欢迎访问作物学报,今天是

作物学报 ›› 2017, Vol. 43 ›› Issue (05): 701-707.doi: 10.3724/SP.J.1006.2017.00701

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

花生出仁率QTL分析及其与荚果大小的相关性

蔡岩,徐志军,李振动,李新平,郭建斌,任小平,黄莉,陈伟刚,陈玉宁,周小静,罗怀勇,姜慧芳*   

  1. 中国农业科学院油料作物研究所 / 农业部油料作物生物学与遗传育种重点实验室,湖北武汉430062
  • 收稿日期:2016-06-22 修回日期:2016-11-03 出版日期:2017-05-12 网络出版日期:2016-12-14
  • 通讯作者: 姜慧芳, E-mail: peanut@oilcrops.cn, Tel: 027-86711550
  • 基金资助:

    本研究由国家自然科学基金项目(31271764, 31371662, 31471534, 31461143022), 农业部农作物种质资源保护项目(2015NWB035)和国家现代农业产业技术体系建设专项(CARS-14-花生种质资源评价)资助。

Quantitative Trait Locus Shelling Percentage and Correlation Between Shelling Percentage with Pod Traits in Cultivated Peanut (A. hypogaea L.)

CAI Yan,XU Zhi-Jun,LI Zhen-Dong,LI Xin-Ping,GUO Jian-Bin,REN Xiao-Ping,HUANG Li,CHEN Wei-Gang,CHEN Yu-Ning,ZHOU Xiao-Jing,LUO Huai-Yong,JIANG Hui-Fang*   

  1. Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences / Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China
  • Received:2016-06-22 Revised:2016-11-03 Published:2017-05-12 Published online:2016-12-14
  • Contact: Jiang Huifang, E-mail: peanut@oilcrops.cn, Tel: 027-86711550
  • Supported by:

    This study was supported by the National Natural Science Foundation of China (31271764, 31371662, 31471534, 31461143022), the Crop Germplasm Resources Protection Project (2015NWB035), and the China Agriculture Research System (CARS-14-peanut resource evaluation).

摘要:

花生是重要的油料作物,成熟花生的出仁率不仅与花生的产油量相关,还与果壳厚度及脱壳难易程度相关,是花生遗传改良的重要成分。本研究以远杂9102×徐州68-4杂交后代衍生的重组自交系(RIL)的188个家系为材料,2013—2014年连续2年考察出仁率和荚果表型,发现有29份材料的出仁率稳定高于高值亲本远杂9102。出仁率与荚果长、荚果宽、荚果厚和百果重之间呈显著或极显著负相关。利用已构建的包含365个标记22个连锁群的遗传连锁图,采用WinQTLcart 2.5软件的复合区间作图法对出仁率进行QTL定位和效应估计,2年共检测到22个出仁率QTL,遗传贡献率为2.75%~13.49%,其中2年重复检测到的区间有5个(AHGS0344~AGGS2438、AGGS0957~AHGA7048、AGGS0058~AHGA72558、AHTE0446~AHGA363492和AGGS0311~AGGS2287),分布在连锁群LG02、LG03和LG10上,遗传贡献率为3.61%~13.49%。结合前期对该群体荚果大小的定位结果,有4个与出仁率相关的区间同时存在荚果大小QTL,其遗传效应均相反。在2年能检测到的出仁率QTL中,LG02上的区间AHGS0344~AGGS2438有与荚果长相关的QTL。在1年能检测到的出仁率QTL中,LG13上的区间AHTE0470~AGGS1233有与荚果长、百果重相关的QTL,LG06上的区间AGGS1363~AHGA24894有与荚果长相关的QTL,LG18上的区间AHTE0381~AGGS0100有与荚果宽、荚果厚相关的QTL。

关键词: 花生, 出仁率, QTL, 相关分析

Abstract:

Peanut is an important oil crops, the shelling percentage of mature pods in peanut is not only associated with peanut oil, also related to the thickness of shell and the extent of easy-shelling. Therefore the shelling percentage is a crucial component for peanut genetic breeding. In this study, 188 recombinant inbred lines (RIL), derived from a cross between two Spanish type peanut cultivars (Yuanza 9102 × Xuzhou 68-4) were used to analyze their in 2013 and 2014 years phenotype data and shelling percentage. Compared with their parents, 29 lines had higher shelling percentage. There were significantly or very significantly negative correlation between shelling percentage and pod size related traits. On the basis of a linkage map (containing 365 markers and 22 linkage groups) constructed before, QTL mapping of shelling percentage traits was conducted by using CIM model in WinQTLcart 2.5. A total of 22 QTLs were detected in the two environments, every single QTL explained the phenotypic variation ranging from 3.61% to 13.49%. A total of five intervals (AHGS0344–AGGS2438, AGGS0957–AHGA7048, AGGS0058–AHGA72558, AHTE0446–AHGA363492, AGGS0311–AGGS2287) were detected in both environments to be located on the linkage group 2, linkage group 3 and linkage group 10 explaining phenotypic variation of 3.68%–13.99%. There were QTLs both related to pod and shelling percentage in four intervals, including AHGS0344–AGGS2438 on linkage group 2 and AGGS1363–AHGA24894 on linkage group 6 containing QTLs related to pod length; AHTE0470–AGGS1233 on linkage group 13 containing QTLs related to pod length and weight of 100-pod; AHTE0381–AGGS0100 on linkage group 18 containing QTLs related to pod, besides genetic effects between shelling percentage and pod traits in the same intervals were opposite.

Key words: Cultivated peanut, Shelling percentage, QTL, Correction analysis

[1]殷冬梅, 尚明照, 崔党群. 花生主要农艺性状的遗传模型分析. 中国农学通报, 2006, 22(7): 261–265 Yin D M, Shang M Z, Cui D Q. Studies on genetic analysis of major agronomic characters in peanut(Arachis hypogaea L.). Chin Agric Sci Bull, 2006, 7(22): 261–265 (in Chinese with English abstract) [2]杨海棠, 马素芹, 陈华. 花生主要农艺性状的配合力分析. 中国农学通报, 2009, 25(22): 118–121 Yang H T, Ma S Q, Chen H. Studies on combining ability of major agronomic characters in peanut( Arachis hypogaea L.). Chin Agric Sci Bull, 2009, 25(22): 118–121 (in Chinese with English abstract) [3]刘华. 栽培种花生产量和品质相关性状遗传分析与QTL定位研究. 河南农业大学硕士学位论文, 河南郑州, 2011. pp 48–57 Liu H. Inhertance of Main Traits Related to Yield and Quality and Their QTL Mapping in Peanut(Archis Hypogaea L). MS Thesis of Henan Agricultural University, Zhengzhou, China, 2011. pp 48–57 (in Chinese with English abstract) [4]张新友. 栽培花生产量、品质和抗病性的遗传分析与QTL定位研究. 浙江大学博士学位论文, 浙江杭州, 2011. pp 85–93 Zhang X Y. Inheritance of Main Traits Related to Yield, Quantity and Disease Resistance and Their QTLs Mapping in Peanut (Arachis hypogaea L.). PhD Dissertation of Zhejiang University, Hangzhou, China, 2011. pp 85–93 (in Chinese with English abstract) [5]周金超. 花生遗传连锁图谱构建及农艺性状的QTL定位. 河北农业大学硕士学位论文, 河北保定, 2014. pp 33–47 Zhou J C. Genetic Map Construction and QTL Mapping for Agronomic Traits in Cultivated Peanut (Arachis hypogaea L.). MS Thesis of Hebei Agricultural University, Baoding, China, 2014. pp 33–47 (in Chinese with English abstract) [6]吕维娜. 花生栽培种SSR遗传连锁图谱构建及重要产量性状QTL定位分析. 郑州大学硕士学位论文, 河南郑州, 2014. pp 30–41 Lu W N. Construction of Genetic Linkage Map Based on SSR Markers and QTLs Identification for Major Yield Traits in the Cultivated Peanut (Arachis hypogaea L.). MS Thesis of Zhengzhou University, Zhengzhou, China, 2014. pp 30–41 (in Chinese with English abstract) [7]Huang L, He H Y, Chen W G, Ren X P, Zhou X J, Xia Y L, Wang X L, Jiang X G, Liao B S, Jiang H F. Quantitative trait locus analysis of agronomic and quality-related traits in cultivated peanut (Arachis hypogaea L.). Thero Appl Genet, 2015, 128: 1103–1115 [8]李兰周. 利用SSR标记构建花生遗传图谱及农艺性状的QTL分析. 山东农业大学硕士学位论文, 山东泰安, 2013. pp 43–57 Li L Z. Construction of Genetic Linkage Map by SSR Markers and QTL Analysis of Agronomic Traits in Peanut(Arachis hypogaea L.). MS Thesis of Shandong Agricultural University, Tai’an, China, 2013. pp 43–57 (in Chinese with English abstract) [9]郭慧敏. 栽培种花生染色体片段置换系群体的构建及部分农艺性状QTL定位. 河北农业大学硕士学位论文, 河北保定, 2014. pp 22–39 Guo H M. Construction of Chromosome Segment Substitution Lines and QTLs Mapping for Agronomic Traits in Cultivated Peanut(Arachis hypogaea L.). MS Thesis of Hebei Agricultural University, Baoding, China, 2014. 2014. pp 22–39 (in Chinese with English abstract) [10]Chen W, Jiao Y, Cheng L, Huang L, Liao B S, Tang M, Ren X P, Zhou X J, Chen Y N, Jiang H F. Quantitative trait locus analysis for pod- and kernel-related traits in the cultivated peanut (Arachis hypogaea L.). BMC Genet, 2016, 17: 1–9 [11]Selvaraj M G, Narayana M, Schubert A M, Ayers J L, Baring M R, Burow M D. Identification of QTLs for pod and kernel traits in cultivated peanut by bulked segregant analysis. Electronic J Biotechnol, 2009, 12: 1–10 [12]Shirasawa K, Koilkonda P, Aoki K, . In silico polymorphism analysis for the development of simple sequence repeat and transposon markers and construction of linkage map in cultivated peanut. BMC Plant Biol, 2012, 12: 80 [13]廖小妹, 张炼辉,李丽容,郑广柔. 珍珠豆型花生品种性状相关与偏相关分析. 中国油料作物学报, 1989, 1: 1–2 Liao X M, Zhang L H, Li L R, Zheng G R. Analyzing correlation and partal correlation between the characters of Spanish-type peanut varieties. Chin J Oil Crop Sci, 1989, 1: 1–2 (in Chinese with English abstract) [14]张晓杰, 姜慧芳, 任小平, 廖伯寿. 中国花生核心种质的主成分分析及相关分析. 中国油料作物学报, 2009, 31: 298–304 Zhang X J, Jiang H F, Ren X P, Liao B S. Principal component analysis and correlation analysis on Chinese core peanut. Chin J Oil Crop Sci, 2009, 31: 298–304 (in Chinese with English abstract) [15]钟瑞春. 花生桂花21产量与相关性状分析. 南方农业学报, 2003, (4): 65–66 Zhong R C. Analysis of yield-related traits on peanut Guihua 21. J Southern Agric, 2003, (4): 65–66 (in Chinese with English abstract) [16]姜华俭. 六个花生品种(系)的性状相关与回归分析. 花生科技, 1998, (3): 23–25 Jiang H J. Correlation analysis and regression analysis of six peanut varieties. Peanut Sci, 1998, (3): 23–25 (in Chinese with English abstract) [17]江建华, 倪皖莉, 于欢欢, 管叔琪, 肖美华. 花生单株生产力与主要农艺性状间的相关性研究. 中国农学通报, 2013, (36): 125–130 Jiang H J, Ni W L, Yu H H, Guan S Q, Xiao M H. The correlation analysis between productivity per plant and major agronomic traits of peanut. Chin Agric Sci Bull, 2013, (36): 125–130 (in Chinese with English abstract) [18]李少华, 董申平, 郭拥军, 高三明, 李秀梅. 花生主要性状与产量的关系. 湖北农业科学, 2004, (1): 49–50 Li S H, Dong S P, Guo Y J. Relationship between yield and main traits on peanut. Hubei Agric Sci, 2004, (1): 49–50 (in Chinese with English abstract) [19]熊文献, 袁建中, 余辉, 喻春强, 熊瑞芳. 高产优质花生新品种远杂9102特征特性及保优节本配套栽培技术. 花生学报, 2003, 32(S1): 500–503 Xiong W X, Yuan J Z, Yu H, Yu C Q, Xiong R F. New cultivation techniques for new variety peanut Yuanza 9102. Peanut Sci, 2003, 32(S1): 500–503 (in Chinese with English abstract) [20]禹山林. 中国花生品种及其系谱(精). 上海: 上海科技出版社, 2008. pp 250–271 Yu S L. Peanut Varieties and Pedigree in China. Shanghai: Shanghai Scientific and Technical Publishers, 2008. pp 250–271 (in Chinese) [21]李振动, 李新平, 黄莉, 任小平, 陈玉宁, 周小静, 廖伯寿, 姜慧芳. 栽培种花生荚果大小相关性状QTL定位. 作物学报, 2015, 41: 1313–1323 Li Z D, Li X P, Huang L, Ren X P, Chen Y N, Zhou X J, Liao B S, Jiang H F. Mapping of QTLs for pod size related traits in cultivated peanut (Arachis hypogaea L.). Acta Agron Sin, 2015, 41: 1313–1323 (in Chinese with English abstract) [22]Shirasawa K, Bertioli D J, Varshney R K, Moretzsohn M C, Leal-Bertiol S C M , Thudi M, Pandey M K, Rami J-F, Fonce′ka D, Gowda M V C, Qin H D, Guo B Z, Hong Y B, Liang X Q, Hirakawa H, Tabata S, Isobe S. Integrated consensus map of cultivated peanut and wild relatives reveals structures of the A and B genomes of Arachis and divergence of the legume genomes. DNA Res, 2013, 20: 173–184 [23]Ferguson M E, Burow M D, Schulze S R, Bramel P J, Paterson A H, Kresovich S, Mitchell S. Microsatellite identification and characterization in peanut (Arachis hypogaea L.). Theor Appl Genet, 2004, 108: 1064–1070 [24]Jensen J. Estimation of recombination parameters between a quantitative trait locus (QTL) and two marker gene loci. Theor Appl Genet, 1989, 78: 613–618 [25]McCouch S R, Cho Y G, Yano M, Paul E, Blinstrub M, Morishima H, Kinoshita T. Report on QTL nomenclature. Rice Genet Newslett, 1997, 14: 11–13 [26]侯敏, 刘阳, 刘学良, 陈尔冉, 苗凯. 高产优质花生新品种铁花6号的选育. 杂粮作物, 2010, 30(2): 85–86 Hou M, Liu Y, Liu X L, Chen E R, Miao K. Selection of a new peanut variety Tiehua No.6. Rain Fed Crops, 2010, 30(2): 85–86 [27]苗华荣, 胡晓辉, 杨伟强,崔凤高,陈静. 高产大花生新品种花选11号选育及配套栽培技术.中国农业科技导报, 2012, (4): 45–45 Miao H R, Hu X H, Yang W Q, Cui F G, Chen J. Selection of a high-yield large peanut variety Huaxuan No.11 and its cultivation techniques. J Agric Sci Tech China. 2012 (in Chinese with English abstract) [28]成良强. 花生遗传图谱构建及产量相关性状的QTL分析. 中国农业科学院硕士学位论文, 北京, 2014. pp 30–37 Cheng L Q. Construction of Genetic Linkage Map and QTL Analysis for Yield Related Traits in Peanut (Arachis hypogaea L.) MS Thesis of Chinese Academy of Agricultural Science, Beijing, China, 2014. pp 30–37 (in Chinese with English abstract) [29]廖福琴, 卢春生, 黄萍萍,苏秋芹. 加工型春花生主要农艺性状与产量的相关和通径分析. 安徽农业科学, 2003, 31: 938–939 Liao F Q, Lu C S, Huang P P, Su Q Q. Relation of agronomic characters and yield of spring peanut and its analysis. J Anhui Agric Sci, 2003, 31: 938–939 (in Chinese with English abstract) [30]Tuberosa R, Saivi S, Sanguineti M. Mapping QTLs regulating morpho-physiological traits and yield: Case studies, shortcomings and perspectives in drought-stressed maize. Ann Bot, 2002, 89: 941–963 [31]周广飞. 一个控制玉米行粒数、穗长及其一般配合力的多效性QTL(qKNR7.2)鉴定. 华中农业大学硕士学位论文, 湖北武汉, 2014. pp 40–45 Zhou G F. Identification of A Pleiotropic QTL (qKNR7.2) for Kernel Number Per row, Ear Length and General Combaining Ability of Maize. MS Thesis of Huazhong Agricultural university, Wuhan, China, 2014. pp 40-45 (in Chinese with English abstract) [32]鄢文豪. 水稻多效性QTL Ghd8的克隆及功能分析. 华中农业大学博士学位论文, 湖北武汉, 2012. pp 45–55 Yan W H. Cloning and Functional Analysis of Rice Pleiotropic QTL Ght8. PhD Dissertation of Huazhong Agricultural University. Wuhan, China, 2012. pp 45–55 (in Chinese with English abstract)

[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[3] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[4] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[5] 刘嘉欣, 兰玉, 徐倩玉, 李红叶, 周新宇, 赵璇, 甘毅, 刘宏波, 郑月萍, 詹仪花, 张刚, 郑志富. 耐三唑并嘧啶类除草剂花生种质创制与鉴定[J]. 作物学报, 2022, 48(4): 1027-1034.
[6] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
[7] 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291.
[8] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[9] 汪颖, 高芳, 刘兆新, 赵继浩, 赖华江, 潘小怡, 毕晨, 李向东, 杨东清. 利用WGCNA鉴定花生主茎生长基因共表达模块[J]. 作物学报, 2021, 47(9): 1639-1653.
[10] 王建国, 张佳蕾, 郭峰, 唐朝辉, 杨莎, 彭振英, 孟静静, 崔利, 李新国, 万书波. 钙与氮肥互作对花生干物质和氮素积累分配及产量的影响[J]. 作物学报, 2021, 47(9): 1666-1679.
[11] 石磊, 苗利娟, 黄冰艳, 高伟, 张忠信, 齐飞艳, 刘娟, 董文召, 张新友. 花生AhFAD2-1基因启动子及5'-UTR内含子功能验证及其低温胁迫应答[J]. 作物学报, 2021, 47(9): 1703-1711.
[12] 高芳, 刘兆新, 赵继浩, 汪颖, 潘小怡, 赖华江, 李向东, 杨东清. 北方主栽花生品种的源库特征及其分类[J]. 作物学报, 2021, 47(9): 1712-1723.
[13] 张鹤, 蒋春姬, 殷冬梅, 董佳乐, 任婧瑶, 赵新华, 钟超, 王晓光, 于海秋. 花生耐冷综合评价体系构建及耐冷种质筛选[J]. 作物学报, 2021, 47(9): 1753-1767.
[14] 薛晓梦, 吴洁, 王欣, 白冬梅, 胡美玲, 晏立英, 陈玉宁, 康彦平, 王志慧, 淮东欣, 雷永, 廖伯寿. 低温胁迫对普通和高油酸花生种子萌发的影响[J]. 作物学报, 2021, 47(9): 1768-1778.
[15] 郝西, 崔亚男, 张俊, 刘娟, 臧秀旺, 高伟, 刘兵, 董文召, 汤丰收. 过氧化氢浸种对花生种子发芽及生理代谢的影响[J]. 作物学报, 2021, 47(9): 1834-1840.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!