欢迎访问作物学报,今天是

作物学报 ›› 2015, Vol. 41 ›› Issue (10): 1548-1556.doi: 10.3724/SP.J.1006.2015.01548

• 耕作栽培·生理生化 • 上一篇    下一篇

秸秆还田替代化学钾肥对棉麦轮作中棉仁油分累积的效应

宋光雷,睢宁,余超然,张凡,孟亚利,陈兵林,赵文青,王友华*   

  1. 南京农业大学农学院 / 农业部南方作物生理生态重点开放实验室, 江苏南京 210095
  • 收稿日期:2015-03-16 修回日期:2015-06-01 出版日期:2015-10-12 网络出版日期:2015-06-29
  • 通讯作者: 王友华, E-mail: w_youhua126@126.com, Tel: 025-84396129
  • 基金资助:

    本研究由国家自然科学基金项目(31371583)资助。

Effects of Straw-Returning Instead of Chemical Potassium Application on Oil Accumulation in Cottonseed Embryo in Wheat-Cotton Rotation System

SONG Guang-Lei,SUI Ning,YU Chao-Ran,ZHANG Fan,MENG Ya-Li,CHEN Bing-Lin,ZHAO Wen-Qing,WANG You-Hua*   

  1. Nanjing Agricultural University / Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agriculture, Nanjing 210095, China
  • Received:2015-03-16 Revised:2015-06-01 Published:2015-10-12 Published online:2015-06-29
  • Contact: 王友华, E-mail: w_youhua126@126.com, Tel: 025-84396129

摘要:

为研究棉田化学钾肥的秸秆替代施入对棉仁含油量的影响及其生理生化基础,2012—2013年于江苏省农业科学院试验站进行麦棉两熟周年秸秆还田定位试验,在棉花季设置小麦秸秆不还田(0, W0)、半量还田(4500 kg hm–2, W1)和全量还田(9000 kg hm–2, W2),在小麦季设置棉花秸秆不还田(0, C0)、半量还田(3750 kg hm–2, C1)和全量还田(7500 kg hm–2, C2),两种作物秸秆不同还田量组合后共9个秸秆还田处理,另根据秸秆折合钾肥量,于2012年棉花季开始增设2个钾肥用量处理,即150300 kg K2O hm2 (K1K2)。研究显示,在适宜氮肥(300 kg N hm–2)、磷肥(150 kg P2O5 hm–2)水平下,随着逐年秸秆还田与施钾,土壤速效氮、有效磷年际间差异均不显著,但土壤速效钾含量年际间存在显著差异;花后17 d24 d是不同处理条件下棉仁含油量差异形成的关键时期;相较于6-磷酸葡萄糖脱氢酶(G6PDH)、磷酸烯醇式丙酮酸羧化酶(PEPC),花后17 d24 d的磷脂酸磷酸酯酶(PPase)的活性对棉仁油分的通径系数更大。结果表明,短期秸秆还田与单施化学钾肥均主要影响棉田土壤速效钾含量;从棉仁油分累积角度来看,秸秆还田可在很大程度上替代化学钾的施入;花后17 d24 d棉仁钾含量是影响棉仁含油量的关键因子;秸秆还田替代化学钾肥条件下,PPaseG6PDHPEPC对棉仁油分的影响更为关键。

关键词: 棉仁, 油分, 秸秆还田, 钾肥

Abstract:

A field experiment was carried out to study the influence of straw returning to field (taking the place of chemical potassium fertilization) on cottonseed lipid content and its physiological mechanism in 2012—2013 in the research station of Jiangsu Agricultural Academy in Nanjing. Application rates of wheat straw were designed as 0, 4500, and 9000 kg ha-1 (W0, W1, and W2) in cotton season. Similarly, application rates of cotton straw were designed as 0, 3750, and 7500 kg ha-1 (C0, C1, and C2) in wheat reason. There were nine straw-returning treatments with combinations of two kinds of crop straw at returning different amounts. Additionally, according to the straw potassium content, K fertilizer rates were newly designed as 150 and 300 kg K2O ha-1 (K1 and K2) in cotton season in 2012. The results showed that under the condition of optimized nitrogen (300 kg N ha–1) and phosphate (150 kg P2O5 ha–1) fertilization levels, with straw returning and the chemical potassium fertilizer application year by year, the differences of soil available nitrogen and phosphorus between years were not significant, while those of soil K content were significantly different. The 17th day and 24th day after anthesis (DAA) were the key period for the difference of cottonseed oil formation. Under the chemical potassium fertilization and the straw returning condition, the phosphatidic acid phosphatase (PPase) contributed more to cottonseed oil accumulation than glucose 6-phosphate dehydrogenase (G6PDH) and phosphoenolpyruvate carboxylase (PEPC) in response to soil potassium nutrition. The result indicated that, the soil available K content was the major nutrition factor that was significantly affected by the two-years straw returning and the chemical potassium fertilizer application. Straw returning to field can take the place of chemical potassium application to a high extent. The amount of straw returning will affect potassium content of the soil. Low potassium stress will accelerate the aging of cotton plant, and might be a straight reason that caused the difference of oil content. The potassium content in the cottonseed at 17th day, 24th day after anthesis is a key nutrition factor that may lead to the difference of cottonseed oil content. The phosphatidic acid phosphatase (PPase) plays a more important role than glucose 6-phosphate dehydrogenase (G6PDH), phosphoenolpyruvate carboxylase (PEPC) in cottonseed oil accumulation in response to soil potassium nutrition.

Key words: Cottonseed embryo, Oil content, Returning straw, Potassium fertilizer

[1]Marschner H, Rimmington G M. Mineral Nutrition of Higher Plants. Plant Cell Environ, 1988, 11: 147–148



[2]Zörb C, Senbayram M, Peiter E. Potassium in agriculture–status and perspectives. J Plant Physiol, 2014, 171: 656–669



[3]董合忠, 唐薇, 李振怀, 张冬梅, 李维江. 棉花缺钾引起的形态和生理异常. 西北植物学报, 2005, 25: 615–624



Dong H Z, Tang W, Li Z H, Zhang D M, Li W J. Morphological and physiological disorders of cotton resulting from potassium deficiency. Acta Bot Borea-Occident Sin, 2005, 25: 615–624 (in Chinese with English abstract)



[4]Zhang Z Y, Tian X L, Duan L S, Wang B M, He Z P, Li Z H. Differential responses of conventional and Bt-transgenic cotton to potassium deficiency. J Plant Nutr, 2007, 30: 659–670



[5]白由路. 高价格下我国钾肥的应变策略. 中国土壤与肥料, 2009, (3): 1–4



Bai Y L. Response strategy of potassium fertilizer under high price in China. Soil Fert Sci China, 2009, (3): 1–4 (in Chinese with English abstract)



[6]王亚静, 毕于运, 高春雨. 中国秸秆资源可收集利用量及其适宜性评价. 中国农业科学, 2010, 43: 1852–1859



Wang Y J, Bi Y Y, Gao C Y. Collectable amount sand suitability evaluation of straw resource in China. Sci Agric Sin, 2010, 43: 1852–1859 (in Chinese with English abstract)



[7]李继福, 鲁剑巍, 任涛, 丛日环, 李小坤, 周鹂, 杨文兵, 戴志刚. 稻田不同供钾能力条件下秸秆还田替代钾肥效果. 中国农业科学, 2014, 47: 292–302



Li J F, Lu J W, Ren T, Cong R H, Li X H, Zhou L, Yang W B, Dai Z G. Effect of Straw incorporation substitute for K-fertilizer under different paddy soil K supply capacities. Sci Agric Sin, 2014, 47: 292–302 (in Chinese with English abstract)



[8]Karaosmanoglu F, Tuter M, Gollu E, Yanmaz S, Altintig E. Fuel properties of cottonseed oil. Energy Sourc, 1999, 21: 821–828.



[9]Meneghetti S M P, Meneghetti M R, Serra T M, Barbosa D C, Wolf C R. Biodiesel production from vegetable oil mixtures: cottonseed, soybean, and castor oils. Energy Fuels, 2007, 21: 3746–3747



[10]Gipson J R, Joham H E. Influence of night temperature on growth and development of cotton (Gossypium hirsutum L.): IV. Seed Quality. Agron J, 1969, 61: 365–367



[11]Anderson O E, Worthington R E. Boron and manganese effects on protein, oil content, and fatty acid composition of cottonseed. Agron J, 1971, 63: 566–569



[12]Leffler H R, Elmore C D, Hesketh J D. Seasonal and fertility-related changes in cottonseed protein quantity and quality. Crop Sci 1977, 17: 953–956



[13]Elmore C D, Spurgeon W I, Thom W Q. Nitrogen fertilization increases N and alters amino acid concentration of cottonseed. Agron J, 1979, 71: 713–716



[14]Sawan Z M, Hafez S A, Basyony A E, Alkassas A E E R. Cottonseed, protein, oil yields and oil properties as influenced by potassium fertilization and foliar application of zinc and phosphorus. World J Agric Sci, 2006, 2: 66–74



[15]Sawan Z M, Hafezb S A, Basyony A E, Alkassas A E E R. Cottonseed: protein, oil yields, and oil properties as influenced by potassium fertilization and foliar application of zinc and phosphorus. Grasas Y Aceites, 2007, 58: 40–48



[16]Leigh R A, Wyn-Jones R G.. Cellular compartmentation in plant nutrition: the selective cytoplasm and the promiscuous vacuole. Adv Plant Nutr USA, 1986, 2: 249–279



[17]Suelter C H. Role of potassium in enzyme catalysis. Potass Agric, 1985, 337–350



[18]鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 1999. p 147



Lu R K. Method for agro-chemical analyses of soil. Beijing: Agricultural, Science and Technology Press of China, 1999. p 147



[19]Fan M, Jiang R, Liu X, Zhang F, Lu S, Zeng X, Christie P. Interactions between non-flooded mulching cultivation and varying nitrogen inputs in rice-wheat rotations. Field Crops Res, 2005, 91: 307–318



[20]Feil B, Moser S B, Jampatong S, Stamp P. Mineral composition of the grains of tropical maize varieties as affected by pre-anthesis drought and rate of nitrogen fertilization. Crop Sci, 2005, 45: 516–523



[21]陈玉萍, 刘后利. 甘蓝型油菜子油分的积累与某些生理变化关系的研究. 武汉植物学研究, 1995, 13: 240–246



Chen Y P, Liu H L. Studies on the relationship between oil content and the change of biological metabolism in Brassica napus L. seed. J Wuhan Bot Res, 1995, 13: 240–246



[22]Tian W N, Braunstein L D, Pang J, Stuhlmeier K M, Xi Q C, Tian X, Stanton R C. Importance of glucose-6-phosphate dehydrogenase activity for cell growth. J Biol Chem, 1998, 273: 10609–10617



[23]西北农林科技大学. 基础生物化学实验指导. 陕西: 陕西科学技术出版社, 1986. pp 104–107



Northwest A&F University. Guide of Basic Biochemistry Experiment. Shanxi: Shaanxi Sci &Tech Press, 1986. pp 104–107 (in Chinese)



[24]Sebei K, Ouerghi Z, Kallel H, Boukhchina S. Evolution of phosphoenolpyruvate carboxylase activity and lipid content during seed maturation of two spring rapeseed cultivars (Brassica napus L.). Comptes Rendus Biol, 2006, 329, 719–725



[25]Edmeades D C. The long-term effects of manures and fertilisers on soil productivity and quality: a review. Nutr Cycl Agroecosyst, 2003, 66: 165–180



[26]Steiner C, Teixeira W G, Lehmann J, Nehls T, de Macêdo J L V, Blum W E H, Zech W. Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant Soil, 2007, 291: 275–290



[27]Zhao Y, Wang P, Li J, Chen Y, Liu S. The effects of two organic manures on soil properties and crop yields on a temperate calcareous soil under a wheat–maize cropping system. Eur J Agron, 2009, 31: 36–42



[28]Zhu H, Wu J, Huang D, Zhu Q, Liu S, Su Y, Wei W. Improving fertility and productivity of a highly-weathered upland soil in subtropical China by incorporating rice straw. Plant Soil, 2010, 331: 427–437



[29]Sui N, Zhou Z G, Yu C R, Liu R X, Yang C Q, Zhang F, Song G L, Meng Y. Yield and potassium use efficiency of cotton with wheat straw incorporation and potassium fertilization on soils with various conditions in the wheat–cotton rotation system. Field Crops Res, 2015, 172: 132–144.



[30]董合忠, 李维江, 唐薇, 张冬梅. 棉花生理性早衰研究进展. 棉花学报, 2005, 17: 56–60



Dong H Z, Li J W, Tang W, Zhang D M. research progress in physiological premature senescence in cotton. Cotton Sci, 2005, 17: 56–60



[31]杨铁钢, 黄树梅, 靳永胜, 孟菊茹, 刘凤玲. 棉株载铃量对其主要生育性状的影响. 华北农学报, 1999, 14(3): 65–70



Yang T G, Huang S M, Jin Y S, Meng J R, Liu F L. Effects of boll load in a cotton plant on major developmental traits. Acta Agric Boreali-Sin, 1999, 14(03): 65–70



[32]Wakao S, Benning C. Genome-wide analysis of glucose-6-phosphate dehydrogenases in Arabidopsis. Plant J, 2005, 41: 243–256



[33]Schwender J, Ohlrogge J B, Shachar-Hill Y. A flux model of glycolysis and the oxidative pentosephosphate pathway in developing Brassica napus embryos. J Biol Chem, 2003, 278: 29442–29453



[34]陈锦清, 郎春秀, 胡张华, 刘智宏, 黄锐之. 反义PEP基因调控油菜籽粒蛋白质/油脂含量比率的研究. 农业生物技术学报, 1999, 7: 316–320



Chen J Q, Lang C X, Hu Z H, Liu Z H, Huang R Z. Antisense PEP gene regulates to ratio of protein and lipid content in Brassica napus seeds. J Agric Biotechnol, 1999, 7: 316–320



[35]印南日, 李培武, 周海燕, 白艺珍, 丁小霞. 我国食用棉籽油质量安全. 中国农业科技导报, 2013, (4): 20–24



Yin N R, Li P W, Zhou H Y, Bai X Z, Ding X X. Quality and safety of edible Cottonseed oil in China. J Agric Sci Technol, 2013, (4): 20–24



[36]董合忠, 李维江, 张晓洁. 棉花种子学. 北京: 科学出版社, 2004. pp 53–54



Dong H Z, Li W J, Zhang X J. Science and technology of cottonseed. Beijing: Science Press, 2004. pp 53–54

[1] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[2] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[3] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[4] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[5] 刘磊, 廖萍, 邵华, 刘劲松, 杨星莲, 王静, 王海媛, 张俊, 曾勇军, 黄山. 施石灰和秸秆还田对双季稻田土壤钾素表观平衡的互作效应[J]. 作物学报, 2022, 48(1): 226-237.
[6] 吴玉红,郝兴顺,田霄鸿,陈浩,张春辉,崔月贞,秦宇航. 秸秆还田与化肥配施对汉中盆地稻麦轮作农田土壤固碳及经济效益的影响[J]. 作物学报, 2020, 46(02): 259-268.
[7] 廖萍,刘磊,何宇轩,唐刚,张俊,曾勇军,吴自明,黄山. 施石灰和秸秆还田对双季稻产量和氮素吸收的互作效应[J]. 作物学报, 2020, 46(01): 84-92.
[8] 李昊昱,孟兆良,庞党伟,陈金,侯永坤,崔海兴,金敏,王振林,李勇. 周年秸秆还田对农田土壤固碳及冬小麦-夏玉米产量的影响[J]. 作物学报, 2019, 45(6): 893-903.
[9] 陈玉章,柴守玺,程宏波,柴雨葳,杨长刚,谭凯敏,常磊. 秸秆还田结合秋覆膜对旱地冬小麦耗水特性和产量的影响[J]. 作物学报, 2019, 45(2): 256-266.
[10] 陈四龙,程增书,宋亚辉,王瑾,刘义杰,张朋娟,李玉荣. 高产高油花生品种的光合与物质生产特征[J]. 作物学报, 2019, 45(2): 276-288.
[11] 白伟,张立祯,逄焕成,孙占祥,牛世伟,蔡倩,安景文. 秸秆还田配施氮肥对东北春玉米光合性能和产量的影响[J]. 作物学报, 2017, 43(12): 1845-1855.
[12] 肖克,唐静,李继福,邹家龙,朱建强. 长期水稻-冬油菜轮作模式下钾肥的适宜用量[J]. 作物学报, 2017, 43(08): 1226-1233.
[13] 陈金,庞党伟,韩明明,尹燕枰,郑孟静,骆永丽,王振林*,李勇*. 耕作模式对土壤生物活性与养分有效性及冬小麦产量的影响[J]. 作物学报, 2017, 43(08): 1245-1253.
[14] 秦都林,王双磊,刘艳慧,聂军军,赵娜,毛丽丽,宋宪亮,孙学振. 滨海盐碱地棉花秸秆还田对土壤理化性质及棉花产量的影响[J]. 作物学报, 2017, 43(07): 1030-1042.
[15] 庞党伟,陈金,唐玉海,尹燕枰,杨东清,崔正勇,郑孟静,李勇,王振林. 玉米秸秆还田方式和氮肥处理对土壤理化性质及冬小麦产量的影响[J]. 作物学报, 2016, 42(11): 1689-1699.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!