欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (10): 1833-1838.doi: 10.3724/SP.J.1006.2012.01833

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

抗根腐病的转GmPGIP3基因小麦扬麦18的获得与鉴定

党良1,2,**,王爱云1,3,**,徐惠君1,祝秀亮1,杜丽璞1,邵艳军2,张增艳1,*   

  1. 1中国农业科学院作物科学研究所 / 农作物基因资源与基因改良国家重大科学工程, 北京 100081; 2河北农业大学生命科学学院, 河北保定071001;
    3中南林业科技大学生命科学与技术学院, 湖南长沙 410004
  • 收稿日期:2012-04-19 修回日期:2012-06-10 出版日期:2012-10-12 网络出版日期:2012-07-27
  • 通讯作者: 张增艳, E-mail: zhangzy@mail.caas.net.cn
  • 基金资助:

    本研究由国家转基因生物新品种培育科技重大专项(2011ZX08002-001)资助。

Development and Characterization of GmPGIP3 Transgenic Wheat Yangmai 18 with Enhanced Resistance to Common Root Rot

DANG Liang1,2,**,WANG Ai-Yun1,3,**,XU Hui-Jun1,ZHU Xiu-Liang1,DU Li-Pu1,SHAO Yan-Jun2,ZHANG Zeng-Yan1,*   

  1. 1 National Key Facility for Crop Gene Resources and Genetic Improvement / Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture / Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 2 College of Biology Science, Agricultural University of Hebei, Baoding 071001, China; 3 College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
  • Received:2012-04-19 Revised:2012-06-10 Published:2012-10-12 Published online:2012-07-27
  • Contact: 张增艳, E-mail: zhangzy@mail.caas.net.cn

摘要:

GmPGIP3是大豆的一种多聚半乳糖醛酸酶抑制蛋白, 能够特异性地抑制部分病原真菌内切多聚半乳糖醛酸活性, 从而减弱病原菌对植株的侵害。利用基因重组技术构建了GmPGIP3基因的单子叶植物表达载体pA25-GmPGIP3, 通过基因枪介导法将pA25-GmPGIP3转入小麦品种扬麦18中。对转GmPGIP3基因扬麦18的T0至T2代植株进行PCR、Southern杂交、半定量RT-PCR和荧光定量Q-RT-PCR分析, 并对根腐病进行抗性鉴定。结果表明, GmPGIP3已转入扬麦18, 并在转基因小麦中遗传、转录和表达;比受体材料相比, 5个GmPGIP3过表达的转基因小麦株系对根腐病的抗性有明显提高。

关键词: 多聚半乳糖醛酸抑制蛋白, GmPGIP3, 转基因小麦, 分子检测, 小麦根腐病, 抗性

Abstract:

GmPGIP3 is a polygalacturonase-inhibiting protein from soybean, which could reduce the infection of fungal pathogen throughr inhibiting the endo-polygalacturonase activity of pathogen fungi. Using genetic recombination technique, we constructed the transformation vector of GmPGIP3 gene expressing highly in monocot plants, pA25-GmPGIP3, in which GmPGIP3 gene was driven by maize ubiquitin promoter. Embryo callus of Yangmai 18 was bombarded by the particle containing pA25-GmPGIP3 vector DNA. The GmPGIP3 transgenic wheat plants from T0 to T2 generations were detected by PCR, Southern blot, RT-PCR, and Q-RT-PCR analyses. The alien GmPGIP3 proved to be introduced into seven transgenic wheat lines with heritability and expression events. We also evaluated the disease resistance in these GmPGIP3 transgenic plants through inoculating the common root rot pathogen, Bipolaris sorokiniana. Compared with untransformated Yangmai 18, five GmPGIP3 transgenic lines showed significantly-enhanced resistance to Bipolaris sorokiniana.

Key words: Polygalacturonase-inhibiting protein (PGIP), GmPGIP3, Transgenic wheat, Molecular detection, Common root rot, Resistance

[1]Cervone F, Hahn M G, Lorenzo G, Darvill A, Albersheim P. A plant protein converts a fungal pathogenesis factor onto an elicitor of plant defense responses. Plant Physiol, 1989, 90: 542–548



[2]Albersheim P, Anderson A J. Protein from plant cell wall inhibit polygalacturonases secreted by plant pathogens. Proc Natl Acad Sci USA, 1971, 68: 1815–1819



[3]D’Ovidio R, Mattei B, Roberti S. Polygalacturonases, polygalacturonase-inhibiting protein and pectic oligomers in plant-pathogen interactions. Biochim Biophys Acta, 2004, 1696: 237–244



[4]Lin X-R(林晓蓉), Bai X-F(白雪芳), Du Y-G(杜昱光), Zhao Y-P(赵银萍). PGIP and wheat phytoalexin are purified by column chromatography and TLC. J Xi’an United Univ (西安联合大学学报), 1999, 2: 35–38 (in Chinese with English abstract)



[5]D’Ovidio R, Roberti S, Di Giovanni M, Capodicasa C, Melaragni M, Sella L, Tosi P, Favaron F. The characterization of the soybean polygalacturonase-inhibiting proteins (Pgip) gene family reveals that a single member is responsible for the activity detected in soybean tissues. Planta, 2006, 224: 633–645



[6]Jia Y-X(贾延祥), Wu G-B(吴桂本), Liu C-D(刘传德). The present research situation and control countermeasure of root rots in wheat. Sci Agric Sin (中国农业科学), 1995, 28(3): 41–48 (in Chinese with English abstract)



[7]?a?niewska J, Macioszek V K, Lawrence C B, Kononowicz A K. Fight to the death: Arabidopsis thaliana defense response to fungal necrotrophic pathogens. Acta Physiol Plant 2010, 32: 1–10



[8]Xu H-J(徐惠君), Pang J-L(庞俊兰), Ye X-G(叶兴国), Du L-P(杜丽璞), Li L-C(李连城), Xin Z-Y(辛志勇), Ma Y-Z(马有志), Chen J-P(陈剑平), Chen J(陈炯), Cheng S-H(程顺和), Wu H-Y(吴宏亚). Study on the gene transferring of Nib8 into wheat for its resistance to the Yellow mosaic virus by bombardment. Acta Agron Sin (作物学报), 2001, 27(6): 684−689 (in Chinese with English abstract)



[9]Sharp P J, Kries M, Shewry P R, Gale M D. Location of β-amylase sequences in wheat and its relatives. Theor Appl Genet, 1988, 75: 286–290



[10]Dong N, Liu X, Lu Y, Du L, Xu H, Liu H, Xin Z, Zhang Z. Overexpression of TaPIEP1, a pathogen-induced ERF gene of wheat, confers host-enhanced resistance to fungal pathogen Bipolaris sorokiniana. Func Integr Genomics, 2010, 10: 215–226



[11]Willamson B, Johnston D J, Ramanathan V, McNicol R J. A polygalacturonase inhibitor from immature raspberry fruit: a possible new approach to grey mould control. Acta Hort, 1993, 352: 601–606



[12]Agüero C B, Uratsu S L, Greve C, Powell A L T, Labavitch J M, Meredith C P, Dandekar A M. Evaluation of tolerance to Pierce’s disease and Botrytis in transgenic plants of Vitis vinifera L. expressing the pear PGIP gene. Mol Plant Pathol, 2005, 6: 43–51



[13]Janni M, Sella L, Favaron F, Blechl A E, De Lorenzo G, D’Ovidio R. The expression of a bean PGIP in transgenic wheat confers increased resistance to the fungal pathogen Bipolaris sorokiniana. Mol Plant-Microbe Interact, 2008, 21: 171–177



[14]Farina A, Rocchi V, Janni M, Benedettelli S, De Lorenzo G, D’Ovidio R. The bean polygalacturonase-inhibiting protein 2 (PvPGIP2) is highly conserved in common bean (Phaseolus vulgaris L.) germplasm and related species. Theor Appl Genet, 2009, 118: 1371–1379



[15]Desiderio A, Aracri B, Leckie F, Mattei B, Salvi G, Tigelaar H, Van Roekel J S C, Baulcombe D C, Melchers L S, De Lorenzo G, Cervone F. Polygalacturonase-inhibiting proteins (PGIPs) with different specificities are expressed in Phaseolus vulgaris. Mol Plant-Microbe Interact, 1997, 10: 852–860



[16]Turner J G, Hoffman R M. Effect of the PGIP from pea on the hydrolysis pea cell walls by the edno-PG from Ascochyta pisi. Plant Pathol, 1985, 34: 54–60

[1] 邓钊, 江南, 符辰建, 严天泽, 符星学, 胡小淳, 秦鹏, 刘珊珊, 王凯, 杨远柱. 隆两优与晶两优系列杂交稻的稻瘟病抗性基因分析[J]. 作物学报, 2022, 48(5): 1071-1080.
[2] 刘丹, 周彩娥, 王晓婷, 吴启蒙, 张旭, 王琪琳, 曾庆东, 康振生, 韩德俊, 吴建辉. 利用集群分离分析结合高密度芯片快速定位小麦成株期抗条锈病基因YrC271[J]. 作物学报, 2022, 48(3): 553-564.
[3] 杨昕, 林文忠, 陈思远, 杜振国, 林杰, 祁建民, 方平平, 陶爱芬, 张立武. 黄麻双生病毒CoYVV的分子鉴定和抗性种质筛选[J]. 作物学报, 2022, 48(3): 624-634.
[4] 张思梦, 倪文荣, 吕尊富, 林燕, 林力卓, 钟子毓, 崔鹏, 陆国权. 影响甘薯收获期软腐病发生的指标筛选[J]. 作物学报, 2021, 47(8): 1450-1459.
[5] 习玲, 王昱琦, 朱微, 王益, 陈国跃, 蒲宗君, 周永红, 康厚扬. 78份四川小麦育成品种(系)条锈病抗性鉴定与抗条锈病基因分子检测[J]. 作物学报, 2021, 47(7): 1309-1323.
[6] 左香君, 房朋朋, 李加纳, 钱伟, 梅家琴. 有毛野生甘蓝(Brassica incana)抗蚜虫特性研究[J]. 作物学报, 2021, 47(6): 1109-1113.
[7] 马燕斌, 王霞, 李换丽, 王平, 张建诚, 文晋, 王新胜, 宋梅芳, 吴霞, 杨建平. 玉米光敏色素A1基因(ZmPHYA1)在棉花中的转化及分子鉴定[J]. 作物学报, 2021, 47(6): 1197-1202.
[8] 蒋伟, 潘哲超, 包丽仙, 周福仙, 李燕山, 隋启君, 李先平. 马铃薯资源晚疫病抗性的全基因组关联分析[J]. 作物学报, 2021, 47(2): 245-261.
[9] 张荣跃, 王晓燕, 杨昆, 单红丽, 仓晓燕, 李婕, 王长秘, 尹炯, 罗志明, 李文凤, 黄应昆. 甘蔗新品种及主栽品种对褐锈病抗性与Bru1基因分子检测[J]. 作物学报, 2021, 47(2): 376-382.
[10] 仓晓燕, 夏红明, 李文凤, 王晓燕, 单红丽, 王长秘, 李婕, 张荣跃, 黄应昆. 甘蔗优良品种(系)对黑穗病的抗性评价[J]. 作物学报, 2021, 47(11): 2290-2296.
[11] 陈同睿, 罗艳君, 赵潘婷, 贾海燕, 马正强. 过表达TaJRL53基因提高了小麦赤霉病抗性[J]. 作物学报, 2021, 47(1): 19-29.
[12] 崔静, 王志城, 张新雨, 柯会锋, 吴立强, 王省芬, 张桂寅, 马峙英, 张艳. 棉花GbSTK基因调控开花和黄萎病抗性的功能研究[J]. 作物学报, 2021, 47(1): 30-41.
[13] 闻竞, 沈彦岐, 韩四平, 邢跃先, 张叶, 王梓钰, 李世界, 杨小红, 郝东云, 张艳. 玉米拟轮枝镰孢菌穗腐病抗性基因的挖掘[J]. 作物学报, 2020, 46(9): 1303-1311.
[14] 张雪翠,钟超,段灿星,孙素丽,朱振东. 大豆品种郑97196抗疫霉病基因RpsZheng精细定位[J]. 作物学报, 2020, 46(7): 997-1005.
[15] 李威涛,徐志军,蔡岩,郭建斌,喻博伦,黄莉,陈玉宁,周小静,罗怀勇,刘念,陈伟刚,任小平,姜慧芳. 抗青枯病兼大果和高出仁率的花生新种质创制[J]. 作物学报, 2020, 46(4): 484-490.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!