欢迎访问作物学报,今天是

作物学报 ›› 2017, Vol. 43 ›› Issue (07): 947-953.doi: 10.3724/SP.J.1006.2017.00947

• 作物遗传育种·种质资源·分子遗传学 •    下一篇

基于FLUOstar平台的小麦dsDNA荧光定量与基因型分析

肖永贵1,Susanne DREISIGACKER2,Claudia NUÑEZ-RíOS2,胡卫国3,夏先春1,何中虎1,4,*   

  1. 1 中国农业科学院作物科学研究所 / 国家小麦改良中心, 北京 100081; 2 International Maize and Wheat Improvement Center (CIMMYT), 06600 México, DF México; 3 河南省农业科学院小麦研究所, 河南郑州 450002; 4 CIMMYT中国办事处, 北京 100081
  • 收稿日期:2016-09-08 修回日期:2017-03-02 出版日期:2017-07-12 网络出版日期:2017-03-30
  • 通讯作者: 何中虎, E-mail: zhhecaas@163.com
  • 基金资助:

    本研究由国家重点研发计划项目(2016YFD0101804-6), 国家自然科学基金项目(31671691), 国家科技支撑计划项目(2014BAD01B05)和科技部国际合作项目(2013DFG30530)资助。

dsDNA Fluorescent Quantification and Genotyping in Common Wheat by FLUOstar System

XIAO Yong-Gui1,Susanne DREISIGACKER2,Claudia NUÑEZ-RíOS2,HU Wei-Guo3,XIA Xian-Chun1,HE Zhong-Hu1,4,*   

  1. 1 Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS) /National Wheat Improvement Center, Beijing 100081, China; 2 International Maize and Wheat Improvement Center (CIMMYT), 06600 México, DF México; 3 Wheat Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; 4 CIMMYT China Office, c/o CAAS, Beijing 100081, China
  • Received:2016-09-08 Revised:2017-03-02 Published:2017-07-12 Published online:2017-03-30
  • Contact: He Zhonghu, E-mail: zhhecaas@163.com
  • Supported by:

    This study was supported by the Key Project of the National Research and Development Program (2016YFD0101804-6), the National Natural Science Foundation of China (31671691), the National Key Technology R&D Program of China (2014BAD01B05), and the International Science & Technology Cooperation Program of Ministry of Science and Technology (2013DFG30530).

摘要:

双链DNA (dsDNA)定量分析是植物分子生物学研究的基础, 对基因型分析尤为重要。本研究以λ噬菌体dsDNA为标准样品, 建立了荧光定量标准曲线, 探讨荧光核酸定量通量性及其与紫外法定量的差异, 并分析荧光染料在基因分型中的应用。结果表明, 荧光染料能够对dsDNA进行高效微量定量分析(<1.1 ng ?L?1), 但因鉴定核酸的浓度较低, 对小麦籽粒和叶片全基因组DNA定量时稀释倍数较大, 易增大浓度误差。降低反应体系量导致标准曲线决定系数降低, 影响测量准确性。精确定量dsDNA浓度时, 总反应体系应大于200 ?L;对PCR产物进行基因分型时, 总反应体系应不低于40 ?L。相同DNA模板浓度下, FLUOstar平台可以对抗秆锈病基因显性标记csSr32#1 (Sr32)和IB-267 (Sr50)的PCR产物进行基因型分型, 判断准确率为100%。对特异性强且等位基因片段差异大(≥100 bp)的共显性标记, 如抗叶锈病基因标记 We173 (Yr26)等, 用荧光染料同样可以进行基因分型。与琼脂糖凝胶电泳相比, 荧光染料鉴定等位基因价格略高, 但方法简单、准确快速、重现性好, 可用于分子育种中世代材料快速筛选。

关键词: 普通小麦, dsDNA, 荧光定量, 显性标记, 分子育种

Abstract:

Quantitative analysis on double-stranded DNA (dsDNA) lays a foundation in molecular biology research in plants, particularly important for genotyping in molecular breeding. The objective of this study was to establish standard curve for fluorescence quantitative analysis by lambda DNA, to compare the difference between dsDNA value in fluorescence system and ultraviolet spectrophotometry, and to identify the allelic variations of rust resistance genes in wheat. The fluorescent dye could be efficiently performed in the quantitative analysis with micro dsDNA concentration (< 1.1 ng ?L?1). However, the fluorescent dye could lead to uncertainty of original concentrations of wheat leaf and grain genome DNA, due to more fold serial dilutions for higher DNA concentration. A downward tendency was happened in fluorescent intensity when fluorescent reaction volume was tapered, which influenced the accuracy of DNA concentration. The volume of reaction system mixed nucleic acid and fluorescent dye should be more than 200 ?L for accurate determination of micro dsDNA. For genotyping on PCR products, the volume of fluorescent reaction system should be more than 40 ?L. FLUOstar could be used for identifying the dominant marker, for instance csSr32#1 (Sr32) and IB-267 (Sr50), its accuracy was 100% in correspondence with that from agarose gel electrophoresis. Co-dominant marker with the characteristic of peculiarity and major difference in amplified fragment length ( ≥100 bp), such as We173 (Yr26), could also be identified by fluorescent analysis. Compared with agarose gel electrophoresis method, fluorescent method have a simple, convenient, and rapid oparetion with high repeatability, and can be used for segregating generations in marker-assisted breeding.

Key words: Common wheat, dsDNA, Fluorescent quantitative analysis, Dominant marker, Molecular breeding

[1] Bhat S, Curach N, Mostyn T, Bains G S, Griffiths K R, Emslie K R. Comparison of methods for accurate quantification of DNA mass concentration with traceability to the international system of units. Anal Chem, 2010, 82: 7185–7192 [2] 聂晓静, 赵筱萍, 王毅. 基于荧光图像的抗肿瘤细胞迁移药物筛选方法. 药学学报, 2011, 46: 793–797 Nie X J, Zhao X P, Wang Y. Development of fluorescence imaging based assay for screening compounds with anti-migration activity. Acta Pharm Sin, 2011, 46: 793?797 (in Chinese with English abstract) [3] 王宇, 刘景晶. 核酸的定量技术研究进展. 药学进展, 2006, 30: 385?390 Wang Y, Liu J J. Recent advances in research on quantification of nucleic acids. Prog Pharmac Sci, 2006, 30: 385?390 (in Chinese with English abstract) [4] Lyu Z Z, Liu J C, Zhou Y, Guan Z, Yang S M, Li C, Chen A L. Highly sensitive fluorescent detection of small molecules, ions, and proteins using a universal label-free aptasensor. Chem Commun (Camb), 2013, 49: 5465–5467 [5] Rengarajan K, Cristol S M, Mehta M, Nickerson J M. Quantifying DNA concentrations using fluorometry: a comparison of fluorophores. Mol Vis, 2002, 8: 416–421 [6] Lucena-Aguilar G, Sánchez-López A M, Barberán-Aceituno C, Carrillo-ávila J A, López-Guerrero J A, Aguilar-Quesada R. DNA source selection for downstream applications based on DNA quality indicators analysis. Biopreserv Biobank, 2016, 14: 264–270 [7] Haque K A, Pfeiffer R M, Beerman M B, Struewing J P, Chanock S J, Bergen A W. Performance of high-throughput DNA quantification methods. BMC Biotechnol, 2003, 3: 20 [8] Georgiou C D, Papapostolou I. Assay for the quantification of intact/fragmented genomic DNA. Anal Biochem, 2006, 358: 247–256 [9] Marie D, Vaulot D, Partensky F. Application of the novel nucleic acid dyes YOYO-1, YO-PRO-1 and PicoGreen for flow cytometric analysis of marine prokaryotes. Appl Environ Microb, 1996, 62: 1649?1655 [10] 桂海娈, 金庆日, 张亚军, 王晓杜, 杨永春, 邵春艳, 程昌勇, 卫芳芳, 杨扬, 杨梦华, 宋厚辉. 基于荧光染料PicoGreen 和核酸适配体的伏马毒素B1检测方法. 生物工程学报, 2015, 31: 1393–1400 Gui H L, Jin Q R, Zhang Y Z, Wang X D, Yang Y C, Shao C Y, Cheng C Y, Wei F F, Yang Y, Yang M H, Song H H. Development of an aptamer/fluorescence dye PicoGreen-based method for detection of fumonisin B1. Chin J Biotechnol, 2015, 31: 1393–1400 (in Chinese with English abstract) [11] 曾国平, 向东山, 何治柯. 基于Hoechst33258荧光染料检测单链DNA的方法研究. 化学学报, 2011, 69: 1450?1456 Zeng G P, Xiang D S, He Z K. Fluorimetric method for the determination of sequence-specific DNA with the fluorescent dye Hoechst 33258. Acta Chim Sin, 2011, 69: 1450–1456 (in Chinese with English abstract) [12] Mago R, Verlin D, Zhang P, Bansal U, Bariana H, Jin Y, Ellis J, Hoxha S, Dundas I. Development of wheat–Aegilops speltoides recombinants and simple PCR-based markers for Sr32 and a new stem rust resistance gene on the 2S#1 chromosome. Theor Appl Genet, 2013, 126: 2943–2955 [13] Mago R, Bariana H S, Dundas I S, Spielmeyer W, Lawrence G L, Prior A J, Ellis J G. Development of PCR markers for the selection of wheat stem rust resistance genes Sr24 and Sr26 in diverse wheat germplasm. Theor Appl Genet, 2005, 111: 496–504 [14] Zhang X, Han D, Zeng Q, Duan Y, Yuan F, Shi J, Wang Q, Wu J, Huang L, Kang Z. Fine mapping of wheat stripe rust resistance gene Yr26 based on collinearity of wheat with Brachypodium distachyon and rice. PLoS One, 2013, 8: e57885 [15] Huang H, Shi S, Gao X, Gao R, Zhu Y, Wu X, Zang R, Yao T. A universal label-free fluorescent aptasensor based on Ru complex and quantum dots for adenosine, dopamine and 17 β-estradiol detection. Biosens Bioelectron, 2016, 79: 198?204 [16] Leung K, He B, Yang C, Leung C H, Wang H D, Ma D. Development of an aptamer-based sensing platform for metal ions, proteins, and small molecules through terminal deoxynucleotidyl transferase induced G-Quadruplex formation. ACS Appl Mater Interfaces, 2015, 7: 24046–24052 [17] Lisanti S, Omar W A W, Tomaszewski B, De Prins S, Jacobs G, Koppen G, Mathers J C, Langie S A S. Comparison of methods for quantification of global DNA methylation in human cells and tissues. PLoS One, 2013, 8: e79044 [18] Fraga M F, Uriol E, Borja D L, Berdasco M, Esteller M, Ca?al M J, Rodriguez R. High-performance capillary electrophoretic method for the quantification of 5-methyl 2’-deoxycytidine in genomic DNA: application to plant, animal and human cancer tissues. Electrophoresis, 2002, 23: 1677–1681 [19] Karimi M, Johansson S, Stach D, Corcoran M, Grander D, Schalling M, Bakalkin G, Lyko F, Larsson C, Ekstr?m T J. LUMA (LUminometric Methylation Assay): a high throughput method to the analysis of genomic DNA methylation. Exp Cell Res, 2006, 312: 1989–1995 [20] Kuo K C, McCune R A, Gehrke C W, Midgett R, Ehrlich M. Quantitative reversed-phase high performance liquid chromatographic determination of major and modified deoxyribonucleosides in DNA. Nucl Acids Res, 1980, 8: 4763–4776 [21] Burns M J, Nixon G J, Foy C A, Harris N. Standardization of data from real-time quantitative PCR methods-evaluation of outliers and comparison of calibration curves. BMC Biotechnol, 2005, 5: 31 [22] Wilfinger W W, Mackey K, Chomczynski P. Effect of pH and ionic strength on the spectrophotometric assessment of nucleic acid purity. Biotechniques, 1997, 22: 474–481 [23] Sedlackova T, Repiska G, Celec P, Szemes T, Minank G. Fragmentation of DNA affects the accuracy of the DNA quantitation by the commonly used methods. Biol Proced Online, 2013, 15: 5 [24] Hollegaard M V, Grove J, Grauholm J, Kreiner-M?ller E, B?nnelykke K, N?rgaard M, Benfield T L, N?rgaard-Pedersen B, Mortensen P B, Mors O, S?rensen H T, Harboe Z B, B?rglum A D, Demontis D, ?rntoft T F, Bisgaard H, Hougaard D M. Robustness of genome-wide scanning using archived dried blood spot samples as a DNA source. BMC Genet, 2011, 12: 58

[1] 李增强, 丁鑫超, 卢海, 胡亚丽, 岳娇, 黄震, 莫良玉, 陈立, 陈涛, 陈鹏. 铅胁迫下红麻生理特性及DNA甲基化分析[J]. 作物学报, 2021, 47(6): 1031-1042.
[2] 靳义荣, 刘金栋, 刘彩云, 贾德新, 刘鹏, 王雅美. 普通小麦氮素利用效率相关性状全基因组关联分析[J]. 作物学报, 2021, 47(3): 394-404.
[3] 卢海, 李增强, 唐美琼, 罗登杰, 曹珊, 岳娇, 胡亚丽, 黄震, 陈涛, 陈鹏. 红麻DNA甲基化响应镉胁迫及甲基化差异基因的表达分析[J]. 作物学报, 2021, 47(12): 2324-2334.
[4] 郑清雷,余陈静,姚坤存,黄宁,阙友雄,凌辉,许莉萍. 甘蔗Rieske Fe/S蛋白前体基因ScPetC的克隆及表达分析[J]. 作物学报, 2020, 46(6): 844-857.
[5] 张平平,姚金保,王化敦,宋桂成,姜朋,张鹏,马鸿翔. 江苏省优质软麦品种品质特性与饼干加工品质的关系[J]. 作物学报, 2020, 46(4): 491-502.
[6] 高世武,傅志伟,陈云,林兆里,许莉萍,郭晋隆. 甘蔗热带种金属硫蛋白家族基因的克隆及响应重金属胁迫的表达分析[J]. 作物学报, 2020, 46(02): 166-178.
[7] 孙婷婷,王文举,娄文月,刘峰,张旭,王玲,陈玉凤,阙友雄,许莉萍,李大妹,苏亚春. 甘蔗脂氧合酶基因ScLOX1的克隆与表达分析[J]. 作物学报, 2019, 45(7): 1002-1016.
[8] 杨芳萍,刘金栋,郭莹,贾奥琳,闻伟鄂,巢凯翔,伍玲,岳维云,董亚超,夏先春. 普通小麦‘Holdfast’条锈病成株抗性QTL定位[J]. 作物学报, 2019, 45(12): 1832-1840.
[9] 王作敏,刘瑾,孙士超,张新宇,薛飞,李艳军,孙杰. 彩色棉多药和有毒化合物输出蛋白MATE家族基因的鉴定及表达分析[J]. 作物学报, 2018, 44(9): 1380-1392.
[10] 王玲,刘峰,戴明剑,孙婷婷,苏炜华,王春风,张旭,毛花英,苏亚春,阙友雄. 甘蔗ScWRKY4基因的克隆与表达特性分析[J]. 作物学报, 2018, 44(9): 1367-1379.
[11] 王林生,张雅莉,南广慧. 普通小麦-大赖草易位系T5AS-7LrL·7LrS分子细胞遗传学鉴定[J]. 作物学报, 2018, 44(10): 1442-1447.
[12] 赵德辉, 张勇, 王德森, 黄玲, 陈新民, 肖永贵, 阎俊, 张艳, 何中虎. 北方冬麦区新育成优质品种的面包和馒头品质性状[J]. 作物学报, 2018, 44(05): 697-705.
[13] 段方猛, 罗秋兰, 鲁雪莉, 齐娜伟, 刘宪舜, 宋雯雯. 玉米油菜素甾醇生物合成关键酶基因ZmCYP90B1的克隆及其对逆境胁迫的响应[J]. 作物学报, 2018, 44(03): 343-356.
[14] 苗永杰, 阎俊, 赵德辉, 田宇兵, 闫俊良, 夏先春, 张勇, 何中虎. 黄淮麦区小麦主栽品种粒重与籽粒灌浆特性的关系[J]. 作物学报, 2018, 44(02): 260-267.
[15] 董雪,刘梦,赵献林,冯玉梅,杨燕. 普通小麦近缘种低分子量麦谷蛋白亚基Glu-A3基因的分离和鉴定[J]. 作物学报, 2017, 43(06): 829-838.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!