欢迎访问作物学报,今天是

作物学报 ›› 2017, Vol. 43 ›› Issue (07): 1096-1102.doi: 10.3724/SP.J.1006.2017.01096

• 研究简报 • 上一篇    

绿豆分子遗传图谱构建及若干农艺性状的QTL定位分析

王建花1,2,3,张耀文3,程须珍2,*,王丽侠2,*   

  1. 1山西大学, 山西太原 030006;2中国农业科学院作物科学研究所, 北京 100081;3山西省农业科学院作物科学研究所, 山西太原 030031
  • 收稿日期:2016-12-11 修回日期:2017-03-02 出版日期:2017-07-12 网络出版日期:2017-03-19
  • 通讯作者: 程须珍,E-mail: chengxuzhen@caas.cn, 王丽侠, E-mail:wanglixia03@caas.cn, Tel: 010-62180535
  • 基金资助:

    本研究由国家现代农业产业技术体系建设专项(CARS-09)和中国农科院科技创新工程资助。

Construction of New Genetic Map and Identification of QTLs Related to Agronomic Traits in Mung Bean

WANG Jian-Hua1,2,3,ZHANG Yao-Wen3,CHENG Xu-Zhen2,*,WANG Li-Xia2,*   

  1. 1 Shanxi University, Taiyuan 030006, China; 2 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China;3 Institute of Crop Sciences, Shanxi Academy of Agricultural Sciences, Taiyuan 030031, China
  • Received:2016-12-11 Revised:2017-03-02 Published:2017-07-12 Published online:2017-03-19
  • Contact: 程须珍,E-mail: chengxuzhen@caas.cn, 王丽侠, E-mail:wanglixia03@caas.cn, Tel: 010-62180535
  • Supported by:

    This study was supported by the China Agriculture Research System (CARS-09) and the Agricultural Science and Technology Innovation Program of CAAS。

摘要:

利用花叶1号×紫茎1号杂交后代衍生的208个F2家系组建群体, 构建含有95个SSR标记位点的遗传连锁图谱, 该图谱包含11个连锁群, 全长1457.47 cM, 标记平均间距为15.34 cM。利用复合区间作图法, 对株高、幼茎色、主茎色、生长习性、结荚习性、复叶叶形和成熟叶色等农艺性状进行QTL分析, 分别检测到与株高、幼茎色、主茎色、复叶叶形有关的QTL各1个, 贡献率在8.49%~66.64%之间;与结荚习性有关的QTL3个, 贡献率在60.32%~80.36%之间;与成熟叶色有关QTL 4个, 贡献率在69.06%~87.35%之间;与生长习性有关的QTL数量最多, 共26个, 贡献率在58.32%~99.51%之间。上述QTL主要分布在LG1、LG2、LG4、LG8和LG10连锁群, 其中LG1最少, 仅检测到生长习性的1个QTL, LG4最多, 包含了幼茎色、主茎色、结荚习性、生长习性、复叶叶形、成熟期叶色6个农艺性状的15个QTL;这些QTL既可以应用于绿豆育种的分子标记辅助选择, 也对深入研究这些性状的遗传奠定了基础。

关键词: 绿豆, 连锁遗传图谱, SSR标记, 复合区间作图法, QTL, 贡献率

Abstract:

Two hundreds and eight individuals of F2 population, derived from a cross between two mung bean genotypes (Huaye 1 and Zijing 1) were used to construct genetic map, and to identify QTLs related to important agronomic traits. This genetic map contained 11 linkage groups with a total length of 1457.47 cM and an average interval of 15.34 cM. QTLs mapping was conducted for plant height, young stem color, main stem color, growth habit, podding habit, trilobate leaf shape and mature leaf color using composite interval mapping method. Only one QTL for each trait was detected including plant height, young stem color, main stem color and trilobate leaf shape, and with a contribution ranging from 8.49% to 66.64%. Three QTLs with high contribution rates from 60.32% to 80.36% were identified for the trait of pod habit in mung bean. Four QTLs related to mature leaf color showed at contribution rate from 69.06% to87.35%. There were 26 QTLs related to growth habit, the most of the tested QTLs, with a contribution rate each from 58.32% to 99.51%. The present QTLs for seven agronomic traits distributed on LG1, LG2, LG4, LG8, and LG10, respectively, could be used in molecular breeding based on marker-assisted selection in mung bean, and also lay a foundation for further study of the inheritance of these traits.

Key words: Mung bean, Genetic linkage map, SSR markers, Composite interval mapping(CIM), QTL, Contribution rate

[1] Kang Y J, Kim S K, Kim M Y. Genome sequence of mungbean and insights into evolution within Vigna species. Nat Commun, 2014, 11: 1–7 [2] Cantarel B L, Korf I, Robb S M, Parra G, Ross E, Moore B, Holt C, Sánchez Alvarado A, Yandell M. MAKER: an easy-to-use annotation pipeline designed for emerging model organism genomes. Genome Res, 2008, 18: 188–196 [3] 赵金荣, 王晓玲, 白羊年. 豆科植物比较基因组学研究进展. 海南生物技术研究与发展研讨会论文集, 海南三亚, 2006. pp 65–75 Zhao J R, Wang X L, Bai Y N. Advances in Comparative Genomics of Leguminous Plants. Hainan Biotechnology Research and Development Symposium, Sanya, China, 2006. pp 65–75 (in Chinese with English abstract) [4] Humphry M E, Magner T, McIntyre C L, Aitken E A B, Liu C J. Identification of a major locus conferring resistance to powdery mildew (Erysiphe polygoni DC) in mungbean (Vigna radiata L. Wilczek) by QTL analysis. Genome, 2003, 46: 738–744 [5] Reddy S K. Identification and inheritance of a new gene for powdery mildew resistance in mungbean (Vigna radiata L. Wilczek). Plant Breed, 2009, 128: 521–523 [6] Khajudparn P, Wongkaew S. Identification of genes for powdery mildew resistance in mungbean. J Life Sci, 2010, 4 [7] Chaitieng B, Kaga A, Han O K, Wang X W, Wongkaew S, Laosuwan P, Tomooka N, Vaughan D A. Mapping a new source of resistance to powdery mildew in mungbean. Plant Breed, 2002, 121: 521–525 [8] Young N D, Danesh D, Menancio-Hautea D, Kumar L. Mapping oligogenic resistance to powdery mildew in mungbean with RFLPs. Theor Appl Genet, 1993, 87: 243–249 [9] 梅丽, 素华, 王丽侠, 刘长友, 孙蕾, 徐宁. 重组近交系群体定位绿豆抗绿豆象基因. 作物学报, 2007, 33: 1601–1605 Mei L, Wang S H, Wang L X, Liu C Y, Sun L, Xu N. Mapping of genes resistant to Bruchid in mungbean using recombinant inbred lines population. Acta Agron Sin, 2007, 33: 1601–1605 (in Chinese with English abstract) [10] 赵丹, 程须珍, 王丽侠, 王素华, 马燕玲. 绿豆遗传连锁图谱的构建. 作物学报, 2010, 36: 932–939 Zhao D, Cheng X Z, Wang L X, Wang S H, Ma Y L. Integration of mungbean (Vigna radiata) genetic linkage map. Crop J, 2010, 36: 932–939 (in Chinese with English abstract) [11] 钟敏. 绿豆遗传连锁图谱的构建及抗豆象基因的精细定位. 中国农业科学院硕士学位论文, 北京, 2012 Zhong M. Construction of Genetic Linkage Map and Fine Mapping of Bruchid-resistant Gene (Br1) of Mungbean. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2012 (in Chinese with English abstract) [12] 吴传书, 王丽侠, 王素华等. 绿豆高密度分子遗传图谱的构建. 中国农业科学, 2014, 47: 2088–2098 Wu C S, Wang L X, Wang S H. Construction of a genetic linkage map in mungbean. Chin Agric Sci, 2014, 47: 2088–2098 (in Chinese with English abstract) [13] Wang D L, Zhu J, Li Z K, Paterson A H. Mapping QTLs with epistatic effects and QTL × environment interactions by mixed linear model approaches. Theor Appl Genet, 1999, 99: 1255?1264 [14] Yang J, Zhu J. Predicting superior genotypes in multiple environments based on QTL effects. Theor Appl Genet, 2005, 110: 1268?1274 [15] Wang L X, Baidouri M E, Abernathy B, Chen H L, Wang S H, Cheng X Z. Distribution and analysis of SSR in mung bean (Vigna radiata L.) genome based on an SSR-enriched library. Mol Breed, 2015, 35: 25, DOI 10.1007/s11032-015-0259-8 [16] Doyle J J, Doyle J L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull, 1987, 19: 11–15 [17] 程须珍, 王素华, 王丽侠等. 绿豆种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006. pp 3–38 Cheng X Z, Wang S H, Wang L X. Descriptors and Data Standard for Mungbean. Beijing: China Agriculture Press, 2006. 3–38 (in Chinese with English abstract) [18] Menancio-Hautea C A, Fatokun L, Kumar D, Danesh N D. Young, Comparative genome analysis of mungbean (Vigna radiata L. Wilczek) and cowpea (V. unguiculata L. Walpers) using RFLP mapping data. Theor Appl Genet, 1993, 86: 797–810 [19] Lambrides D J, Lawn R J, Godwin I D, Manners J, Imrie B C. Two genetic linkage maps of mungbean using RFLP and RAPD markers. Aust J Agric Res, 2000, 51: 415–425 [20] Hautea D M, Legume I. Molecular mapping of drought resistance in mungbean [Vigna radiata (L.) Wilczek]: 1. Linkage map in mungbean using AFLP markers, J. Bioteknologi Pertanian, 2002: 7: 17–24 [21] Wang L X, Wu C S. Construction of an integrated map and location of a bruchid resistance gene in mung bean. Crop J, 2016, 4: 360–366 [22] Humphry M E, Konduri V, Lambrides C J, Magner T, Mc Intyre C L, Aitken E.A.B, et al. Development of a mungbean (Vigna radiata) RFLP linkage map and its comparison with lablab (Lablab purpureus) reveals a high level of colinearity between the two genomes. Theor Appl Genet, 2002, 105: 160–166 [23] 梅丽. 绿豆抗豆象、种子硬实及其他重要农艺性状的QTL分析. 中国农业科学院硕士学位论文, 北京, 2007 Mei L. QTL Analysis of Bruchid Resistance, Seed Dormancy and Other Important Agronomic Traits in Mungbean. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2007 (in Chinese with English abstract) [24] Jiao K Y, Li X, Guo W X, Yuan X X, Cui X Y, Chen X. Genome re-sequencing of two accessions and fine mapping the locus of lobed leaflet margins in mungbean. Mol Breed, 2016, 36: 128

[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[3] 胡亮亮, 王素华, 王丽侠, 程须珍, 陈红霖. 绿豆种质资源苗期耐盐性鉴定及耐盐种质筛选[J]. 作物学报, 2022, 48(2): 367-379.
[4] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[5] 张波, 裴瑞琴, 杨维丰, 朱海涛, 刘桂富, 张桂权, 王少奎. 利用单片段代换系鉴定巴西陆稻IAPAR9中的粒型基因[J]. 作物学报, 2021, 47(8): 1472-1480.
[6] 王琰琰, 王俊, 刘国祥, 钟秋, 张华述, 骆铮珍, 陈志华, 戴培刚, 佟英, 李媛, 蒋勋, 张兴伟, 杨爱国. 基于SSR标记的雪茄烟种质资源指纹图谱库的构建及遗传多样性分析[J]. 作物学报, 2021, 47(7): 1259-1274.
[7] 罗兰, 雷丽霞, 刘进, 张瑞华, 金桂秀, 崔迪, 黎毛毛, 马小定, 赵正武, 韩龙植. 利用东乡普通野生稻染色体片段置换系定位产量相关性状QTL[J]. 作物学报, 2021, 47(7): 1391-1401.
[8] 党科, 宫香伟, 吕思明, 赵冠, 田礼欣, 靳飞, 杨璞, 冯佰利, 高小丽. 糜子/绿豆间作模式下施氮量对绿豆叶片光合特性及产量的影响[J]. 作物学报, 2021, 47(6): 1175-1187.
[9] 韩玉洲, 张勇, 杨阳, 顾正中, 吴科, 谢全, 孔忠新, 贾海燕, 马正强. 小麦株高QTL Qph.nau-5B的效应评价[J]. 作物学报, 2021, 47(6): 1188-1196.
[10] 吴然然, 林云, 陈景斌, 薛晨晨, 袁星星, 闫强, 高营, 李灵慧, 张勤雪, 陈新. 绿豆雄性不育突变体msm2015-1的遗传学与细胞学分析[J]. 作物学报, 2021, 47(5): 860-868.
[11] 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598.
[12] 李书宇, 黄杨, 熊洁, 丁戈, 陈伦林, 宋来强. 甘蓝型油菜早熟性状QTL定位及候选基因筛选[J]. 作物学报, 2021, 47(4): 626-637.
[13] 韩贝, 王旭文, 李保奇, 余渝, 田琴, 杨细燕. 陆地棉种质资源抗旱性状的关联分析[J]. 作物学报, 2021, 47(3): 438-450.
[14] 沈文强, 赵冰冰, 于国玲, 李凤菲, 朱小燕, 马福盈, 李云峰, 何光华, 赵芳明. 优良水稻染色体片段代换系Z746的鉴定及重要农艺性状QTL定位及其验证[J]. 作物学报, 2021, 47(3): 451-461.
[15] 王瑞莉, 王刘艳, 雷维, 吴家怡, 史红松, 李晨阳, 唐章林, 李加纳, 周清元, 崔翠. 结合RNA-seq分析和QTL定位筛选甘蓝型油菜萌发期与铝毒胁迫相关的候选基因[J]. 作物学报, 2021, 47(12): 2407-2422.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!