欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (08): 1351-1359.doi: 10.3724/SP.J.1006.2011.01351

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

野生大豆转录因子GsNAC20基因的分离及胁迫耐性分析

才华,朱延明*,李勇,柏锡,纪巍,王冬冬,孙晓丽   

  1. 东北农业大学生命科学学院,黑龙江哈尔滨 150030
  • 收稿日期:2011-01-16 修回日期:2011-04-27 出版日期:2011-08-12 网络出版日期:2011-06-13
  • 通讯作者: 朱延明,E-mail:ymzhu2001@yahoo.com.cn
  • 基金资助:

    本研究由黑龙江省教育厅科技项目(11521021), 黑龙江省博士后基金(LBH-Z08253), 国家重大基础研究前期专项(2003CCA03500)和国家自然科学基金项目(30471059)资助。

Isolation and Tolerance Analysis of GsNAC20 Gene Linked to Response to Stress in Glycine soja

CAI Hua,ZHU Yan-Ming*,LI Yong,BAI Xi,JI Wei,WANG Dong-Dong,SUN Xiao-Li   

  1. College of Life Sciences, Northeast Agricultural University, Harbin 150030, China,
  • Received:2011-01-16 Revised:2011-04-27 Published:2011-08-12 Published online:2011-06-13
  • Contact: 朱延明,E-mail:ymzhu2001@yahoo.com.cn

摘要: NAC (NAM, ATAF1/2, CUC2)转录因子作为一类新型转录因子已成为非生物胁迫基因工程领域的研究热点。本研究以野生大豆(Glycine soja)为材料,利用酵母单杂交的方法筛选到一个能够与MYB1AT元件(核心序列为AAACCA)结合的转录因子基因,该基因与大豆NAC20 (EU440353.1)基因具有99%的相似性,命名为GsNAC20。GsNAC20蛋白含有典型的NAC结构域和转录激活区。酵母试验表明,GsNAC20转录因子能够与耐逆相关顺式元件MYB1AT特异结合,但不具有自激活功能。细胞定位分析证明该基因位于细胞核中,符合转录因子的特征。GsNAC20能够响应高盐、干旱和低温胁迫,并且在根和叶中具有不同的表达模式。超量表达GsNAC20基因的拟南芥对盐胁迫的敏感性提高。以上结果表明GsNAC20参与植物非生物胁迫反应过程,该基因在非生物胁迫基因工程研究领域具有良好的理论研究和实际应用价值。

关键词: 野生大豆, 转录因子, GsNAC20, 非生物胁迫

Abstract: Abiotic stresses, such as salt and drought, affect plant growth, development and reduce crop yield. Isolationof a key regulatory gene linked to response to abiotic-stress and identification of thegenes function areurgently needed. Glycine soja is an excellent material to isolate abiotic stress-related genes because of its high stress tolerance. Plant-specific transcription factor NAC (NAM, ATAF1/2, CUC2) proteins play essential roles in many biological processes such as development, senescence, morphogenesis, and stress signal transduction pathways. It has become a new research focus in the abiotic-stress field. Based on that, we screened a new NAC gene from Glycine soja by yeast one hybrid, which has 99% similarity with NAC20 of Glycine max (EU440353.1), named as GsNAC20. GsNAC20 had typical NAC DNA-binding domain at the N-terminal and transcription activation region at the C-terminal. It can bind to MYB1AT element (the core sequence: AAACCA) in vitro, but no transcriptional activation activity in the yeast assay system, which was consistent with GmNAC20. Localization of GsNAC20 protein was analyzed by transient expression in tobacco epidermis cells and the result showed that GsNAC20 waslocalized in nucleus. Semi-quantitative RT-PCR showed the expression level of GsNAC20 was induced by drought, low temperature and salt stresses, but there existed difference between leaf and root in G. soja. Arabidopsis thaliana plants overexpressing GsNAC20 showed higher sensitivity under salt stress. All results showed that GsNAC20 perhaps is a new member of NAC family in G. soja, and is closely related to salt and drought stresses, so it can either be used as a new resource in gene engineering on stress tolerance or be further studied to provide more information for the researches on the mechanism of stress tolerance in plant.

Key words: Glycine soja, Transcription factor, GsNAC20, Abiotic stress

[1]Li P(李鹏), Huang G-Q(黄耿青), Li X-B(李学宝). Plant NAC transcription factors. Plant Physiol Mol Biol (植物生理学通讯), 2010, 46(3): 294–300 (in Chinese with English abstract)
[2]Aida M, Ishida T, Fukaki H, Fujisawa H, Tasaka M. Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. Plant Cell, 1997, 9: 841–857
[3]Hu H H, Dai M Q, Yao J L, Xiao B Z, Li X H, Zhang Q F, Xiong L Z. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci USA, 2006, 103: 12987–12992
[4]Zheng X, Chen B, Lu G, Han B. Overexpression of a NAC transcription factor enhances rice drought and salt tolerance. Biochem Biophys Res Commun, 2009, 379: 985–989
[5]Lu P L, Chen N Z, An R, Su Z, Qi B S, Ren F, Chen J, Wang X C. A novel drought-inducible gene, ATAF1, encodes a NAC family protein that negatively regulates the expression of stress-responsive genes in Arabidopsis. Plant Mol Biol, 2007, 63: 289−305
[6]Tran L S, Nakashima K, Sakuma Y, Simpson S D, Fujita Y, Maruyama K, Fujita M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell, 2004, 16: 2481–2498
[7]Fujita M, Fujita Y, Maruyama K, Seki M, Hiratsu K, Ohme-Takagi M, Tran L S, Yamaguchi-Shinozaki K, Shinozaki K. A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway. Plant J, 2004, 39: 863–876
[8]Souer E, Houwelingen V A, Kloos D, Mol J, Koes R. The no apical meristem gene of petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordial boundaries. Cell, 1996, 85: 159–170
[9]Riechmann J L, Heard J, Martin G, Reuber L, Jiang C, Keddie J, Adam L, Pineda O, RatcliVe O J, Samaha R R, Creelman R, Pilgrim M, Broun P, Zhang J Z, Ghandehari D, Sherman B K, Yu G L. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science, 2000, 290: 2105–2110
[10]Jensen M K, Rung J H, Gregersen P L. The HvNAC6 transcription factor: a positive regulator of penetration resistance in barley and Arabidopsis. Plant Mol Biol, 2007, 65: 137–150
[11]Ooka H, Satoh K, Doi K, Nagata T, Otomo Y, Murakami K, Matsubara K, Osato N, Kawai J, Carninci P, Hayashizaki Y, Suzuki K, Kojima K, Takahara Y, Yamamoto K, Kikuchi S. Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Res, 2003, 10: 239–247
[12]Fang Y, You J, Xie K, Xie W, Xiong L. Systematic sequence analysis and identification of tissue-specific or stress-responsive genes of NAC transcription factor family in rice. Mol Genet Genomics, 2008, 280: 535–546
[13]Liu Z-J(柳展基), Shao F-X(邵凤霞), Tang G-Y(唐桂英), Shan L(单雷), Bi Y-P(毕玉平). Cloning and characterization of a transcription factor ZmNAC1 in maize (Zea mays). Hereditas (遗传), 2009, 31(2): 199–205 (in Chinese with English abstract)
[14]Liu X(刘旭), Li L(李玲). Cloning and characterization of the NAC-like gene AhNAC2 and AhNAC3 in peanut. Acta Agron Sin (作物学报), 2009, 35(3): 541–545 (in Chinese with English abstract)
[15]Meng Q C, Zhang C H, Gai J Y, Yu D Y. Molecular cloning, sequence characterizatiion and tissue specific expression of six NAC-likegenes in soybean (Glycine max L. Merr.). J Plant Physilol, 2007, 164: 1002–1012
[16]Abe H, Urao T, Ito T, Seki M, Shinozaki K. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell, 2003, 15: 63–78
[17]Wang X(王希), Li Y(李勇), Zhu Y-M(朱延明), Bai X(柏锡), Cai H(才华), Ji W(纪巍). Cloning and tolerance analysis of GsANN gene related to response on stressin in Glycine soja. Acta Agron Sin (作物学报), 2010, 36(10): 1666–1673 (in Chinese with English abstract)
[18]Olsen A N, Ernst H A, Leggio L L, Skriver K. NAC transcription factors: structurally distinct, functionally diverse. Trends Plant Sci, 2005, 10: 79–87
[19]Hao Y J, Song Q X, Chen H W, Zou H F, Wei W, Kang X S, Ma B, Zhang W K, Zhang J S, Chen S Y. Plant NAC-type transcription factor proteins contain a NARD domain for repression of transcriptional activation. Planta, 2010, 232: 1033–1043
[20]Tran L S, Quach T N, Guttikonda S K, Aldrich D L, Kumar R, Neelakandan A, Valliyodan B, Nguyen H T. Molecular characterization of stress-inducible GmNAC genes in soybean. Mol Genet Genomics, 2009, 281: 647–664
[21]Wu Y R, Deng Z Y, Lai J B, Zhang Y Y, Yang C P, Yin B J, Zhao Q Z, Zhang L, Li Y, Yang C W, Xie Q. Dual function of Arabidopsis ATAF1 in abiotic and biotic stress responses. Cell Res, 2009, 19: 1279–1290
[1] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[2] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[3] 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449.
[4] 尹明, 杨大为, 唐慧娟, 潘根, 李德芳, 赵立宁, 黄思齐. 大麻GRAS转录因子家族的全基因组鉴定及镉胁迫下表达分析[J]. 作物学报, 2021, 47(6): 1054-1069.
[5] 葛敏, 王元琮, 宁丽华, 胡梦梅, 石习, 赵涵. 氮响应转录因子ZmNLP5影响玉米根系生长的功能研究[J]. 作物学报, 2021, 47(5): 807-813.
[6] 贾小平, 李剑峰, 张博, 全建章, 王永芳, 赵渊, 张小梅, 王振山, 桑璐曼, 董志平. 谷子SiPRR37基因对光温、非生物胁迫的响应特点及其有利等位变异鉴定[J]. 作物学报, 2021, 47(4): 638-649.
[7] 杨梦婷, 张春, 王作平, 邹华文, 吴忠义. 玉米ZmbHLH161基因的克隆及功能研究[J]. 作物学报, 2020, 46(12): 2008-2016.
[8] 张欢, 杨乃科, 商丽丽, 高晓茹, 刘庆昌, 翟红, 高少培, 何绍贞. 甘薯抗旱相关基因IbNAC72的克隆与功能分析[J]. 作物学报, 2020, 46(11): 1649-1658.
[9] 贾小霞,齐恩芳,刘石,文国宏,马胜,李建武,黄伟. AtDREB1A基因过量表达对马铃薯生长及抗非生物胁迫基因表达的影响[J]. 作物学报, 2019, 45(8): 1166-1175.
[10] 陈影,张晟瑞,王岚,王连铮,李斌,孙君明. 野生和栽培大豆种质油脂组成特点及其与演化的关系[J]. 作物学报, 2019, 45(7): 1038-1049.
[11] 孙婷婷,王文举,娄文月,刘峰,张旭,王玲,陈玉凤,阙友雄,许莉萍,李大妹,苏亚春. 甘蔗脂氧合酶基因ScLOX1的克隆与表达分析[J]. 作物学报, 2019, 45(7): 1002-1016.
[12] 殷龙飞,王朝阳,吴忠义,张中保,于荣. 玉米ZmGRAS31基因的克隆及功能研究[J]. 作物学报, 2019, 45(7): 1029-1037.
[13] 时丕彪,何冰,费月跃,王军,王伟义,魏福友,吕远大,顾闽峰. 藜麦GRF转录因子家族的鉴定及表达分析[J]. 作物学报, 2019, 45(12): 1841-1850.
[14] 张宏娟,李玉莹,苗丽丽,王景一,李超男,杨德龙,毛新国,景蕊莲. 小麦转录因子基因TaNAC67参与调控穗长和每穗小穗数[J]. 作物学报, 2019, 45(11): 1615-1627.
[15] 王玲,刘峰,戴明剑,孙婷婷,苏炜华,王春风,张旭,毛花英,苏亚春,阙友雄. 甘蔗ScWRKY4基因的克隆与表达特性分析[J]. 作物学报, 2018, 44(9): 1367-1379.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!