欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (09): 1592-1606.doi: 10.3724/SP.J.1006.2012.01592

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

小麦叶绿素缺失突变体Mt6172及其野生型叶片蛋白质组学双向差异凝胶电泳分析

宋素洁1,2,**,古佳玉2,**,郭会君2,赵林姝2,赵世荣2,李军辉2,赵宝存1,*,刘录祥2,*   

  1. 1 河北师范大学生命科学学院,河北石家庄 050024;2 中国农业科学院作物科学研究所 / 国家农作物航天诱变技术改良中心 / 农作物基因资源与基因改良国家重大科学工程,北京 100081
  • 收稿日期:2012-04-01 修回日期:2012-06-06 出版日期:2012-09-12 网络出版日期:2012-07-03
  • 通讯作者: 刘录祥, E-mail: luxiang@263.net.cn, Tel: 010-62122719; 赵宝存, E-mail: baocunzh@126.com
  • 基金资助:

    本研究由国家航天育种工程(发改高技[2003]138号), 国家高技术研究发展计划(863计划)项目(2012AA100402), 农业部农业公益性行业科研专项(201103007)和国际原子能机构项目(CRP14195, RAS5056)资助。

Proteomic Analysis of Leaves of the Chlorophyll-Deficient Wheat Mutant Mt6172 and Its Wild-Type through 2D-Difference Gel Electrophoresis

SONG Su-Jie1,2,**,GU Jia-Yu2,**,GUO Hui-Jun2,ZHAO Lin-Shu2,ZHAO Shi-Rong2,LI Jun-Hui2, ZHAO Bao-Cun1,*,LIU Lu-Xiang2,*   

  1. 1 College of Life Science, Hebei Normal University, Shijiazhuang 050024, China; 2 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / National Center of Space Mutagenesis for Crop Improvement / National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China
  • Received:2012-04-01 Revised:2012-06-06 Published:2012-09-12 Published online:2012-07-03
  • Contact: 刘录祥, E-mail: luxiang@263.net.cn, Tel: 010-62122719; 赵宝存, E-mail: baocunzh@126.com

摘要: 以空间环境诱变获得的小麦叶绿素缺失突变体Mt6172的白化苗及其野生型邯6172的叶片为材料,进行双向差异凝胶电泳(2D-DIGE)蛋白质组学分析。在1645个蛋白点中,发现100个差异1.5倍以上的蛋白点,对在分析胶中得到的85个点进行质谱鉴定,最终鉴定出29种差异蛋白的62个差异点,其中50个表达下调,12个表达上调,可分为10个功能群。表达下调的蛋白主要定位于叶绿体中,包括光系统I、光系统II、NAD(P)H脱氢酶复合体和ATP合酶的部分亚基,以及参与卡尔文-本森循环、糖代谢和应激反应的蛋白。非叶绿体蛋白中的大部分表达上调,主要参与抗氧化反应、转录激活和蛋白质折叠等途径。初步推断,光合作用主要蛋白复合体的缺失、叶绿体抗氧化能力的下降和叶绿体RNA转录后编辑途径受阻等可能是Mt6172白化致死的重要原因。

关键词: 小麦(Triticum aestivum L.), 叶绿素缺失突变体, 空间诱变, 双向差异凝胶电泳技术(2D-DIGE), 蛋白质组学

Abstract: Two-dimensional difference gel electrophoresis (2D-DIGE) proteomic approach was used to identify differentially expressed proteins in the leaves of chlorophyll-deficient wheat mutant Mt6172 derived from space environment mutagenesis. A total of 1 654 protein spots were detected, of which 100 spots showed 1.5-fold or higher volume ratio in the leaves of Mt6172 or its wide-type Han 6172. Eighty-five spots subject to mass spectrometry and 62 spots representing 29 distinct proteins were identified and classified into 10 functional groups. Among these differential proteins, 50 were down-regulated and 12 were up-regulated. Most of the down-regulated proteins were located in the subcellular system of chloroplast, including the subunits of PSI, PSII, NAD(P)H dehydrogenase complex and ATP synthase, and the proteins involved in Calvin-Benson cycle, glucose metabolic process and stress responses. Compared to the proteins in chloroplast, the identified non-chloroplast proteins were mainly up-regulated, including the proteins involved in response to oxidative stress, transcriptional activation, and protein folding process. The results suggested that the early death of the albino phenotype of Mt6172 might result from the deficiency of main photosynthesis protein complexes, the decrease of chloroplast antioxidant capacity, and the obstacle of post-transcriptional modification process for chloroplast RNAs.

Key words: Wheat (Triticum aestivum L.), Chlorophyll-deficient mutant, Space mutagenesis, Two-dimensional difference gel electrophoresis (2D-DIGE), Proteomics

[1]Sirpio S, Khrouchtchova A, Allahverdiyeva Y, Hansson M, Fristedt R, Vener A V, Scheller H V, Jensen P E, Haldrup A, Aro E M. AtCYP38 ensures early biogenesis, correct assembly and sustenance of photosystem II. Plant J, 2008, 55: 639–651

[2]Yang Y, Rao Y, Liu H, Fang Y, Dong G, Huang L, Leng Y, Guo L, Zhang G, Hu J, Gao Z, Qian Q, Zeng D. Characterization and fine mapping of an early senescence mutant (es-t) in Oryza sativa L. Chin Sci Bull, 2011, 56: 2437–2443

[3]Jin Y(金怡), Liu H-Q(刘合芹), Wang D-K(汪得凯), Tao Y-Z(陶跃之). Genetic analysis and gene mapping of a white striped leaf and white panicle mutant in rice. Chin J Rice Sci (中国水稻科学), 2011, 25(5): 461–466 (in Chinese with English abstract)

[4]Sawers R J, Viney J, Farmer P R, Bussey R R, Olsefski G, Anufrikova K, Hunter C N, Brutnell T P. The maize oil yellow 1 (Oy1) gene encodes the I subunit of magnesium chelatase. Plant Mol Biol, 2006, 60: 95–106

[5]Landau A M, Lokstein H, Scheller H V, Lainez V, Maldonado S, Prina A R. A cytoplasmically inherited barley mutant is defective in photosystem I assembly due to a temperature-sensitive defect in ycf3 splicing. Plant Physiol, 2009, 151: 1802–1811

[6]Yoo J H, Park J H, Cho S H, Yoo S C, Li J J, Zhang H T, Kim K S, Koh H J, Paek N C. The rice bright green leaf (bgl) locus encodes OsRopGEF10, which activates the development of small cuticular papillae on leaf surfaces. Plant Mol Biol, 2011, 77: 631–641

[7]Chen H, Kim H U, Weng H, Browse J. Malonyl-CoA synthetase, encoded by ACYL ACTIVATING ENZYME13, is essential for growth and development of Arabidopsis. Plant Cell, 2011, 23: 2247–2262

[8]Philippar K, Geis T, Ilkavets I, Oster U, Schwenkert S, Meurer J, Soll J. Chloroplast biogenesis: the use of mutants to study the etioplast-chloroplast transition. Proc Natl Acad Sci USA, 2007, 104: 678–683

[9]Hsieh M H, Chang C Y, Hsu S J, Chen J J. Chloroplast localization of methylerythritol 4-phosphate pathway enzymes and regulation of mitochondrial genes in ispD and ispE albino mutants in Arabidopsis. Plant Mol Biol, 2008, 66: 663–673

[10]Bosco C D, Lezhneva L, Biehl A, Leister D, Strotmann H, Wanner G, Meurer J. Inactivation of the chloroplast ATP synthase gamma subunit results in high non-photochemical fluorescence quenching and altered nuclear gene expression in Arabidopsis thaliana. J Biol Chem, 2004, 279: 1060–1069

[11]Zhao Y, Wang M L, Zhang Y Z, Du L F, Pan T. A chlorophyll-reduced seedling mutant in oilseed rape, Brassica napus, for utilization in F1 hybrid production. Plant Breed, 2000, 116: 131–135

[12]Cheng H(成浩), Chen M(陈明), Yu F-L(虞富莲), Li S-F(李素芳). The variation of pigment-protein complexes in the albescent stage of tea. Plant Physiol Comm (植物生理学通讯), 2000, 36(4): 300–304 (in Chinese)

[13]Fambrini M, Castagna A, Vecchia F D, Degl’Innocenti E, Ranieri A, Vernieri P, Pardossi A, Guidi L, Rascio N, Pugliesi C. Characterization of a pigment-deficient mutant of sunflower (Helianthus annuus L.) with abnormal chloroplast biogenesis, reduced PSII activity and low endogenous level of abscisic acid. Plant Sci, 2004, 167: 79–89

[14]Kumar A M, Söll D. Antisense HEMAl RNA expression inhibits heme and chlorophyll biosynthesis in Arabidopsis. Plant Physiol, 2000, 122: 49–55

[15]Hou D Y, Xu H, Du G Y, Lin J T, Duan M, Guo A G. Proteome analysis of chloroplast proteins in stage albinism line of winter wheat (Triticum aestivum) FA85. BMB Rep, 2009, 42: 450–455

[16]Ren L-P(任丽萍), Fan H-Y(范海延), Song T-G(宋铁锋), Wang S-S(王珊珊), Liu J-Y(刘晶瑜). Advances in differential proteomics based on 2-DE in botany. Chin Agric Sci Bull (中国农学通报), 2011, 27(5): 53–57 (in Chinese with English abstract)

[17]Ünlü M, Morgan M E, S.Minden J. Eifference gel electrophoresis:a single gel method for detecting changes in protein extracts. Electrophoresis, 1997, 18:2071–2077

[18]Gao L Y, Wang A L, Li X H, Dong K, Wang K, Appels R, Ma W J, Yan Y M. Wheat quality related differential expressions of albumins and globulins revealed by two-dimensional difference gel electrophoresis (2-D DIGE). J Proteomics, 2009, 73: 279–296

[19]Gao L, Yan X, Li X, Guo G, Hu Y, Ma W, Yan Y. Proteome analysis of wheat leaf under salt stress by two-dimensional difference gel electrophoresis (2D-DIGE). Phytochemistey, 2011, 72: 1180–1191

[20]Guo H-J(郭会君), Jin W-K(靳文奎), Zhao L-S(赵林姝), Zhao S-R(赵世荣), Zhao H-B(赵洪兵), Liu L-X(刘录祥). Mutagenic effects of different factors in spaceflight environment of Shijian-8 satellite in wheat. Acta Agron Sin (作物学报), 2010, 36(5): 764–770 (in Chinese with English abstract)

[21]Guo H J, Zhao H B, Zhao L S, Gu J Y, Zhao S R, Li J H, Liu Q C, Liu L X. Characterization of a novel chlorophyll-deficient mutant Mt6172 in wheat. J Integr Agric, 2012, 11: 888–897

[22]Nelson N, Ben-Shem A. The complex architecture of oxygenic photosynthesis. Nat Rev Mol Cell Biol, 2004, 5: 971–982

[23]Monde R A, Zito F, Olive J, Wollman F A, Stern D B Post-transcriptional defects in tobacco chloroplast mutants lacking the cytochrome b6/f complex. Plant J, 2000, 21: 61–72

[24]Ou L-J(欧立军). Chloroplast development of a Yellow-green mutant in rice (Oryza sativa L.). Acta Bot Boreal-Occident Sin (西北植物学报), 2010, 30(1): 85–92 (in Chinese with English abstract)

[25]Vitória A P, Lea P J, Azevedo R A. Antioxidant enzymes responses to cadmium in radish tissues. Phytochemistry, 2001, 57: 701–710

[26]Moller I M, Jensen P E, Hansson A. Oxidative modifications to cellular components in plants. Annu Rev Plant Biol, 2007, 58: 459–481

[27]Makino A, Mae T, Ohira K. Relation between nitrogen and ribulose-1,5-bisphosphate carboxylase in rice leaves from emergence through senescence. Plant Cell Physiol, 1984, 25: 429–437

[28]Makino A, Mae T, Ohira K. Enzymic properties of ribulose-1,5-bisphosphate carboxylase/oxygenase purified from rice leaves. Plant Physiol, 1985, 79: 57–61

[29]Ishida H, Nishimori Y, Sugisawa M, Makino A, Mae T. The large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase is fragmented into 37-kDa and 16-kDa polypeptides by active oxygen in the lysates of chloroplasts from primary leaves of wheat. Plant Cell Physiol, 1997, 38: 471–479

[30]Gothandam K M, Kim E S, Cho H, Chung Y Y. OsPPR1, a pentatricopetide repeat protein of rice is essential for the chloroplast biogenesis. Plant Mol Biol, 2005, 58: 421-433

[31]Hagemann V R, Scholz F, Gen induzierter E F. Mutationen des Plasmotyps bei Gerste. Der Züchter, 1962, 32: 50–59

[32]Churin Y, Hess W R, Börner T. Cloning and characterization of three cDNAs encoding chloroplast RNA-binding proteins from barley (Hordeum vulgare L.): differential regulation of expression by light and plastid development. Curr Genet, 1999, 36: 173–181

[33]Zhao Y-G(赵云罡), Xu J-X(徐建兴). Mitochondria, reactive oxygen species and apoptosis. Prog Biochem Biophys (生物化学与生物物理进展), 2001, 28(2): 168–171 (in Chinese with English abstract)
[1] 马金姣,兰金苹,张彤,陈悦,郭亚璐,刘玉晴,燕高伟,魏健,窦世娟,杨明,李莉云,刘国振. 过表达OsMPK17激酶蛋白质增强了水稻的耐旱性[J]. 作物学报, 2020, 46(01): 20-30.
[2] 王道平,徐江,牟永莹,闫文秀,赵梦洁,马博,李群,张丽娜,潘映红. 表油菜素内酯影响水稻幼苗响应低温胁迫的蛋白质组学分析[J]. 作物学报, 2018, 44(6): 897-908.
[3] 于涛,李耕,张成芬,刘鹏,董树亭,张吉旺,赵斌. 玉米籽粒早期发育相关蛋白的差异表达特性[J]. 作物学报, 2017, 43(04): 608-619.
[4] 刘自刚,袁金海,孙万仓,曾秀存,方彦,王志江,武军艳,方园,李学才,米超. 低温胁迫下白菜型冬油菜差异蛋白质组学及光合特性分析[J]. 作物学报, 2016, 42(10): 1541-1550.
[5] 吴林坤,陈军,吴红淼,王娟英,秦贤金,张重义,林文雄. 地黄连作胁迫响应机制的块根蛋白质组学分析[J]. 作物学报, 2016, 42(02): 243-254.
[6] 夏家平,郭会君,谢永盾,赵林姝,古佳玉,赵世荣,李军辉,刘录祥. 小麦叶绿素缺失突变体Mt135的叶绿体基因差异表达分析[J]. 作物学报, 2012, 38(11): 2122-2130.
[7] 进茜宁, 付志远, 丁冬, 刘宗华, 李卫华, 汤继华. 玉米杂交种先玉335及其亲本种子萌发过程中胚芽蛋白质组学分析[J]. 作物学报, 2011, 37(09): 1689-1694.
[8] 周伟辉, 薛大伟, 张国平. 高温胁迫下水稻叶片的蛋白响应及其基因型和生育期差异[J]. 作物学报, 2011, 37(05): 820-831.
[9] 赵洪兵, 郭会君, 赵林姝, 古佳玉, 赵世荣, 李军辉, 刘录祥. 空间环境诱变小麦叶绿素缺失突变体的主要农艺性状和光合特性[J]. 作物学报, 2011, 37(01): 119-126.
[10] 路文静,李瑞娟,李小娟,郭程瑾,谷俊涛,肖凯. 小麦应答低磷的钙依赖蛋白激酶基因TaCPK1A和TaCPK10的克隆和表达[J]. 作物学报, 2009, 35(9): 1749-1754.
[11] 张建奎;董静;宗学凤;余国东;戴秀梅;阮仁武. 温光敏核不育小麦C412S的育性转换及其APRT基因的表达[J]. 作物学报, 2009, 35(4): 662-671.
[12] 任妍;梁丹;张平平;何中虎;陈静;傅体华;夏先春. 中国和CIMMYT小麦品种Bx7亚基超量表达基因(Bx7OE)的分子检测[J]. 作物学报, 2009, 35(3): 403-411.
[13] 李兆伟;熊君;齐晓辉;王经源;陈鸿飞;张志兴;梁义元;林文雄. 水稻灌浆期叶片蛋白质差异表达及其作用机理分析[J]. 作物学报, 2009, 35(1): 132-139.
[14] 陈芳育;黄青云;张红心;林涛;郭玉春;林文雄;陈亮. 水稻品种“佳辐占”应答细菌性条斑病病原菌侵染的蛋白质组学分析[J]. 作物学报, 2007, 33(07): 1051-1058.
[15] 王俊敏;徐建龙;魏力军;孙野青;骆荣挺;张铭铣;鲍根良. 空间环境和地面γ辐照对水稻诱变的差异[J]. 作物学报, 2006, 32(07): 1006-1010.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!