欢迎访问作物学报,今天是

作物学报 ›› 2017, Vol. 43 ›› Issue (10): 1499-1506.doi: 10.3724/SP.J.1006.2017.01499

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

新型香稻渝恢2103香味分子遗传特性分析

王春萍1,**,张现伟2,**,白文钦1,蒋晓英1,吴红1,林清1,唐永群2,姚雄2,张巫军2,唐荣莉1,李经勇2,*,雷开荣1,*   

  1. 1 重庆市农业科学院生物技术研究中心, 重庆 401329; 2重庆市农业科学院重庆再生稻研究中心, 重庆 402160
  • 收稿日期:2016-12-05 修回日期:2017-04-19 出版日期:2017-10-12 网络出版日期:2017-05-23
  • 通讯作者: 李经勇, E-mail: ljy@cqagri.gov.cn; 雷开荣, E-mail: leikairong@126.com
  • 基金资助:

    本研究由重庆市农发良种创新暨重大科研推广项目(NKY2016AA003), 重庆市农发基础科研项目(NKY2016AC024), 重庆市基础与前沿研究计划项目(cstc2016jcyjA0091)和重庆市基本科研业务费(2014cstc-jbky-00549)资助。

Molecular Genetic Characters of Fragrance in a New Fragrant Rice Variety Yuhui 2103

WANG Chun-Ping1,**,ZHANG Xian-Wei2,**,BAI Wen-Qin1,JIANG Xiao-Ying1,WU Hong1,LIN Qing1,TANG Yong-Qun2,YAO Xiong2,ZHANG Wu-Jun2,TANG Rong-Li,LI Jing-Yong2,*,LEI Kai-Rong1,*   

  1. 1 Biotechnology Research Center, Chongqing  Academy of Agricultural Sciences, Chongqing 401329, China; 2 Chongqing Ratooning Rice Research Center, Chongqing Academy of Agricultural Sciences, Chongqing 402160, China
  • Received:2016-12-05 Revised:2017-04-19 Published:2017-10-12 Published online:2017-05-23
  • Contact: 李经勇, E-mail: ljy@cqagri.gov.cn; 雷开荣, E-mail: leikairong@126.com
  • Supported by:

    This work was supported by Chongqing Agriculture Seed Innovation and Major Research Extension Project (NKY2016AA003), Chongqing Agriculture Basic Research Project (NKY2016AC024), Chongqing Basic and Frontier Research Program (cstc2016jcyjA0091) and Chongqing Basic Research Fund (2014cstc-jbky-00549).

摘要:

香味是优良稻米品质的重要衡量标准之一, 2-乙酰-1-吡咯啉(2AP)是最主要的香味物质, 然而2AP生物合成机理至今仍未确凿。本研究筛选了与2AP生物合成密切相关的甜菜碱脱氢酶2基因(Badh2)在30份水稻材料中的3种突变类型, 从中发现1份新的香稻材料渝恢2103, 该材料Badh2基因序列编码区无突变, 遗传分析显示渝恢2103与badh2-E7突变型香稻宜香1B香味基因不等位, 与非香稻杂交F2香与非香分离比接近9∶7, 与香稻杂交F2香与非香分离比接近7∶9, 表明渝恢2103的香味受多基因控制。进一步利用实时荧光定量PCR技术(qRT-PCR)比较了与2AP生物合成相关基因在日本晴、渝恢2103和宜香1B的表达情况, 结果显示, Badh2基因在日本晴和渝恢2103中表达差异不大, 但在宜香1B中表达量异常高; 多数脯氨酸与谷氨酸代谢途径相关基因在宜香1B中的表达水平显著高于日本晴和渝恢2103; 推测宜香1B的2AP合成同时受Badh2基因以及脯氨酸与谷氨酸代谢途径相关基因的影响; 渝恢2103香味形成可能与这些基因无必然联系。渝恢2103特殊的遗传特性可能为水稻香味形成机理研究提供新的突破点。

关键词: 香稻, 2-乙酰-1-吡咯啉, 脯氨酸, 谷氨酸, Badh2, 遗传特性

Abstract:

A major component 2-Acetyl-1-pyrroline (2AP) in fragrance is one of the important indices of high-quality rice, however, the biosynthetic pathway of 2AP has not been demonstrated clearly. The betaine aldehyde dehydrogenase 2 (BADH2) is considered to be closely related to 2AP biosynthesis. In this study, three mutations in Badh2 gene were screened from thirty rice varieties and a new fragrant rice variety Yuhui 2103 was discovered. The new variety has no mutation in the coding region of Badh2 gene and the Badh2 allele of Yuhui 2103 can complement the defect of the badh2-E7 allele in Yixiang 1B. From crosses between Yuhui 2103 and non-fragrant varieties the segregating ratios of F2 fragrant to non-fragrant individuals were 9:7, while from crosses between Yuhui 2103 and fragrant varieties the segregating ratios of F2 fragrant to non-fragrant individuals were 7:9, indicating that fragrance of Yuhui 2103 is not controlled by only one gene. Furthermore, expression patterns of genes involved in 2AP biosynthesis were examined by the quantitative real-time PCR (qRT-PCR) in Nipponbare, Yuhui 2103, and Yixiang 1B. There was no significant difference in transcription level of Badh2 in Nipponbare and Yuhui 2103, however, the transcription level of Badh2 inYixiang 1B was unexpectedly high. The expression levels of most of the genes involved in proline and glutamatic acid metabolism were significantly higher in Yixiang 1B than that in Nipponbare and Yuhui 2103. It is proposed that 2AP biosynthesis in Yixiang 1B is both influenced by Badh2 and the genes involved in proline and glutamatic acid metabolism, however, there is no necessary relationship between these genes and the fragrance of Yuhui 2103. The novel genetic characters of Yuhui 2103 may bring new breakthrough to the study of fragrance formation mechanism in rice.

Key words: Fragrant rice, 2-Acetyl-1-pyrroline, Proline, Glutamatic acid, Badh2, Genetic character

[1] Bradbury L M T, Fitzgerald T L, Henry R J, Jin Q S, Waters D L E. The gene for fragrance in rice.Plant Biotechnol J, 2005, 3: 363–370
[2] Bradbury L M T, Gillies S A, Brushett D J, Waters D L E. Inactivation of an aminoaldehyde dehydrogenase is responsible for fragrance in rice. Plant Mol Biol, 2008, 68: 609–616
[3] Chen S H, Wu J, Yang Y, Shi W W, Xu M L. The fgr gene responsible for rice fragrance was restricted within 69 kb. Plant Sci, 2006, 17: 505–514
[4] Chen S H, Yang Y, Shi W W, Ji Q, He F, Zhang Z D, Cheng Z K, Liu X N, Xu M L. Badh2, encoding betaine aldehyde dehydrogenase, inhibits the biosynthesis of 2-acetyl-1-pyrroline, a major component in rice fragrance. Plant Cell, 2008, 20: 1850–1861
[5] Romanczyk L J, Mcclelland C A, Post L S, Aitken W M. Formation of 2-acetyl-l-pyrroline by several Bacillus cereus strains isolated from cocoa fermentation boxes. J Agric Food Chem, 1995, 43: 469–475
[6] Yoshihashi T, Huong N T T, Kabaki N. Quality evaluation of Khao Dawk Mali 105, an aromatic rice variety of northeast Thailand. JIRCAS Work Rep, 2002, 30: 151–160
[7] Yoshihashi T, Huong N T T, Inatomi H. Precursors of 2-acetyl-1-pyrroline, a potent flavor compound of an aromatic rice variety. J Agric Food Chem, 2002, 50: 2001–2004
[8] Trossat C, Rathinasabapathi B, Hanson A D. Transgenically expressed bataine aldehyde dehydrognase efficiently catalyzes oxidation of dimethylsulfoniopropionaldehyde and ω-aminoaldehydes. Plant Physiol, 1997, 113: 1457–1461
[9] Huang T C, Teng C S, Chang J L, Chuang H S, Ho C T, Wu M L. Biosynthetic mechanism of 2-acetyl-1-pyrroline and its relationship with ?1-pyrroline-5-carboxylic acid methylglyoxal in aromatic rice (Oryza sativa L.) callus. J Agric Food Chem, 2008, 56: 7399–7404
[10] Schieberle P. Quantitation of important roast-smelling odorants in popcorn by stable isotope dilution assays and model studies on flavor formation during popping. J Agric Food Chem, 1995, 43: 2442–2448
[11] He Q, Park Y J. Discovery of a novel fragrant allele and development of functional markers for fragrance in rice. Mol Breed, 2015, 35: 217–227
[12] Shi W W, Yang Y, Chen S H, Xu M L. Discovery of a new fragrance allele and the development of functional markers for breeding of fragrant rice varieties. Mol Breed, 2008, 22: 185–192
[13] Shi Y Q, Zhao G C, Xu X L, Li J Y. Discovery of a new fragrance allele and development of functional markers for identifying diverse fragrant genotypes in rice. Mol Breed, 2014, 33: 701–708
[14] Fitzgerald M A, Hamilton N R S, Calingacion M N, Verhoeven H A, Burtado V M. Is there a second fragrance gene in rice?Plant Biotechnol J, 2008, 6: 416–423
[15] Amarawathi Y, Singh R, Singh A K,Singh V P. Mapping of quantitative trait of loci for basmati quality traits in rice (Oriza sativa L.). Mol Breed, 2007, 21: 49–65
[16] Pachauri V, Mishra V, Mishra P, Singh A K, Singh S, Singh R, Singh N K. Identification of candidate genes for rice grain aroma by combining QTL mapping and transcriptome profiling approaches. Cereal Res Commun, 2014, 42: 376–388
[17] Cheng A, Ismail I, Osman M, Hashim. Mapping of quantitative trait loci for aroma, amylose content and cooked grain elongation traits in rice. Plant Omics, 2014, 7: 152–157
[18] Sood B G, Siddiq E A. A rapid technique for scent determination in rice. Indian J Genet Plant Breed, 1978, 38: 268–275
[19] Dhulappanavar C V. Inheritance of scent in rice. Euphytica, 1975, 25: 659–666
[20] Forlani G, Bertazzini M, Zarattini M, Funk D. Functional characterization and expression analysis of rice δ1-pyrroline-5-carboxylate dehydrogenase provide new insight into the regulation of proline and arginnine catabolism. Front Plant Sci, 2015, 6: 591
[21] Pinson S R M. Inheritance of aroma in six rice cultivars. Crop Sci, 1994, 34: 1151–1157
[22] Hinge V R, Patil H B, Nadaf A. Aroma volatile analyses and 2AP characterization at various developmental stages in Basmati and Non-Basmati scented rice (Oryza sativa L.) cultivars. Rice, 2016, 9: 38–50
[23] Lorieux M, Petrov M, Huang N, Guiderdoni E, Ghesquière A. Aroma in rice: genetic analysis of a quantitative trait. Theor Appl Genet, 1996, 93: 1145–1151

[1] 曾紫君, 曾钰, 闫磊, 程锦, 姜存仓. 低硼及高硼胁迫对棉花幼苗生长与脯氨酸代谢的影响[J]. 作物学报, 2021, 47(8): 1616-1623.
[2] 高璐, 许文亮. 脯氨酸羟化酶GhP4H2在棉花纤维发育中的功能研究[J]. 作物学报, 2021, 47(7): 1239-1247.
[3] 王吴彬, 童飞, KHAN Mueen Alam, 张雅轩, 贺建波, 郝晓帅, 邢光南, 赵团结, 盖钧镒. 大豆根部水压胁迫耐逆指数遗传体系解析[J]. 作物学报, 2021, 47(5): 847-859.
[4] 王翠平,华学军,林彬,刘爱华. 甘蓝型油菜脯氨酸合成相关同源基因的进化和差异表达分析[J]. 作物学报, 2017, 43(10): 1480-1488.
[5] 黄雅敏,朱杉杉,赵志超,蒲志刚,刘天珍,罗胜,张欣. 水稻早衰突变体psls1的基因定位及克隆[J]. 作物学报, 2017, 43(01): 51-62.
[6] 武亮亮,姚磊,马瑞,朱熙,杨江伟,张宁,司怀军. 马铃薯HD-Zip I家族ATHB12基因的克隆及功能鉴定[J]. 作物学报, 2016, 42(08): 1112-1121.
[7] 吕高强,吴向阳,王心宇. 芝麻中一个富含脯氨酸新基因的克隆与特征分析[J]. 作物学报, 2015, 41(12): 1810-1818.
[8] 马春雷,姚明哲,王新超,金基强,马建强1陈亮. 茶树叶绿素合成相关基因克隆及在白叶1号不同白化阶段的表达[J]. 作物学报, 2015, 41(02): 240-250.
[9] 周精华, 邢虎成, 揭雨成, 钟英丽, 朱守晶, 蒋杰, 王亮. 苎麻Δ1-吡咯啉-5-羧酸合成酶(P5CS)基因的克隆和表达分析[J]. 作物学报, 2012, 38(03): 549-555.
[10] 王磊,朱一超,蔡彩萍,张天真,郭旺珍. 两个棉纤维发育相关基因的克隆与特征分析[J]. 作物学报, 2010, 36(1): 85-91.
[11] 陈吉宝,赵丽英,毛新国,王述民,景蕊莲. PvP5CS1基因拟南芥植株对干旱和盐胁迫的反应[J]. 作物学报, 2010, 36(1): 147-153.
[12] 陈吉宝;景蕊莲;毛新国;昌小平;王述民. 普通菜豆PvP5CS2基因对逆境胁迫的应答[J]. 作物学报, 2008, 34(07): 1121-1127.
[13] 许文亮;黄耿青;王秀兰;邰付菊;汪虹;李学宝. 两个棉花HyPRP基因的分子鉴定与初步表达分析[J]. 作物学报, 2007, 33(07): 1146-1153.
[14] 刘玲珑;江玲;刘世家;周时荣;张文伟;王春明;陈亮明;翟虎渠;万建民. 巨胚水稻W025糙米浸水后γ-氨基丁酸含量变化的研究[J]. 作物学报, 2005, 31(10): 1265-1270.
[15] 简令成;卢存福;李积宏;LI Paul H. 适宜低温锻炼提高冷敏感植物玉米和番茄的抗冷性及其生理基础[J]. 作物学报, 2005, 31(08): 971-976.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!