欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (6): 1175-1187.doi: 10.3724/SP.J.1006.2021.04148

• 耕作栽培·生理生化 • 上一篇    下一篇

糜子/绿豆间作模式下施氮量对绿豆叶片光合特性及产量的影响

党科(), 宫香伟, 吕思明, 赵冠, 田礼欣, 靳飞, 杨璞, 冯佰利*(), 高小丽*()   

  1. 西北农林科技大学农学院/旱区作物逆境生物学国家重点实验室/农业农村部作物基因资源与种质创制陕西科学观测试验站, 陕西杨凌 712100
  • 收稿日期:2020-07-06 接受日期:2020-12-01 出版日期:2021-06-12 网络出版日期:2020-12-28
  • 通讯作者: 冯佰利,高小丽
  • 作者简介:E-mail:dangke4718@163.com
  • 基金资助:
    陕西省重点研发计划项目(2018TSCXL-NY-03-01);陕西省省级现代农作物种业项目(20171010000004);陕西省小杂粮产业技术体系项目(2009-2019)

Effects of nitrogen application rate on photosynthetic characteristics and yield of mung bean under the proso millet and mung bean intercropping

DANG Ke(), GONG Xiang-Wei, LYU Si-Ming, ZHAO Guan, TIAN Li-Xin, JIN Fei, YANG Pu, FENG Bai-Li*(), GAO Xiao-Li*()   

  1. College of Agronomy, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Research Station of Crop Gene Resources & Germplasm Enhancement, Ministry of Agriculture and Rural Affairs, Yangling 712100, Shaanxi, China
  • Received:2020-07-06 Accepted:2020-12-01 Published:2021-06-12 Published online:2020-12-28
  • Contact: FENG Bai-Li,GAO Xiao-Li
  • Supported by:
    The Shaanxi Province Key Research and Development Project(2018TSCXL-NY-03-01);The Shaanxi Province Modern Crops Seed Industry Project(20171010000004);The Minor Grain Crops Research and Development System of Shaanxi Province(2009-2019)

摘要:

探讨施氮量对间作条件下绿豆叶片光合特性、氮素特征及产量的影响, 以期为西北旱区糜子//绿豆间作模式的合理施氮提供理论依据。试验于2018—2019年在陕西榆林采用裂区设计, 主处理设糜子间作绿豆(PM)、绿豆单作(SM)2种种植模式, 副处理设0 (N0)、45 (N1)、90 (N2)和135 kg hm-2 (N3) 4个氮肥水平。结果表明, 施氮处理下间作绿豆叶片净光合速率(Pn)、蒸腾速率(Tr)比不施氮平均增加10.5%~24.5%、15.2%~29.5%, 提高了叶片光合特性; PSII最大光化学效率(Fv/Fm)、PSII实际光化学效率(ΦPSII)平均增加2.9%~7.8%、11.7%~28.4%, PSII非光化学淬灭系数(non-photochemical quenching coefficient, NPQ)降低10.3%~17.4%, 叶片叶绿素荧光参数得到改善, 对弱光的截获和利用能力提高, 叶片PSII反应中心活性增强。单株叶面积、单位干质量叶片氮含量(Nmass)和单位面积氮含量(Narea)均随施氮量增加表现为先升高后降低的趋势; Chl a、Chl b含量增加, 光合氮利用效率(photosynthetic N-use efficiency, PNUE)则比不施氮有所降低; 不同施氮量均显著增加间作绿豆干物质积累量和荚数, 百粒重2年平均分别比不施氮增加1.1%~6.9%, 产量增加9.3%~19.7%。2年试验间作各处理土地当量比(land equivalent ratio, LER)为1.63~2.07, 表现为间作产量优势。由此可知, 施氮可改善间作绿豆叶片光合物质生产能力, 延缓衰老, 有效调节了光合系统对遮阴的适应性反应, 且间作叶片光合性能对氮肥的响应要大于单作。糜子/绿豆间作模式LER大于1, 可作为西北旱作农业区推广种植模式, 在90 kg hm-2施氮量下间作绿豆叶片光合特性表现最好, 产量最高, LER最大, 是其适宜施氮水平。

关键词: 绿豆, 氮肥, 间作, 光合特性, 光合氮利用效率, 产量

Abstract:

To explore the effect of nitrogen (N) on the leaf gas exchange, chlorophyll fluorescence, nitrogen characteristics and yield of mung bean under intercropping with proso millet, the field experiments were conducted in 2018 and 2019 using split-plot design with two cropping patterns [proso millet-mung bean intercropping (PM) and soled mung bean (SM)] and four total N fertilizer application rates [0 (N0), 45 (N1), 90 (N2), and 135 kg hm-2(N3)]. Under N application, the net photosynthetic rate (Pn) and transpiration rate (Tr) of mung bean in intercropping increased by 10.5%-24.5% and 15.2%-29.5% on average, which improved the photosynthetic characteristics. Maximum photochemical efficiency (Fv/Fm) and actual photochemical efficiency (ΦPSII) increased by 2.9%-7.8% and 11.7%-28.4%, respectively, and PSII non-photochemical quenching coefficient (NPQ) decreased by 10.3%-17.4%. The chlorophyll fluorescence parameters were improved, resulting in enhancing the ability to capture and utilize light energy, and the activity of PSII reaction center was enhanced. Leaf area per plant, N content per unit dry mass of leaves (Nmass) and N content per unit area (Narea) increased first and then decreased with the increase of N application rate. The content of Chl a and Chl b increased. Photosynthetic N-use efficiency (PNUE) decreased compared with N0. N application significantly increased the dry matter accumulation and pods of mung bean in intercropping. Under the treatment of N1, N2, and N3, 100-grain weight and yield were increased by 1.1%-6.9% and 9.3%-19.7%, respectively. In the two-year trial intercropping, the land equivalent ratio of each treatment was 1.63-2.07, indicating the yield advantage of intercropping. N application could improve the photosynthetic production capacity of mung bean in intercropping and effectively regulate the adaptive response of photosynthetic system to shading. The response of photosynthetic performance of intercropping to N fertilizer was greater than that of single-plant systems. Under the conditions of this experiment, the proso millet and mung bean intercropping model can increase land productivity, and it can be used as a planting model to promote dry farming in northwestern China. The intercropping mung bean had the best photosynthetic characteristics at 90 kg hm-2, which showed the highest yield, and the largest land equivalent ratio.

Key words: mung bean, nitrogen fertilizer, intercropping, photosynthetic characters, photosynthetic nitrogen-use efficiency, yield

图1

试验地2018-2019年作物生育期内日平均降水量和温度"

图2

氮水平对间作绿豆气体交换参数的影响 柱上不同小写字母代表在同一间作模式下各施氮水平在0.05水平差异显著。SM: 单作绿豆; PM: 间作绿豆。N0: 氮肥施用量0 kg hm-2; N1: 氮肥施用量45 kg hm-2; N2: 氮肥施用量90 kg hm-2; N3: 氮肥施用量135 kg hm-2。Pn: 净光合速率; Ci: 胞间二氧化碳浓度; Tr: 蒸腾速率; WUE: 水分利用效率。"

图3

氮水平对间作绿豆叶绿素荧光参数的影响 处理同图2。柱上不同小写字母代表在同一间作模式下各施氮水平在0.05水平差异显著。Fv/Fm: 最大光化学效率; ΦPSII: 实际光化学效率; NPQ: 非光化学淬灭系数。"

图4

氮水平对间作绿豆叶绿素光合色素含量的影响 处理同图2。柱上不同小写字母代表在同一间作模式下各施氮水平在0.05水平差异显著。"

图5

氮水平对间作绿豆叶绿素a/b的影响 处理同图2。柱上不同小写字母代表在同一间作模式下各施氮水平在0.05水平差异显著。"

表1

氮水平对间作绿豆叶片氮素特征的影响"

种植模式
Planting
pattern
氮水平
N level
(kg hm-2)
单株叶面积
Leaf area per plant (cm2)
比叶质量
LMA
(g m-2)
单位干物质量氮含量
Nmass
(g kg-1)
单位面积氮含量
Narea
(mg cm-2)
光合氮利用效率
PNUE
(CO2 μmol g-1 s-1)
SM N0 3178.9±310.2 a 51.33±5.05 b 24.51±0.21 b 0.13±0.01 b 14.43±1.51 a
N1 3706.3±112.4 a 60.83±1.82 ab 27.77±0.57 a 0.17±0.00 a 13.60±0.34 a
N2 3608.4±470.9 a 66.73±8.42 a 28.11±1.12 a 0.20±0.02 a 11.25±0.98 b
N3 3400.4±188.3 a 67.10±3.62 a 26.67±1.32 a 0.18±0.02 a 10.66±0.95 b
PM N0 2308.5±200.8 c 57.59±4.80 a 20.01±1.08 b 0.12±0.01 a 13.97±0.84 a
N1 2658.9±222.3 b 55.31±4.86 a 25.64±0.20 a 0.14±0.01 a 12.73±0.65 a
N2 3019.6±121.4 a 54.04±2.15 a 25.00±0.59 a 0.14±0.00 a 13.81±0.85 a
N3 2913.0±174.7 ab 56.76±3.31 a 21.61±2.16 b 0.12±0.02 a 13.55±2.90 a
变异来源Variation source
种植模式Planting pattern (P) ** * ** ** NS
氮水平N level (N) * NS ** ** *
种植模式×氮水平 P×N NS * NS ** *

图6

氮水平对间作绿豆干物质积累量的影响 处理同图2。柱上不同小写字母代表在同一间作模式下各施氮水平在0.05水平差异显著。"

表2

氮水平对间作绿豆农艺性状的影响"

年份
Year
种植模式
Planting
pattern
氮水平
N level
(kg hm-2)
株高
Plant height
(cm)
茎粗
Stem diameter
(mm)
主茎节数
Nodes of
main stem
主茎分枝数
Branches of
main stem
单株荚数
Pods per
plant
2018 SM N0 60.40±6.15 a 7.58±1.25 a 9.80±0.84 a 5.00±0.00 c 52.80±2.77 c
N1 65.40±7.81 a 7.77±0.44 a 10.40±1.34 a 5.80±1.10 bc 68.40±6.47 a
N2 65.60±4.97 a 8.44±1.08 a 10.40±0.89 a 6.40±0.55 ab 67.60±1.41 a
N3 63.00±4.62 a 8.76±0.87 a 9.20±1.30 a 7.00±0.00 a 57.60±5.57 b
PM N0 61.80±6.35 b 7.32±0.64 a 9.40±0.55 a 5.00±1.00 a 30.00±4.82 c
N1 68.20±8.44 a 7.94±0.91 a 10.60±0.89 a 5.20±0.45 a 41.40±4.16 b
N2 68.80±2.83 a 8.07±0.55 a 9.6±0.89 a 5.20±0.45 a 48.62±2.09 a
N3 71.40±3.65 a 7.83±0.81 a 10.8±0.84 a 5.80±0.45 a 47.68±2.25 a
2019 SM N0 63.86±4.01 a 7.79±0.43 a 10.20±0.71 a 5.60±0.45 a 48.20±5.85 c
N1 64.60±4.93 a 7.99±0.83 a 11.00±0.71 a 5.60±1.10 a 68.60±1.48 a
N2 67.20±1.73 a 8.63±0.91 a 11.00±0.89 a 6.80±0.45 a 63.00±6.15 ab
N3 68.64±1.86 a 8.48±0.26 a 11.60±1.14 a 7.00±0.00 a 56.40±2.31 b
PM N0 55.08±4.16 c 6.92±0.45 a 9.40±1.22 a 5.00±0.00 a 25.40±5.12 b
N1 66.20±3.10 b 7.81±0.47 a 10.80±0.84 a 5.00±0.71 a 39.00±5.61 a
年份
Year
种植模式
Planting
pattern
氮水平
N level
(kg hm-2)
株高
Plant height
(cm)
茎粗
Stem diameter
(mm)
主茎节数
Nodes of
main stem
主茎分枝数
Branches of
main stem
单株荚数
Pods per
plant
2019 N2 75.18±2.27 a 7.58±0.65 a 10.00±1.14 a 5.00±0.00 a 47.40±1.34 a
N3 73.08±3.79 a 7.93±0.50 a 9.40±1.10 a 5.00±0.00 a 46.80±2.19 a
变异来源Variation source
年份Year (Y) NS NS NS NS *
种植模式Planting pattern (P) * * NS ** **
氮水平N level (N) ** NS NS ** **
年份×种植模式Y×P NS NS * NS NS
年份×氮水平Y×N NS NS NS NS NS
种植模式×氮水平P×N ** NS NS * **
年份×种植模式×氮水平Y×P×N NS NS NS NS NS

表3

氮水平对糜子和绿豆产量的影响"

年份
Year
种植模式
Planting pattern
氮水平
N level
(kg hm-2)
百粒重
100-grain weight
(g)
绿豆产量
Mung bean grain yield
(kg hm-2)
糜子产量
Proso millet grain yield (kg hm-2)
土地当量比
Land equivalent ratio
2018 SM N0 5.53±0.21 b 1069.3±114.2 b 4067.8±287.6 c
N1 5.67±0.29 ab 1297.8±71.6 a 4400.8±287.1 c
N2 5.83±0.14 a 1168.8±98.4 ab 4911.4±321.4 b
N3 5.65±0.19 ab 1137.5±96.7 b 5631.6±206.7 a
PM N0 5.22±0.07 b 806.0±27.7 c 4240.2±152.5 c 1.81±0.14 b
N1 5.61±0.35 a 853.7±23.7 b 5286.4±283.1 b 1.86±0.02 b
N2 5.35±0.14 b 905.0±45.0 a 6331.8±386.2 a 2.07±0.14 a
N3 5.28±0.19 b 812.0±11.8 bc 5120.1±354.1 b 1.63±0.07 c
2019 SM N0 5.97±0.09 b 1198.7±69.8 b 4259.4±382.0 d
N1 6.30±0.20 a 1350.5±35.1 a 4737.5±99.5 c
N2 6.33±0.14 a 1315.5±58.0 a 5196.9±168.8 b
年份
Year
种植模式
Planting pattern
氮水平
N level
(kg hm-2)
百粒重
100-grain weight
(g)
绿豆产量
Mung bean grain yield
(kg hm-2)
糜子产量
Proso millet grain yield (kg hm-2)
土地当量比
Land equivalent ratio
2019 N3 6.04±0.22 b 1217.6±63.2 b 5646.9±234.1 a
PM N0 5.75±0.15 b 768.5±27.9 c 5043.8±241.0 d 1.84±0.18 a
N1 6.11±0.19 a 867.7±41.9 b 5656.3±215.4 c 1.84±0.05 a
N2 6.12±0.15 a 979.8±34.8 a 6531.3±403.3 a 2.00±0.08 a
N3 5.81±0.22 b 937.9±57.1 a 6075.0±84.2 b 1.85±0.09 a
变异来源Variation source
年份Year (Y) ** ** ** *
种植模式Planting pattern (P) ** ** **
氮水平N level (N) ** ** ** NS
年份×种植模式Y×P NS NS **
年份×氮水平Y×N * NS NS NS
种植模式×氮水平P×N * ** **
年份×种植模式×氮水平Y×P×N NS NS *

图7

叶片光合特性及氮素利用特征与产量之间的相关性分析 SM: 单作绿豆; PM: 间作绿豆。*: 在0.05水平显著相关; **: 在0.01水平显著相关。"

[1] 苏本营, 陈圣宾, 李永庚, 杨文钰. 间套作种植提升农田生态系统服务功能. 生态学报, 2013,33:4505-4514.
Su B Y, Chen S B, Li Y G, Yang W Y. Intercropping enhances the farmland ecosystem services. Acta Ecol Sin, 2013,33:4505-4514 (in Chinese with English abstract).
[2] 冯晓敏, 杨永, 任长忠, 胡跃高, 曾昭海. 豆科-燕麦间作对作物光合特性及籽粒产量的影响. 作物学报, 2015,41:1426-1434.
Feng X M, Yang Y, Ren C Z, Hu Y G, Zeng Z H. Effects of legumes intercropping with oat on photosynthesis characteristics of and grain yield. Acta Agron Sin, 2015,41:1426-1434 (in Chinese with English abstract).
[3] 李玉英, 余常兵, 孙建好, 李春杰, 李隆, 程序. 蚕豆/玉米间作系统经济生态施氮量及对氮素环境承受力. 农业工程学报, 2008,24(3):223-227.
Li Y Y, Yu C B, Sun J H, Li C J, Li L, Cheng X. Nitrogen environmental endurance and economically-ecologically appropriate amount of nitrogen fertilizer in faba bean/maize intercropping system. Trans CSAE, 2008,24(3):223-227 (in Chinese with English abstract).
[4] Li L, Sun J H, Zhang F S, Li X L, Yang S C, Rengel Z. Wheat/maize or wheat/soybean strip intercropping: I. Yield advantage and interspecific interactions on nutrients. Field Crops Res, 2001,71:173-181.
[5] Reddy M S, Willey R W. Growth and resource use studies in an intercrop of pearl millet/groundnut. Field Crops Res, 1981,4:13-24.
[6] Chapagain T, Riseman A. Barley-pea intercropping: effects on land productivity, carbon and nitrogen transformations. Field Crops Res, 2014,166:18-25.
[7] 王田涛, 王琦, 王惠珍, 张恩和. 连作条件下间作模式对当归生长特性和产量的影响. 草业学报, 2013,22(2):54-61.
Wang T T, Wang Q, Wang H Z, Zhang E H. Effects of intercropping patterns on growth characters and yield of Angelica sinensis under continuous mono-cropping planting. Acta Pratacult Sin, 2013,22(2):54-61 (in Chinese with English abstract).
[8] 宫香伟, 李境, 马洪驰, 陈光华, 王孟, 杨璞, 高金锋, 冯佰利. 黄土高原旱作区糜子-绿豆带状种植农田小气候特征与产量效应. 应用生态学报, 2018,29:3256-3266.
Gong X W, Li J, Ma H C, Chen G H, Wang M, Yang P, Gao J F, Feng B L. Field microclimate and yield for proso millet intercropping with mung bean in the dryland of Loess Plateau, Northwest China. Chin J Appl Ecol, 2018,29:3256-3266 (in Chinese with English abstract).
[9] 党科, 宫香伟, 陈光华, 赵冠, 刘龙, 王洪露, 杨璞, 冯佰利. 糜子绿豆带状种植下糜子的氮素积累、代谢及产量变化. 作物学报, 2019,45:1880-1890.
Dang K, Gong X W, Chen G H, Zhao G, Liu L, Wang H L, Yang P, Feng B L. Nitrogen accumulation,metabolism, and yield of proso millet in proso millet mung bean intercropping systems. Acta Agron Sin, 2019,45:1880-1890 (in Chinese with English abstract).
[10] 陈剑, 敖雪, 姚兴东, 薛仁风, 赵阳, 王英杰, 李韬, 金晓梅, 庄艳, 葛维德, 闫广艳. 施氮肥对不同株型赤豆品种光合生理、干物积累及产量的影响. 江苏农业科学, 2018,46(23):90-93.
Chen J, Ao X, Yao X D, Xue R F, Zhao Y, Wang Y J, Li T, Jin X M, Zhuang Y, Ge W D, Yan G Y. Effects of nitrogen application on photosynthetic physiology, dry matter accumulation and yield of different plant-types of adzuki beans. Jiangsu Agric Sci, 2018,46(23):90-93 (in Chinese with English abstract).
[11] 叶卫军, 杨勇, 张丽亚, 田东丰, 张玲玲, 周斌. 氮肥用量对绿豆品种皖科绿3号农艺性状及氮肥利用率的影响. 作物杂志, 2019, ( 3):137-141.
Ye W J, Yang Y, Zhang L Y, Tian D F, Zhang L L, Zhou B. Effects of nitrogen on agronomic traits and nitrogen use efficiency of mung bean cultivar Wankelü 3. Crops, 2019, ( 3):137-141 (in Chinese with English abstract).
[12] 司玉坤, 齐欣, 武庆慧, 白红波, 赵亚南, 叶优良, 黄玉芳. 氮、磷肥用量对豫中地区大豆产量、干物质及经济效益的影响. 中国农学通报, 2019,35(15):30-34.
Si Y K, Qi X, Wu Q H, Bai H B, Zhao Y N, Ye Y L, Huang Y F. Nitrogen and phosphorus fertilizer rate affect yield, dry matter and economic benefits of soybean in central Henan. Chin Agric Sci Bull, 2019,35(15):30-34 (in Chinese with English abstract).
[13] 贾曼曼, 肖靖秀, 汤利, 郑毅. 不同施氮量对小麦蚕豆间作作物产量及其光合特征的影响. 云南农业大学学报(自然科学), 2017,32(2):350-357.
Jia M M, Xiao J X, Tang L, Zheng Y. Effects of nitrogen supply on yields and photosynthesis characteristics of crops in wheat and broad bean intercropping. J Yunnan Agric Univ (Nat Sci), 2017,32(2):350-357 (in Chinese with English abstract).
[14] 林松明, 张正, 南镇武, 孟维伟, 李林, 郭峰, 万书波. 施钙对不同种植模式下花生产量及生理特性的影响. 华北农学报, 2019,34(3):111-118.
Lin S M, Zhang Z, Nan Z W, Meng W W, Li L, Guo F, Wan S B. Effects of calcium application on peanut yield and physiological characteristics under different planting patterns. Acta Agric Boreali-Sin, 2019,34(3):111-118 (in Chinese with English abstract).
[15] Vos J, Pelvander P. Effects of partial shading of the potato plant on photosynthesis of treated leaves, leaf area expansion and allocation of nitrogen and dry matter in component plant parts. Eur J Agron, 2001,14:209-220.
[16] 唐敬超, 史作民, 罗达, 刘世荣. 遮荫处理对灰木莲幼苗叶片光合氮利用效率的影响. 生态学报, 2017,37:7493-7502.
Tang J C, Shi Z M, Luo D, Liu S R. Photosynthetic nitrogen-use efficiency of Manglietia glauca seedling leaves under different shading levels. Acta Ecol Sin, 2017,37:7493-7502 (in Chinese with English abstract).
[17] 林洪鑫, 潘晓华, 袁展汽, 肖运萍, 刘仁根, 汪瑞清, 吕丰娟. 施氮和木薯-花生间作对木薯养分积累和系统养分利用的影响. 中国农业科学, 2018,51:3275-3290.
Lin H X, Pan X H, Yuan Z Q, Xiao Y P, Liu R G, Wang R Q, Lyu F J. Effects of nitrogen application and cassava-peanut intercropping on cassava nutrient accumulation and system nutrient utilization. Sci Agric Sin, 2018,51:3275-3290 (in Chinese with English abstract).
[18] 褚军, 薛建辉, 吴殿鸣, 金梅娟, 吴永波. 不同施氮水平下杨树-苋菜间作系统对土壤氮素流失的影响. 应用生态学报, 2014,25:2591-2597.
Chu J, Xue J H, Wu D M, Jin M J, Wu Y B. Effects of poplar-amaranth intercropping system on the soil nitrogen loss under different nitrogen applying levels. Chin J Appl Ecol, 2014,25:2591-2597 (in Chinese with English abstract).
[19] 覃潇敏, 郑毅, 汤利, 龙光强. 施氮对间作条件下玉米、马铃薯根际微生物群落功能多样性的影响. 农业资源与环境学报, 2015,32:354-362.
Qin X M, Zheng Y, Tang L, Long G Q. Effects of nitrogen application rates on rhizosphere microbial community functional diversity in maize and potato intercropping. J Agric Res Environ, 2015,32:354-362 (in Chinese with English abstract).
[20] 杨文亭, 李志贤, 赖健宁, 吴鹏, 章莹, 王建武. 甘蔗-大豆间作和减量施氮对甘蔗产量和主要农艺性状的影响. 作物学报, 2014,40:556-562.
Yang W T, Li Z X, Lai J N, Wu P, Zhang Y, Wang J W. Effects of sugarcane-soybean intercropping and reduced nitrogen application on yield and major agronomic traits of sugarcane. Acta Agron Sin, 2014,40:556-562 (in Chinese with English abstract).
[21] 王一, 张霞, 杨文钰, 孙歆, 苏本营, 崔亮. 不同生育时期遮阴对大豆叶片光合和叶绿素荧光特性的影响. 中国农业科学, 2016,49:2072-2081.
Wang Y, Zhang X, Yang W Y, Sun X, Su B Y, Cui L. Effect of shading on soybean leaf photosynthesis and chlorophyll fluorescence characteristics at different growth stages. Sci Agric Sin, 2016,49:2072-2081 (in Chinese with English abstract).
[22] 宫香伟, 党科, 李境, 罗艳, 赵冠, 杨璞, 高小丽, 高金锋, 王鹏科, 冯佰利. 糜子绿豆间作模式下糜子光合物质生产及水分利用效率. 中国农业科学, 2019,52:4139-4153.
Gong X W, Dang K, Li J, Luo Y, Zhao G, Yang P, Gao X L, Gao J F, Wang P K, Feng B L. Effects of different intercropping patterns on photosynthesis production characteristics and water use efficiency of proso millet. Sci Agric Sin, 2019,52:4139-4153 (in Chinese with English abstract).
[23] 焦念元, 宁堂原, 赵春, 王芸, 史忠强, 侯连涛, 付国占, 江晓东, 李增嘉. 玉米花生间作复合体系光合特性的研究. 作物学报, 2006,32:917-923.
Jiao N Y, Ning T Y, Zhao C, Wang Y, Shi Z Q, Hou L T, Fu G Z, Jiang X D, Li Z J. Characters of photosynthesis in intercropping system of maize and peanut. Acta Agron Sin, 2006,32:917-923 (in Chinese with English abstract).
[24] 吕丽华, 赵明, 赵久然, 陶洪斌, 王璞. 不同施氮量下夏玉米冠层结构及光合特性的变化. 中国农业科学, 2008,41:2624-2632.
Lyu L H, Zhao M, Zhao J R, Tao H B, Wang P. Canopy structure and photosynthesis of summer maize under different nitrogen fertilizer application rates. Sci Agric Sin, 2008,41:2624-2632 (in Chinese with English abstract).
[25] 张艾英, 郭二虎, 王军, 范惠萍, 李瑜辉, 王丽霞, 王秀清, 程丽萍. 施氮量对春谷农艺性状、光合特性和产量的影响. 中国农业科学, 2015,48:2939-2951.
Zhang A Y, Guo E H, Wang J, Fan H P, Li Y H, Wang L X, Wang X Q, Cheng L P. Effect of nitrogen application rate on agronomic, photosynthetic characteristics and yield of spring foxtail millet. Sci Agric Sin, 2015,48:2939-2951 (in Chinese with English abstract).
[26] Seemann P J R. Photosynthetic induction state of leaves in a soybean canopy in relation to light regulation of ribulose-1-5-bisphosphate carboxylase and stomatal conductance. Plant Physiol, 1990,94:628-633.
[27] 张绪成, 上官周平. 施氮对旱地不同抗旱性小麦叶片光合色素含量与荧光特性的影响. 核农学报, 2007,21:299-304.
Zhang X C, Shangguan Z P. Effect of nitrogen fertilization on photosynthetic pigment and fluorescence characteristics in leaves of winter wheat cultivars on dryland. J Nucl Agric Sci, 2007,21:299-304 (in Chinese with English abstract).
[28] 荣立苹, 李倩中, 李淑顺, 唐玲. 遮荫对鸡爪槭生理特性和叶绿素荧光参数的影响. 西南农业学报, 2013,26(1):144-147.
Rong L P, Li Q Z, Li S S, Tang L. Effects of shading on physiological characteristics and chlorophyll fluorescence parameters of acer palmatum. Southwest China J Agric Sci, 2013,26(1):144-147 (in Chinese with English abstract).
[29] 崔亮, 苏本营, 杨峰, 杨文钰. 不同玉米-大豆带状套作组合条件下光合有效辐射强度分布特征对大豆光合特性和产量的影响. 中国农业科学, 2014,47:1489-1501.
Cui L, Su B Y, Yang F, Yang W Y. Effects of photo-synthetically active radiation on photosynthetic characteristics and yield of soybean in different maize/soybean relay strip intercropping systems. Sci Agric Sin, 2014,47:1489-1501 (in Chinese with English abstract).
[30] Monneveux P, Zaidi P H, Sanchez C. Population density and low nitrogen affects yield-associated traits in tropical maize. Crop Sci, 2005,45:535.
[31] Chonggang X, Rosie F, Wullschlegar S D, Wilson C J, Cai M, McDowell N G. Toward a mechanistic modeling of nitrogen limitation on vegetation dynamics. PLoS One, 2012,7:e37914.
[32] 朱启林, 向蕊, 汤利, 龙光强. 间作对氮调控玉米光合速率和光合氮利用效率的影响. 植物生态学报, 2018,42:672-680.
Zhu Q L, Xiang R, Tang L, Long G Q. Effects of intercropping on photosynthetic rate and net photosynthetic nitrogen use efficiency of maize under nitrogen addition. Chin J Plant Ecol, 2018,42:672-680 (in Chinese with English abstract).
[33] 黎星, 程慧煌, 曾勇军, 汪勇, 商庆银. 不同时期超级杂交稻光合特性及氮素利用效率研究. 核农学报, 2019,33:978-987.
Li X, Cheng H H, Zeng Y J, Wang Y, Shang Q Y. Study on photosynthetic characteristics and nitrogen utilization efficiency of super hybrid rice in different periods. J Nucl Agric Sci, 2019,33:978-987 (in Chinese with English abstract).
[34] Trouwborst G, Hogewoning S W, Harbinson J, Van Ieperen W. Photosynthetic acclimation in relation to nitrogen allocation in cucumber leaves in response to changes in irradiance. Physiol Plant, 2011,142:157-169.
[35] 张玉春, 杨敏, 周齐齐, 刘希伟, 李彦生, 张敏, 蔡瑞国. 不同氮肥用量条件下花后遮光对冬小麦干物质和氮素积累与转运的影响. 华北农学报, 2018,33(3):203-209.
Zhang Y C, Yang M, Zhou Q Q, Liu X W, Li Y S, Zhang M, Cai R G. Effects of shading after anthesis under different nitrogen application rates on dry matter and nitrogen accumulation and translocation in winter wheat. Acta Agric Boreali-Sin, 2018,33(3):203-209 (in Chinese with English abstract).
[36] 王小春, 杨文钰, 邓小燕, 张群, 雍太文, 刘卫国, 杨峰, 毛树明. 玉米/大豆和玉米/甘薯模式下玉米光合特性差异及氮肥调控效应. 中国生态农业学报, 2015,23:141-149.
Wang X C, Yang W Y, Deng X Y, Zhang Q, Yong W T, Liu W G, Yang F, Mao S M. Differences in maize photosynthetic characteristics and nitrogen regulation effects in maize/soybean and maize/sweet potato relay strip intercropping. Chin J Eco-Agric, 2015,23:141-149 (in Chinese with English abstract).
[37] 刘涛, 鲁剑巍, 任涛, 李小坤, 丛日环. 不同氮水平下冬油菜光合氮利用效率与光合器官氮分配的关系. 植物营养与肥料学报, 2016,22:518-524.
Liu T, Lu J W, Ren T, Li X K, Cong R H. Relationship between photosynthetic nitrogen use efficiency and nitrogen allocation in photosynthetic apparatus of winter oilseed rape under different nitrogen levels. Plant Nutr Fert Sci, 2016,22:518-524 (in Chinese with English abstract).
[38] 曾建敏, 彭少兵, 崔克辉, 黄见良. 热带水稻光合特性及氮素光合效率的差异研究. 作物学报, 2006,32:1817-1822.
Zeng J M, Peng S B, Cui K H, Hang J L. Genetic variation in photosynthetic characteristics and photosynthetic nitrogen use efficiency in tropical rice. Acta Agron Sin, 2006,32:1817-1822 (in Chinese with English abstract).
[39] Millard P, Sommerkom M, Gwen-Aelle G. Environmental change and carbon limitation in trees: a biochemical, ecophysiological and ecosystem appraisal. New Phytol, 2007,175:11-28.
[40] Reich P B, Walters M B. Photosynthesis-nitrogen relations in Amazonian tree species: II. Variation in nitrogen vis-a-vis specific leaf area influences mass- and area-based expressions. Oecologia, 1994,97:73-81.
[41] Gong W Z, Jiang C D, Wu Y S, Chen H H, Liu W Y, Yang W Y. Tolerance vs. avoidance: two strategies of soybean (Glycine max) seedlings in response to shade in intercropping. Photosynthetica, 2015,53:259-268.
[42] Hu Y J, Zhang H C. Optimizing nitrogen management strategy under wheat straw incorporation for higher rice production and nitrogen use efficiency. J Plant Nutr, 2016,40:492-505.
[43] 楚光红, 章建新, 唐长青, 高阳, 傅积海. 密度对中熟春大豆冠层结构及光合特性的影响. 中国农学通报, 2018,34(18):16-22.
Chu G H, Zhang J X, Tang C Q, Gao Y, Fu J H. Density affecting canopy structure and photosynthetic characteristics of medium maturity spring soybean. Chin Agric Sci Bull, 2018,34(18):16-22 (in Chinese with English abstract).
[44] 高砚亮, 孙占祥, 白伟, 冯良山, 杨宁, 蔡倩, 冯晨, 张哲. 辽西半干旱区玉米与花生间作对土地生产力和水分利用效率的影响. 中国农业科学, 2017,50:3702-3713.
Gao Y L, Sun Z X, Bai W, Feng L S, Yang N, Cai Q, Feng C, Zhang Z. Productivity and water use efficiency of maize-peanut intercropping systems in the semi-arid region of western Liaoning province. Sci Agric Sin, 2017,50:3702-3713 (in Chinese with English abstract).
[1] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[2] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[3] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[7] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[8] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[9] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[10] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[11] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[14] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[15] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!