欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (05): 780-790.doi: 10.3724/SP.J.1006.2012.00780

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

小麦磷饥饿前后根系蛋白质组差异表达谱建立及差异表达蛋白的鉴定

冯万军1,2,李振兴1,2,郭宝健1,2,彭慧茹1,2,姚颖垠1,2,倪中福1,2,*,孙其信1,2,*   

  1. 1 农业生物技术国家重点实验室 / 教育部杂种优势研究与利用重点实验室 / 北京市作物遗传改良重点实验室 / 农业部作物基因组与遗传改良重点实验室 / 中国农业大学, 北京 100193; 2 国家植物基因研究北京中心, 北京 100193
  • 收稿日期:2011-09-05 修回日期:2011-12-19 出版日期:2012-05-12 网络出版日期:2012-03-05
  • 通讯作者: 倪中福, E-mail: wheat3392@cau.edu.cn; 孙其信, E-mail: qxsun@cau.edu.cn
  • 基金资助:

    本研究由国家基础研究发展计划(973计划)前期项目(2007CB109000), 国家杰出青年科学基金(30925023), 国家自然科学基金项目(30671297)和国家高技术研究发展计划项目(863计划)资助。

Identification of Differential Expressed Proteins Responding to Phosphorus Starvation Based on Proteomic Analysis in Roots of Wheat (Triticum aestivum L.)

FENG Wan-Jun1,2,LI Zhen-Xing1,2,GUO Bao-Jian1,2,PENG Hui-Ru1,2,YAO Ying-Yin1,2,NI Zhong-Fu1,2,*,SUN Qi-Xin1,2,*   

  1. 1 Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Genomics and Genetic Improvement (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; 2 National Plant Gene Research Centre (Beijing), Beijing 100193, China
  • Received:2011-09-05 Revised:2011-12-19 Published:2012-05-12 Published online:2012-03-05
  • Contact: 倪中福, E-mail: wheat3392@cau.edu.cn; 孙其信, E-mail: qxsun@cau.edu.cn

摘要: 以耐低磷的小麦基因型洛夫林10号为材料, 采用蛋白质双向电泳技术, 结合质谱鉴定, 分析了正常磷供应和无磷处理7天后根系中的蛋白质组表达谱差异, 以期为深入探讨小麦响应磷胁迫的分子机理提供蛋白水平上的数据和资料。研究发现, 在可重复检测到的1 144个蛋白点中, 有87个在磷胁迫处理前后发生了明显的表达改变,占总数的7.6%,包括磷胁迫前特异表达、磷胁迫后特异表达、磷胁迫后上调和磷胁迫后下调表达等4种差异表达模式。在87个差异蛋白点中,有39个通过质谱技术被成功鉴定,涉及到代谢、细胞生长和分裂、转录和翻译、抗病、信号转导、转座元件及未知功能蛋白等功能类别,说明小麦可能通过细胞的代谢状态和基因表达改变来适应磷胁迫,进而维持体内磷含量的平衡状态。最后,我们还对差异表达点与磷胁迫的关系进行了分析和讨论。

关键词: 磷营养, 蛋白质组表达谱, 根系, 小麦

Abstract: Growth inhibition caused by phosphorus (P) deficiency is a serious problem for crop production. Plants can respond defensively to this stress by modifying their metabolic pathways and root morphologies through changes of quantity of low-Pi responding genes. To better understand the adaptation mechanisms of wheat to Pi deficiency conditions, a comparative proteome analysis was conducted in this study using wheat root samples treated 7 days without (–P) and with phosphorus (+P). Among 1 144 protein spots reproducibly detected, eighty seven of which (7.6%) were differentially expressed, including those present in treatments of only in –P or +P, and up- or down-regulated in –P. Moreover, 39 of the differentially expressed proteins were revealed to be involved in various biological processes such as metabolism, cell growth and division, transcription and translation, disease and defense, signal transduction, acting as transposable elements and unclassified proteins. Taken together, our results showed that wheat responds to the Pi starvation stress through an array of changes in metabolic states of cells and genes expression, which results in the maintenance of a relative P homeostasis in plants.

Key words: Phosphorus nutrition, Proteomic analysis, Root, Triticum aestivum L.

[1]Vance C P, Uhde-Stone C, Allan D L. Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol, 2003, 157: 423-447

[2]Raghothama K G. Phosphate acquisition. Annu Rev Plant Physiol Plant Mol Biol, 1999, 50: 665-693

[3]Bates T R, Lynch J P. Stimulation of root hair elongation in Arabidopsis thaliana by low phosphorus availability. Plant Cell Environ, 1996, 19: 529-538

[4]Gahoonia T S, Nielsen N E. Direct evidence on participation of root hairs in phosphorus (32P) uptake from soil. Plant Soil, 1998, 198: 147-152

[5]Mollier A, Pellerin S. Maize root system growth and development as influenced by phosphorus deficiency. J Exp Bot, 1999, 50: 487-497

[6]Williamson L C, Ribrioux S P C P, Fitter A H, Leyser H M O. Phosphate availability regulates root system architecture in Arabidopsis. Plant Physiol, 2001, 126: 875-882

[7]Péret B, Clément M, Nussaume L, Desnos T. Root developmental adaptation to phosphate starvation: better safe than sorry. Trends Plant Sci, 2011, 16: 1360-1385

[8]Ueki K. Control of phosphatase release from cultured tobacco cells. Plant Cell Physiol, 1978, 19: 385-392

[9]Lipton D S, Blancher R W, Blevins D G. Citritions in excludes from P-sufficient and P-starved Medicago sativa L. seedling. Plant Physiol, 1987, 85: 315-317

[10]Rao I M, Terry N. Leaf phosphate status photosynthesis and carbon partitioning in sugar beet: II. Diurnal changes in sugar phosphates, adenylates, and nicotinamide nucleotides. Plant Physiol, 1989, 90: 820-826

[11]Hoffland E, Findenegg G R, Nelemans J A. Solubilization of rock phosphate by rape. Plant & Soil, 1989, 113: 155-165

[12]Duff S M G, Sarath G, Plaxton W C. The role of acid phosphatase in plant phosphorus metabolism. Physiol Planta, 1994, 90: 791-800

[13]Wasaki J, Yamamura T, Shinano T, Osaki M. Secreted acid phosphatase is expressed in cluster roots of lupin in response to phosphorus deficiency. Plant & Soil, 2003, 248: 129-136

[14]Muchhal U S, Raghothama K G. Transcriptional regulation of plant phosphate transporters. Proc Natl Acad Sci USA, 1999, 96, 5868-5872

[15]Uta P, Scott K, Christophe R, Briggs S P. Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci USA, 2002, 99: 13324-13329

[16]Thibaud M C, Arrighi J F, Bayle V, Chiarenza S, Creff A, Bustos R, Paz-Ares J, Poirier Y, Nussaume L. Dissection of local and systemic transcriptional responses to phosphate starvation in Arabidopsis. Plant J, 2010, 64: 775-789

[17]Wu P, Wang X. Role of OsPHR2 on phosphorus homeostasis and root hairs development in rice (Oryza sativa L.). Plant Signal Behav, 2008, 3: 674-675

[18]Devaiah B N, Karthikeyan A S, Raghothama K G. WRKY75 transcription factor is a modulator of phosphate acquisition and root development in Arabidopsis. Plant Physiol, 2007, 143: 1789-1801.

[19]Devaiah B N, Nagarajan V K, Raghothama K G. Phosphate homeostasis and root development in Arabidopsis are synchronized by the zinc finger transcription factor ZAT6. Plant Physiol, 2007, 145: 147-159

[20]Chen Z H, Nimmo G A, Jenkins G I, Nimmo H G. BHLH32 modulates several biochemical and morphological processes that respond to Pi starvation in Arabidopsis. Biochem J, 2007, 405: 191-198

[21]Bariola P A, Howard C J, Taylor C B, Verburg M T, Jaglan V D, Green P J. The Arabidopsis ribonuclease gene RNS1 is tightly controlled in response to phosphate limitation. Plant J, 1994, 6: 673-685

[22]Misson J, Raghothama K G, Jain A, Jouhet J, Block M A, Bligny R, Ortet P, Creff A, Somerville S, Rolland N, Doumas P, Nacry P, Herrerra-Estrella L, Nussaume L, Thibaud M C. A genome-wide transcriptional analysis using Arabidopsis thaliana Affymetrix gene chips determined plant responses to phosphate deprivation. Proc Natl Acad Sci USA, 2005, 102: 11934-11939

[23]Morcuende R, Bari R, Gibon Y, Zheng W M, Pant B D, Bläsing O, Usadel B, Czechowski T, Udvardi M K, Stitt M, Scheible W R. Genome-wide reprogramming of metabolism and regulatory networks of Arabidopsis in response to phosphorus. Plant Cell Environ, 2007, 30: 85-112

[24]Wasaki J, Yonetan R, Kuroda S. Tanscriptomic analysis of metabolic changes by phosphorus stress in rice plant roots. Plant Cell Environ, 2003, 26: 1515-1523

[25]Uhde-Stone C, Gilbert G, Johnson J MF, Litjens R, Zinn K E, Temple S J, Vance C P, Allan D L. Acclimation of white lupin to phosphorus deficiency involves enhanced expression of genes related to organic acid metabolism. Plant & Soil, 2003, 248: 99-116

[26]Wasaki J, Shinano T, Onishi K, Yonetani R, Yazaki J, Fujii F, Shimbo K, Ishikawa M, Shimatani Z, Nagata Y, Hashimoto A, Ohta T, Sato Y, Miyamoto C, Honda S, Kojima K, Sasaki T, Kishimoto N, Kikuchi S, Osaki M. Transcriptomic analysis indicates putative metabolic changes caused by manipulation of phosphorus availability in rice leaves. J Exp Bot, 2006, 57: 2049-2059

[27]Chacón-López A, Ibarra-Laclette E, Sánchez-Calderón L, Gutiérrez-Alanís D, Herrera-Estrella L. Global expression pattern comparison between low phosphorus insensitive 4 and WT Arabidopsis reveals an important role of reactive oxygen species and jasmonic acid in the root tip response to phosphate starvation. Plant Signal Behav, 2011, 6: 382-392

[28]Li K P, Xu C Z, Zhang K W, Yang A F, Zhang J R. Proteomic analysis of roots growth and metabolic changes under phosphorus deficit in maize (Zea mays L.) plants. Proteomics, 2007, 7: 1501-1512

[29]Fukuda T, Saito A, Wasaki J, Shinano T, Osaki M. Metabolic alterations proposed by proteome in rice roots grown under low P and high Al concentration under low pH. Plant Sci, 2007, 172: 1157-1165

[30]Gill B S, Appels R, Botha-Oberholster A M, Buell C R, Bennetzen J L, Chalhoub B, Chumley F, Dvorak J, Iwanaga M, Keller B, Li W L, McCombie W R, Ogihara Y, Quetier F, Sasaki T. A workshop report on wheat genome sequencing: international genome research on wheat consortium. Genetics, 2004, 68: 1087-1096

[31]Davies T G, Su J Y, Xu Q, Li Z S, Li J, Gordon-Weeks R. Expression analysis of putative high-affinity phosphate transporters in Chinese winter wheats. Plant Cell Environ, 2002, 25: 1325-1339

[32]Su J Y, Xiao Y M, Li M, Liu Q Y, Li B, Tong Y P, Jia J Z, Li Z S. Mapping QTLs for phosphorus-deficiency tolerance at wheat seedling stage. Plant & Soil, 2006, 281: 25-36

[33]Tesfaye M, Liu J, Allan D L, Vance C P. Genomic and genetic control of phosphate stress in legumes. Plant Physiol, 2007, 144: 594-603

[34]Gu J-T(谷俊涛), Bao J-X(鲍金香), Wang X-Y(王效颖), Guo C-J(郭程瑾), Li X-J(李小娟), Lu W-J(路文静), Xiao K(肖凯). Investigation based on cDNA-AFLP approach for differential expressed genes responding to deficient-Pi in wheat. Acta Agron Sin (作物学报), 2009, 35: 1597-1605 (in Chinese with English abstract)

[35]Li Z X, Ni Z F,Peng H R, Liu Z Y, Nie X L, Xu S B, Liu G, Sun Q X. Molecular mapping of QTLs for root response to phosphorus deficiency at seedling stage in wheat (Triticum aestivum L.). Prog Nat Sci, 2007, 17: 1177-1184

[36]Ueda I, Wada T. Determination of inorganic phosphate by the molybdovanadate method in the presence of ATP and some interfering organic bases. Anal Biochem, 1970, 37: 169-174

[37]Donnelly B E, Madden R D, Ayoubi P, Porter D R, Dillwith J W. The wheat (Triticum aestivum L.) leaf proteome. Proteomics, 2005, 5: 1624-1633

[38]Porubleva L, Velden K V, Kothari S, Oliver D J, Chitnis P R. The proteome of maize leaves: use of gene sequences and expressed sequence tag data for identification of proteins with peptide mass fingerprints. Electrophoresis, 2001, 22: 1724-1738

[39]Bevan M, Bancroft I, Bent E, Love K, Goodman H, Dean C, Bergkamp R, Dirkse W, Van Staveren M, Stiekema W, Drost L, Ridley P, Hudson S A, Patel K, Murphy G, Piffanelli P, Wedler H, Wedler E, Wambutt R, Weitzenegger T, Pohl T M, Terryn N, Gielen J, Villarroel R, Chalwatzis N. Analysis of 1.9 Mb of contiguous sequence from chromosome 4 of the Arabidopsis thaliana. Nature, 1998, 391: 485-488

[40]Hammond J P, Bennett M J, Bowen H C, Broadley M R, Eastwood D C, May S T, Rahn C, Swarup R, Woolaway K E, White P J. Changes in gene expression in Arabidopsis shoots during phosphate starvation and the potential for developing smart plants. Plant Physiol, 2003, 132: 578-596

[41]Peters J M. Proteasomes: protein degradation machines of the cell. Trends Biochem Sci, 1994, 19: 377-382

[42]Osborne C K, Schiff R, Fuqua S A, Shou J. Estrogen receptor: current understanding of its activation and modulation. Clin Cancer Res, 2001, 7: 4338-4342

[43]Shamovsky I, Nudler E. New insights into the mechanism of heat shock response activation. Cell Mol Life Sci, 2008, 65: 855-861

[44]Benizri E, Ginouvès A, Berra E. The magic of the hypoxia-signaling cascade. Cell Mol Life Sci, 2008, 65: 1133-1149

[45]Sánchez-Calderón L, López-Bucio J, Chacón-López A, Gutiérrez-Ortega A, Hernández-Abreu E, Herrera-Estrella L. Characterization of low phosphorus insensitive mutants reveals a crosstalk between low P-induced determinate root development and the activation of genes involved in the adaptation of Arabidopsis to P deficiency. Plant Physiol, 2006, 140: 879-889

[46]Franco-Zorrilla J M, González E, Bustos R, Linhares F, Leyva A, Paz-Ares J. The transcriptional control of plant responses to phosphate limitation. J Exp Bot, 2004, 55: 285-293

[47]Ciereszko I, Kleczkowski L A. Effects of phosphate deficiency and sugars on expression of rab18 in Arabidopsis: hexokinase-dependent and okadaic acid-sensitive transduction of the sugar signal. Biochim Biophys Acta, 2002, 13: 43-49

[48]Jeschke W D, Peuke A D, Pate J S, Hartung W. Transport, synthesis and catabolism of abscisic acid (ABA) in intact plants of castor bean (Ricinus communis L.) under phosphate deficiency and moderate salinity. J Exp Bot, 1997, 48: 1737-1747

[49]Radin J. Stomatal responses to water stress and to abscisic acid in phosphorus-deficient cotton plants. Plant Physiol, 1984, 76: 392-394

[50]Li K P, Xu C Z, Li Z X, Zhang K W, Yang A F, Zhang J R. Comparative proteome analyses of phosphorus responses in maize (Zea mays L.) roots of wild-type and a low-P-tolerant mutant reveal root characteristics associated with phosphorus efficiency. Plant J, 2008, 55: 927-939

[51]Bao Y Q, Kost B, Chua N H. Reduced expression of ?-tubulin genes in Arabidopsis thaliana specifically affects root growth and morphology, root hair development and root gravitropism. Plant J, 2001, 28: 145-157

[52]Kumar A, Bennetzen J L. Plant retrotransposon. Annu Rev Genet, 1999, 33: 479-532

[53]Mhiri C, Morel J B, Vernhettes S, Casacuberta J M, Lucas H, Grandbastien M A. The promoter of the tobacco Tnt1 retrotransposon is induced by wounding and by abiotic stress. Plant Mol Biol, 1997, 33: 257-266

[54]Grandbastien M A. Activation of plant retrotransposons under stress conditions. Trends Plant Sci, 1998, 3: 181-187

[55]Fedoroff N. Transposons and genome evolution in plants. Proc Natl Acad Sci USA, 2000, 97: 7002-7007

[56]Kashkush K, Feldman M, Levy A A. Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat. Nature Genet, 2003, 33: 102-106
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[4] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[5] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[6] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[7] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[8] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[9] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[10] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[11] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[12] 许德蓉, 孙超, 毕真真, 秦天元, 王一好, 李成举, 范又方, 刘寅笃, 张俊莲, 白江平. 马铃薯StDRO1基因的多态性鉴定及其与根系性状的关联分析[J]. 作物学报, 2022, 48(1): 76-85.
[13] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[14] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[15] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!