiro A. Metabolite profiling of sugarcane genotypes and identification of flavonoid glycosides and phenolic acids. J Agric Food Chem, 2016, 64:4198-4206.
doi: 10.1021/acs.jafc.6b01210
[66] Tokala R K, Strap J L, Jung C M, Jung D L, Crawford M S, Lee A, Deobald J, Franklin B. Novel plant-microbe rhizosphere interaction involvingStreptomyces lydicus WYEC108 and the pea plant (Pisum sativum). Appl Environ Microbiol, 2002, 68:2161-2171.
doi: 10.1128/AEM.68.5.2161-2171.2002
[67] Yamanaka K, Oikawa H, Ogawa H, Hideaki T, Shohei S, Teruhiko B, Kenji U. Desferrioxamine E produced by Streptomyces griseus stimulates growth and development of Streptomyces tanashiensis. Microbiology, 2005, 151:2899-2905.
doi: 10.1099/mic.0.28139-0
[68] 黄佩蓓, 焦念志, 冯浩, 舒青龙. 海洋浮霉状菌多样性与生态学功能研究进展. 微生物学报, 2014, 41:1891-1902.
Huang P B, Jiao N Z, Feng H, Shu Q L. Research progress on Planctomycetes’ diversity and ecological function in marine environments. Acta Microbiol Sin, 2014, 41:1891-1902 (in Chinese with English abstract).
[69] Gloeckner F O, Bauer M, Teeling H, Lombardot T, Ludwig W, Gade D, Beck A, Borzym K, Heitmann K, Rabus R, Schlesner H, Amann R, Reinhardt R. Complete genome sequence of the marine planctomycete Pirellulasp. Strain 1. Proc Natl Acad Sci USA, 2003, 103:292-310.
[70] Strobel G. Harnessing endophytes for industrial microbiology. Curr Opin Microbiol, 2006, 9:240-244.
pmid: 16647289
[71] Somers E, Vanderleyden J, Srinivasan M. Rhizosphere bacterial signalling: a love parade beneath our feet. Crit Rev Microbiol, 2004, 30:205-240.
pmid: 15646398
[72] Zhang Y H P, Lynd L R. Cellulose utilization by Clostridium thermocellum: bioenergetics and hydrolysis product assimilation. Proc Natl Acad Sci USA, 2005, 56:168-176.
[73] Pester M, Bittner N, Deevong P, Wagner M, Loy A. A ‘rare biosphere’ microorganism contributes to sulfate reduction in a peatland. ISME J, 2010, 4:1591-1602.
doi: 10.1038/ismej.2010.75
[74] Freilich S, Kreimer A, Meilijson I, Gophna U, Sharan R, Ruppin E. The large-scale organization of the bacterial network of ecological co-occurrence interactions. Nucleic Acids Res, 2010, 38:3857-3868.
doi: 10.1093/nar/gkq118 pmid: 20194113
[75] Shi Q, Liu Y, Shi A, Cai Z, Nian H, Martin H, Lian T. Rhizosphere soil fungal communities of aluminum-tolerant and -sensitive soybean genotypes respond differently to aluminum stress in an acid soil. Front Microbiol, 2020, 11:1177.
doi: 10.3389/fmicb.2020.01177
[76] Xiao X, Liang Y, Zhou S, Zhuang S, Sun B. Fungal community reveals less dispersal limitation and potentially more connected network than that of bacteria in bamboo forest soils. Mol Ecol, 2018, 27:550-563.
doi: 10.1111/mec.2018.27.issue-2
[77] Jones J D G, Dang J L. The plant immune system. Nature, 2006, 444:323-329.
doi: 10.1038/nature05286
[78] Peter N D, John P R. Plant immunity: towards an integrated view of plant-pathogen interactions. Nat Rev Genet, 2010, 11:539-548.
[79] Van der Ent S, Van Hulten M, Pozo M J, Czechowski T, Udvardi M K, Pieterse C M J, Ton J. Priming of plant innate immunity by rhizobacteria and β-aminobutyric acid: differences and similarities in regulation. New Phytol, 2009, 183:419-431.
doi: 10.1111/nph.2009.183.issue-2
[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[3] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[4] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[5] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[6] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[7] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[8] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[9] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[10] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[11] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643.
[12] 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366.
[13] 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537.
[14] 宋丽君, 聂晓玉, 何磊磊, 蒯婕, 杨华, 郭安国, 黄俊生, 傅廷栋, 汪波, 周广生. 饲用大豆品种耐荫性鉴定指标筛选及综合评价[J]. 作物学报, 2021, 47(9): 1741-1752.
[15] 曹亮, 杜昕, 于高波, 金喜军, 张明聪, 任春元, 王孟雪, 张玉先. 外源褪黑素对干旱胁迫下绥农26大豆鼓粒期叶片碳氮代谢调控的途径分析[J]. 作物学报, 2021, 47(9): 1779-1790.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!