欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (11): 2046-2052.doi: 10.3724/SP.J.1006.2011.02046

• 耕作栽培·生理生化 • 上一篇    下一篇

田间条件下转玉米C4型PEPC基因小麦的光合生理特性

吴琼1,2,3,许为钢2,3,*,李艳2,3,齐学礼2,3,胡琳2,3,张磊2,3,韩琳琳2,3   

  1. 1南京农业大学作物遗传与种质创新国家重点实验室, 江苏南京210095;2 河南省农业科学院小麦研究中心, 河南郑州 450002;3河南省小麦生物学重点实验室, 河南郑州 450002
  • 收稿日期:2011-04-01 修回日期:2011-06-15 出版日期:2011-11-12 网络出版日期:2011-09-06
  • 通讯作者: 许为钢, E-mail: xuwg1958@sohu.com, Tel: 0371-65712307
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)前期专项(2009CB126000-9), 国家自然科学基金项目(30971785), 国家转基因生物新品种培育科技重大专项(2011ZX08002-003), 国家科技支撑计划项目(2011BAD07B00)和河南省杰出青年基金(104100510021)资助。

Physiological Characteristics of Photosynthesis in Transgenic Wheat with Maize C4-PEPC Gene under Field Conditions

WU Qiong1,2,3, XU Wei-Gang2,3,*, LI Yan2,3, QI Xue-Li2,3,HU Lin2,3,ZHANG Lei2,3,HAN Lin-Lin2,3   

  1. 1 National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; 2 Wheat Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; 3 Henan Key Laboratory of Wheat Biology, Zhengzhou 450002, China
  • Received:2011-04-01 Revised:2011-06-15 Published:2011-11-12 Published online:2011-09-06
  • Contact: 许为钢, E-mail: xuwg1958@sohu.com, Tel: 0371-65712307

摘要: 为了检验转PEPC基因小麦是否具有C4光合生理特性,以转PEPC基因小麦和对照周麦19为试验材料,分别于抽穗期、开花期、花后第7天和花后第15天测定其单株旗叶的气体交换参数日变化,对净光合速率日变化进行单位日光合总量分析, 并且对净光合速率日变化与单株气孔导度、胞间CO2浓度、蒸腾速率日变化的相关性进行了分析;在花后第15天测定其单株叶绿素荧光参数,并在成熟期调查了单株产量性状。与对照相比,转基因株系在4个测定时期的旗叶净光合速率明显提高,尤其在花后第15天,单位日光合总量较对照提高29.1%和23.3%,气孔导度和蒸腾速率均明显增加,胞间CO2浓度降低;花后第15天12:00与8:00相比,转PEPC基因小麦的Fv/Fmqp、NPQ、ΦPSII的变幅均小于对照;单茎重、千粒重、单穗重和收获指数较对照显著增加。以上结果表明,转PEPC基因小麦材料在田间条件下光合特性明显优于对照,且具有提高小麦产量水平的潜力

关键词: 磷酸烯醇式丙酮酸羧化酶, 转基因小麦, 光合特性

Abstract: Transformation and high efficiency expression of key enzymes gene of C4 photosynthetic characteristics are the important approach to improve photosynthetic efficiency and seed yield for C3 crop wheat. Phosphoenolpyruvate carboxylase (PEPC) plays an important role in C4 pathway. The authors have obtained several transgenic wheat lines with maize C4 type PEPC gene. To explore the expression and functional characteristics of PEPC gene in transgenic wheat plants, PCR test, PEPC activity, gas exchange parameters, chlorophyll fluorescence parameters and yield related characteristics of transgenic wheat lines were determined, using untransformed wheat as the control, and the value of diurnal photosynthesis cumulative (VDPC) at the four stages and the correlations between net photosynthesis rate and stomata conductance, intercellular CO2 concentration and transpiration rate were analyzed. The results showed that in the four determination stages, net photosynthetic rate of transgenic wheat obviously increased For instance VDPC was increased by 29.1% and 23.3% on the 15th day after anthesis. Stomatal conductance and transpiration rate in flag leaves of transgenic wheat obviously increased compared to the control, and intercellular CO2 concentration decreased. Net photosynthetic rate of transgenic wheat enhanced by 23.2%, and variation scope of Fv/Fm, qp, NPQ, and ΦPSII of transgenic wheat was smaller than that of the control from 8:00 to 12:00 on the 15th day after anthesis; the major yield characteristics, such as weight per stem, thousand grain weight, single spike weight and harvest index of transgenic wheat, were significantly higher than those of the control. The results described above indicated that the transgenic wheat expressing maize PEPC gene showed better photosynthetic characteristics than untransformed plant and has the potential to increase wheat yield.

Key words: Phosphoenolpyruvate carboxylase, Transgenic wheat, Photosynthetic characteristics

[1]Ku M S B, Agarie S, Nomura M, Fukayama H, Tsuchida H, Ono K, Hirose S, Toki S, Miyao M, Matsuoka M. High-level expression of maize phosphoenolpyruvate carboxylase in transgenic rice plants. Nat Biotech, 1999, 17: 76-80
[2]Jeanneau M, Vidal J, Gousset Dupont A, Lebouteiller B, Hodges M, Gerentes D, Perez P. Manipulating PEPC levels in plants. J Exp Bot, 2002, 53: 1837-1845
[3]Von Caemmerer S. C4 photosynthesis in a single C3 cell is theoretically inefficient but may ameliorate internal CO2 diffusion limitations of C3 leaves. Plant Cell & Environ, 2003, 26: 1191-1197
[4]Hibberd J M, Sheehy J E, Langdale J A. Using C4 photosynthesis to increase the yield of rice: rationale and feasibility. Curr Opin Plant Biol, 2008, 11: 228-231
[5]Wu M(吴梅), Zhang B-J(张边江), Chen Q-Z(陈全战), Wang R-F(王荣富). Research progress on introducing efficient photosynthetic C4 genes into C3 plant. Chin Agric Sci Bull (中国农学通报), 2010, 26(3): 68-71 (in Chinese with English abstract)
[6]Veronika D, Helena R. What can enzymes of C4 photosynthesis do for C3 plants under stress? Plant Sci, 2011, 180: 575-583
[7]Zhang G-F(张桂芳), Zhao M (赵明), Ding Z-S(丁在松), Zhang L(张丽), Xiao J-T(肖俊涛). Cloning and characterization of phosphoenolpyruvate carboxylase gene from Echinochloa crusgalli. Acta Agron Sin (作物学报), 2005, 31(10): 1365-1369 (in Chinese with English abstract)
[8]Zhang J F, Bandyopadhyay A, Krisnan S, Wang G Y, Xie H A, Datta K, Datta S K. Characterization of a C4 maize pyruvate orthophosphate dikinase expressed in C3 transgenic rice plants. Afr J Biotechnol, 2010, 9: 234-242
[9]Wang J M, Li R Z. Integration of C4-specific ppdk gene of Echinochloa to C3 upland rice and its photosynthesis characteristics analysis. Afr J Biotechnol, 2008, 7: 783-787
[10]Tsuchida H, Tamai T, Fukayama H, Agarie S, Nomura M, Onodera H, Ono K, Nishizawa Y, Lee B H, Hirose S, Toki S, Ku M S B, Matsuoka M, Miyao M. High level expression of C4-specific NADP-malic enzyme in leaves and impairment of photoautotrophic growth in a C3 plant, rice. Plant Cell Physiol, 2001, 42: 138-145
[11]Chi W, Zhou J S, Zhang F, Wu N H. Photosynthetic features of transgenic rice expressing sorghum C4 type NADP-ME. Acta Bot Sin, 2004, 46: 873-882
[12]Fahnenstich H, Saigo M, Niessen M, Zanor M I, Andreo C S, Fernie A R, Drincovich M F, Flügge U I, Maurino V G. Alteration of organic acid metabolism in Arabidopsis overexpressing the maize C4 NADP-malic enzyme causes accelerated senescence during extended darkness. Plant Physiol, 2007, 145: 640-652
[13]Ding Z-S(丁在松), Zhao M(赵明), Jing Y-X(荆玉祥), Li L-B(李良璧), Kuang T-Y(匡廷云). Effect of overexpression of maize pepc gene on photosynthesis in transgenic rice plants. Acta Agron Sin (作物学报), 2007, 33(5): 717-722 (in Chinese with English abstract)
[14]Ku M S B, Cho D, Ranade U, Hsu T P, Li X, Jiao D M, Ehleringer J, Miyao M, Matsuoka M. Photosynthetic performance of transgenic rice plants overexpressing maize C4 photosynthesis enzymes. In: Sheehy J, Mitchell P L, Hardy B, eds. Redesign Rice Photosynthesis to Improve Yield. Los Baños, the Philippines and Amsterdam, the Netherlands: Elsevier, 2000. pp 193-204
[15]Jiao D M, Li X, Ji B H. Photoprotective effects of high level expression of C4 phosphoenolpyruvate carboxylase in transgenic rice during photoinhibition. Photosynthetica, 2005, 43: 501-508
[16]Jiao D-M(焦德茂), Li X(李霞), Huang X-Q(黄雪清), Chi W(迟伟), Kuang T-Y(匡廷云), Ku M S B. Characteristics of photosynthetic CO2 assimilation and chlorophyll fluorescence in transgenic rice plants with PEPC gene. Chin Sci Bull (科学通报), 2001, 46(13): 1080-1084 (in Chinese)
[17]Jiao D-M(焦德茂), Kuang T-Y(匡廷云), Li X(李霞), Qiao Y(巧英), Huang X-Q(黄雪清), Hao N-B(郝乃斌), Bai K-Z(白克智). Physiological characteristics of transgenic PEPC rice plants with primary CO2 concentrating mechanism. Sci China (Ser C) (中国科学C辑), 2003, 33(1): 33-39 (in Chinese)
[18]Ji B-H(季本华), Zhu S-Q(朱素琴), Jiao D-M(焦德茂). Photosynthetic C4 microcycle in transgenic rice plant lines expressing the maize C4 photosynthetic enzymes. Acta Agron Sin (作物学报), 2004, 30(6): 536-543 (in Chinese with English abstract)
[19]Chen C-Q(陈绪清), Zhang X-D(张晓东), Liang R-Q(梁荣奇), Zhang L-Q(张立全), Yang F-P(杨凤萍), Cao M-Q(曹鸣庆). Cloning maize C4 phosphoenolpyruvate carboxylase gene and transformation in wheat. Chin Sci Bull (科学通报), 2004, 48(19): 1976-1982 (in Chinese)
[20]Zhang Q-C(张庆琛), Xu W-G(许为钢), Hu L(胡琳), Li Y(李艳), Zhang L(张磊), Qi X-L(齐学礼). Development of transgenic wheat plants with maize C4-specific pepc gene by particle bombardment. J Triticeae Crops (麦类作物学报), 2010, 30(2): 194-197 (in Chinese with English abstract)
[21]Zhang B(张彬), Ding Z-S(丁在松), Zhang G-F(张桂芳), Shi Y-L(石云鹭), Wang J-M(王金明), Fang L-F(方立锋), Guo Z-J (郭志江), Zhao M(赵明). Introduction of phosphoenolpyruvate carboxylase gene from Echinochloa crusgalli into wheat mediated by Agrobacterium tumefaciens. Acta Agron Sin (作物学报), 2007, 33(3): 356-362 (in Chinese with English abstract)
[22]Li Y(李艳), Xu W-G(许为钢), Hu L(胡琳), Zhang L(张磊), Qi X-L(齐学礼), Zhang Q-C(张庆琛), Wang G-S(王根松). Construction of a high efficient expression vector for maize phosphoenolpyruvate carboxylase gene and its transformation in wheat. J Triticeae Crops (麦类作物学报), 2009, 29(5): 741-746 (in Chinese with English abstract)
[23]Li Y(李艳). Cloning of Photosynthesis Key Enzyme (PEPC, PPDK) Genes from Maize and PEPC Gene Transformation of Wheat. PhD Dissertation of Henan Agricultural University, 2009 (in Chinese with English abstract)
[24]Lin R C, Ding Z S, Li L B, Kuang T Y. A rapid and efficient DNA minipreparation suitable for screening transgenic plants. Plant Mol Biol Rep, 2001, 19: 379a-379e
[25]Jeanneau M, Gerentes D, Foueillassar X, Zivy M, Vidal J, Toppan A, Perez P. Improvement of drought tolerance in maize: towards the functional validation of the Zm-Asr1 gene and increase of water use efficiency by over-expressing C4 PEPC. Biochimie, 2002, 84: 1127-1135
[26]Wang S-Z(王绍中), Tian Y-F(田云峰), Guo T-C(郭天才), Wang Z-H(王志和). Wheat Cultivation in Henan(河南小麦栽培学). Beijing: China Agricultural Science and Technology Press, 2010. pp 17-23 (in Chinese)
[27]Wang L-L(王兰兰), He X-Y(何兴元), Chen W(陈玮), Li X-M(李雪梅). Effects of elevated O3 or/and CO2 on growth in leaves of Quercus mongolia. China Environ Sci (中国环境科学), 2011, 31(2): 340-345 (in Chinese with English abstract)
[28]Genty B, Briantais J M, Baker N R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta, 1989, 990: 87-92
[29]Agarie S, Miura A, Sumikura R, Tsukamoto S, Nose A, Arima S, Matsuoka M, Miyao-Tokutomi M. Overexpression of C4 PEPC caused O2-insensitive photosynthesis in transgenic rice plant. Plant Sci, 2002, 162: 257-265
[30]Fukayama H, Hatch M D, Tamai T, Tsuchida H, Sudoh S, Furbank R T, Miyao M. Activity regulation and physiological impacts of maize C4-specific phosphoenolpyruvate carboxylase overproduced in transgenic rice plants. Photosyn Res, 2003, 77: 227-239
[31]Taniguchi Y, Ohkawa H, Masumoto C, Fukuda T, Tamai T, Lee K, Sudoh S, Tsuchida H, Sasaki H, Fukayama H, Miyao M. Overproduction of C4 photosynthetic enzymes in transgenic rice plants: an approach to introduce the C4-like photosynthetic path way into rice. J Exp Bot, 2008, 59: 1799-1809
[32]Jiao D M, Huang X Q, Li X, Chi W, Kuang T Y, Zhang Q D, Ku M S B, Cho D. Photosynthetic characteristics and tolerance to photo-oxidation of transgenic rice expressing C4 photosynthesis enzymes. Photosyn Res, 2002, 72: 85-93
[33]Chi W(迟伟), Jiao D-M(焦德茂), Huang X-Q(黄雪清), Li X(李霞), Ku M S B. Photosynthetic characteristics of transgenic rice plant overexpressing maize phosphoenolpyruvate carboxylase. Acta Bot Sin (植物学报), 2001, 43(6): 657-660 (in Chinese with English abstract)
[1] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[2] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[3] 党科, 宫香伟, 吕思明, 赵冠, 田礼欣, 靳飞, 杨璞, 冯佰利, 高小丽. 糜子/绿豆间作模式下施氮量对绿豆叶片光合特性及产量的影响[J]. 作物学报, 2021, 47(6): 1175-1187.
[4] 张云, 王丹媚, 王孝源, 任晴雯, 唐可, 张丽宇, 吴玉环, 刘鹏. 外源茉莉酸对菊芋镉胁迫下光合特性及镉积累的影响[J]. 作物学报, 2021, 47(12): 2490-2500.
[5] 宋凝曦, 李霞, 王净, 吴博晗, 曹悦, 杨杰, 谢寅峰. 大环内酯类和高表达玉米C4-PEPC基因对水稻耐旱性的影响[J]. 作物学报, 2021, 47(10): 1927-1940.
[6] 冯克云, 王宁, 南宏宇, 高建刚. 水分亏缺下化肥减量配施有机肥对棉花光合特性与产量的影响[J]. 作物学报, 2021, 47(1): 125-137.
[7] 赵晋锋,杜艳伟,王高鸿,李颜方,赵根有,王振华,王玉文,余爱丽. 谷子PEPC基因的鉴定及其对非生物逆境的响应特性[J]. 作物学报, 2020, 46(5): 700-711.
[8] 马正波, 董学瑞, 唐会会, 闫鹏, 卢霖, 王庆燕, 房孟颖, 王琦, 董志强. 四甲基戊二酸对夏玉米光合生产特征的调控效应[J]. 作物学报, 2020, 46(10): 1617-1627.
[9] 杜进勇,柴强,王一帆,范虹,胡发龙,殷文,李登业. 地上地下互作强度对小麦间作玉米光合特性的影响[J]. 作物学报, 2019, 45(9): 1398-1406.
[10] 李朝苏,吴晓丽,汤永禄,李俊,马孝玲,李式昭,黄明波,刘淼. 小麦产量对中后期氮素胁迫的响应及品种间差异[J]. 作物学报, 2019, 45(8): 1260-1269.
[11] 严青青,张巨松,代健敏,窦巧巧. 甜菜碱对盐碱胁迫下海岛棉幼苗光合作用及生物量积累的影响[J]. 作物学报, 2019, 45(7): 1128-1135.
[12] 任永福,陈国鹏,蒲甜,陈诚,曾瑾汐,彭霄,马艳玮,杨文钰,王小春. 玉米-大豆带状种植中套作高光效玉米窄行穂位叶光合特性对弱光胁迫的响应[J]. 作物学报, 2019, 45(5): 728-739.
[13] 鱼海跃,闫岩,张钰石,张明才,李召虎. 不同灌溉条件下冠菌素对大豆光合特性与产量的调控效应[J]. 作物学报, 2019, 45(12): 1851-1858.
[14] 石洪亮,严青青,张巨松,李春艳,窦海涛. 氮肥对非充分灌溉下棉花花铃期光合特性及产量的补偿作用[J]. 作物学报, 2018, 44(8): 1196-1204.
[15] 程亚娇,范元芳,谌俊旭,王仲林,谭婷婷,李佳凤,李盛蓝,杨峰,杨文钰. 光照强度对大豆叶片光合特性及同化物的影响[J]. 作物学报, 2018, 44(12): 1867-1874.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!