欢迎访问作物学报,今天是

作物学报 ›› 2017, Vol. 43 ›› Issue (09): 1272-1279.doi: 10.3724/SP.J.1006.2017.01272

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

矮秆基因Rht_NM9在小麦株高建成中对内源激素含量的影响

卢媛1,2,崔超凡2,胡平2,陈佩度2,沈雪芳1,韩晴1,王义发1,邢莉萍2,*,曹爱忠2,*   

  1. 1上海市农业科学院作物育种栽培研究所,上海 201403;2南京农业大学作物遗传与种质创新国家重点实验室 / 细胞遗传研究所 / 江苏省现代作物生产协同创新中心,江苏南京 210095
  • 收稿日期:2016-12-16 修回日期:2017-05-10 出版日期:2017-09-12 发布日期:2017-06-05
  • 通讯作者: 邢莉萍, E-mail: xingliping@njau.du.cn; 曹爱忠, E-mail: caoaz@njau.edu.cn
  • 基金资助:

    本研究由中央高校基本科研业务费专项(KYZ201601, KYYJ201602, KYZ201401)资助。

Effects of Dwarf Gene Rht_NM9 on Contents of Endogenous Hormone RegulatingPlant Height of Common Wheat

LU Yuan1,2,CUI Chao-Fan2,HU Ping2,CHEN Pei-Du2,SHEN Xue-Fang1,HAN Qing1,WANG Yi-Fa1,XING Li-Ping2,*,CAO Ai-Zhong2,*   

  1. 1 Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; 2 State Key Laboratory of Crop Genetics and Germplasm Enhancement / Cytogenetics Institute, Nanjing Agricultural University/ Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing 210095, China
  • Received:2016-12-16 Revised:2017-05-10 Online:2017-09-12 Published:2017-06-05
  • Contact: xing liping, E-mail: xingliping@njau.du.cn; Cao aizhong, E-mail: caoaz@njau.edu.cn
  • Supported by:

    This study was supported by the Fundamental Research Funds for the Central Universities (KYZ201601, KYYJ201602, KYZ201401).

摘要:

普通小麦品种“南农9918”经甲基磺酸乙酯(ethyl methanesulfonate, EMS)诱变获得一个矮秆、多蘖、长穗突变体“NM9”,在该突变体中定位到一个新的矮秆突变基因Rht_NM9。内源激素在普通小麦株高建成的过程中发挥重要的调节作用,为了解析Rht_NM9致矮的生理机制,本研究以南农9918及其矮秆突变体NM9为材料,利用酶联免疫吸附分析法(enzyme-linked immunosorbent assays, ELISA)测定了不同生育期各节间内源赤霉素(GA)、生长素(IAA)、脱落酸(ABA)和玉米素核苷(ZR)的含量,分析小麦发育关键时期的内源激素含量变化与株高的关系。结果表明,在孕穗期和抽穗期,矮秆突变体NM9中GA、ABA含量均显著高于南农9918,而ZR含量则显著低于南农9918,IAA含量在南农9918和突变体NM9之间无明显差异。此外,突变体NM9各节间中GA/ABA比值显著高于南农9918,而IAA/ABA、(IAA+GA)/ABA、ZR/ABA比值显著低于南农9918。以上结果表明小麦株高受多种激素调控,突变体中内源ABA含量升高,IAA/ABA和ZR/ABA比值降低会抑制植物株高伸长。

关键词: 小麦, 株高, 突变体, 内源激素

Abstract:

A dwarf wheat mutant (NM9) with additional tillers and elongated spikes was obtained by treating NAU9918 seeds with ethyl methanesulfonate (EMS). The decreased plant height in NM9 was controlled by a novel dwarf gene Rht_NM9. The endogenous plant hormones play importantroles inregulating plant height of common wheat. To understand the dwarfing mechanism of Rht_NM9 and the relationship between endogenous hormone contents and plant height, measured contents of endogenous gibberellic acid (GA), auxin (IAA), abscisic acid (ABA) and zeatin riboside (ZR) in internodes of NM9 and NAU9918 at different stagesby enzyme-linked immunosorbent assays (ELISA). Our study indicated that contents of GA and ABA in NM9 were significantly higher than there in NAU9918, and ZR content in NM9 was significantly lower than that inNAU9918 atboth booting and heading stages. Nevertheless, no difference of IAA content was observed between the mutant and the wild-type. In addition,the GA/ABA ratio in internodes of the mutant was significantly higher than that of the wild-type, however, the ratios of IAA/ABA, (IAA + GA)/ABA and ZR/ABA weresignificantly lower than thereof the wild-type. All these results indicated that plant height in wheat was regulated by multiple hormones. Plant height would be inhibited with increasingcontent of endogenous ABA and decreasingratios of IAA/ABA and ZR/ABA in wheat.

Key words: Wheat, Plant height, Mutant, Endogenous hormones

[1] 姚瑞亮, 朱文祥. 小麦形态性状与倒伏的相关分析. 广西农业大学学报, 1998, 17(增刊): 16–18
Yao R L, Zhu W X. The correlation analysis of the stem traits and lodging in wheat. J Guangxi Agric Univ, 1998, 17(suppl): 16–18 (in Chinese with English abstract)
[2] Foulkes M J, Slafer G A,Davies W J, Berry P M, Sylvester-Bradley R, Martre P, Calderini D F, Griffiths S, Reynolds M P. Raising yield potential of wheat. III. Optimizing partitioning to grain while maintaining lodging resistance. J Exp Bot, 2011, 62: 469–486
[3] Wiersma D W, Oplinger E S, Guy S O. Environment and cultivar effects on winter wheat response to ethephon plant growth regulator1. Agron J, 1986, 78: 761–764
[4] Kashiwagi T, Ishimaru K. Identification and functional analysis of a locus for improvement of lodging resistance in rice.Plant Physiol, 2004, 134: 676–683
[5] Davies P J. Plant hormones and their role in plant growth and development. Netherlands: Springer Science & Business Media B.V., 2012. pp 3–10
[6] Wang L, Mu C, Du M W, Chen Y, Tian X L, Zhang M C, Li Z H. The effect of mepiquat chloride on elongation of cotton (Gossypium hirsutum L.) internode is associated with low concentration of gibberellic acid. Plant Sci, 2014, 225: 15–23
[7] Srinivasan C, Liu Z R, Scorza R. Ectopic expression of class 1 KNOXgenes induce adventitious shoot regeneration and alter growth and development of tobacco (Nicotiana tabacum L.) and European plum (Prunus domestica L.). Plant Cell Rep, 2011, 30: 655–664
[8] Chen Y N, Fan X R, Song W J, Zhang Y L, Xu G H. Over-expression of OsPIN2 leads to increased tiller numbers, angle and shorter plant height through suppression of OsLAZY1. Plant Biotechnol J, 2012, 10: 139–149
[9] Agehara S, Leskovar D I. Age-dependent effectiveness of exogenous abscisic acid in height control of bell pepper and jalape?o transplants.Sci Hortic-Amsterdam, 2014, 175: 193–200
[10] Ikeda A, Ueguchi-Tanaka M, Sonoda Y, Kitano H, Koshioka M, Futsuhara Y, Matsuoka M, Yamaguchi J. Slender rice, a constitutive gibberellin response mutant, is caused by a null mutation of the SLR1 gene, an ortholog of the height-regulating gene GAI/RGA/RHT/D8. Plant Cell, 2001, 13: 999–1010
[11] Magome H, Yamaguchi S, Hanada A, Kamiya Y, Oda K. Dwarf and delayed-flowering 1, a novel Arabidopsis mutant deficient in gibberellin biosynthesis because of overexpression of a putative AP2 transcription factor. Plant J, 2004, 37: 720–729
[12] Clay N K, Nelson T. Arabidopsis thickvein mutation affects vein thickness and organ vascularization, and resides in a provascular cell-specific spermine synthase involved in vein definition and in polar auxin transport. Plant Physiol, 2005, 138: 767–777
[13] Quiroz-Figueroa F, Rodríguez-Acosta A, Salazar-Blas A, Hernández-Domínguez E, Campos ME, Kitahata N, Asami T, Galaz-Avalos R M, Cassab G I. Accumulation of high levels of ABA regulates the pleiotropic response of the nhr1 Arabidopsis mutant. J Plant Biol, 2010, 53: 32–44
[14] Fu X, Richards D E, Ait-Ali T, Hynes L W, Ougham H, Peng J, Harberd N P. Gibberellin-mediated proteasome-dependent degradation of the barley DELLA protein SLN1 repressor. Plant Cell, 2002, 14: 3191–3200
[15] Peng J, Richards D E, Hartley N M, Murphy G P, Devos K M, Flintham J E, Beales J, Fish L J, Worland A J, Pelica F. “Green revolution” genes encode mutant gibberellin response modulators. Nature, 1999, 400: 256–261
[16] Wu J, Kong X Y, Wan J M, Liu X Y, Zhang X, Guo X P, Zhou R H, Zhao G Y, Jing R L, Fu X D, Jia J Z. Dominant and pleiotropic effects of a GAI gene in wheat results from a lack of interaction between DELLA and GID1. Plant Physiol, 2011, 157: 2120–2130
[17] 熊国胜, 李家洋, 王永红. 植物激素调控研究进展. 科学通报, 2009, 54: 2718–2733
Xiong G S, Li J Y, Wang Y H. Advances in the regulation and crosstalks of phytohomones. Chin Sci Bull, 2009, 54: 2718–2733 (in Chinese)
[18] 张立军, 梁宗锁. 植物生理学. 北京: 科学出版社, 2007. pp 205–237
Zhang L J, Liang Z S. Plant Physiology. Beijing: Science Press, 2007. pp 205–237 (in Chinese)
[19] 殷稳娜, 孔广超, 王雪玉, 高静涛, 何萱. 六倍体小黑麦株高形成中内源激素含量的变化. 麦类作物学报, 2011, 31: 953–958
Yin W N, Kong G C, Wang X Y, Gao J T, He X. Dynamic changes of plant hormone contents in hexapoid triticale (× Triticosecale Wittmack) with different plant height. Journal of Triticeae Crops, 2011, 31: 953–958 (in Chinese with English abstract)
[20] 王成章, 潘晓建, 张春梅, 胡喜峰, 杨雨鑫. 外源ABA对不同秋眠型苜蓿品种植物激素含量的影响. 草业学报, 2006, 15(2): 30–36
Wang C Z, Pan X J, Zhang C M, Hu X F, Yang Y X. Effects of exogenous ABA on hormone content in different varieties of fall dormancy Medicago sativa varieties. Acta Pratacult Sin, 2006, 15(2):30–36 (in Chinese with English abstract)
[21] Dong Q, Wang J Z, Guo J M, Heng Z. The relation between endogenous hormones and late-germination in buds of avrolles apple. Agric Sci China, 2009, 8: 564–571
[22] Hou J W, Guo S J, Wang G Y. Effects of in vitro subculture on the physiological characteristics of adventitious root formation in microshoots of Castanea mollissima cv. “Yanshanhong”. J For Res, 2010, 21: 155–160
[23] Xie Z J, Jiang D, Cao W X, Dai T B, Jing Q. Relationships of endogenous plant hormones to accumulation of grain protein and starch in winter wheat under different post-anthesis soil water statusses. Plant Growth Regul, 2003, 41: 117–127
[24] Lu Y, Xing L P, Xing S J, Hu P, Cui C F, Zhang M Y, Xiao J, Wang H Y, Zhang R Q, Wang X E, Chen P D, Cao A Z. Characterization of a putative new semi-dominant reduced height gene, Rht_NM9, in wheat (Triticum aestivum L.). J Genet Genomics, 2015, 42: 685–698
[25] Teng N J, Wang J, Chen T, Wu X Q, Wang Y H, Lin J X. Elevated CO2 induces physiological, biochemical and structural changes in leaves of Arabidopsis thaliana. New Phytol, 2006, 172: 92–103
[26] Hooley R. Gibberellins: perception, transduction and responses. Plant Mol Biol, 1994, 26: 1529–1555
[27] Harberd N P, King K E, Carol P, Cowling R J, Peng J R, Richards D E. Gibberellin: inhibitor of an inhibitor of...? BioEssays, 1998, 20: 1001–1008
[28] Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H, Nishimura A, Swapan D, Ishiyama K, Saito T, Kobayashi M, Khush G S,Kitano H, Matsuoka M. Green revolution: a mutant gibberellin-synthesis gene in rice. Nature, 2002, 416: 701–702
[29] Sakamoto T, Kobayashi M, Itoh H, Tagiri A, Kayano T, Tanaka H, Iwahori S, Matsuoka M. Expression of a gibberellin 2-oxidase gene around the shoot apex is related to phase transition in rice. Plant Physiol, 2001, 125: 1508–1516
[30] Amador V, Monte E, García-Martínez J, Prat S. Gibberellins signal nuclear import of PHOR1, a photoperiod-responsive protein with homology to Drosophila armadillo. Cell, 2001, 106: 343–354
[31] Hoffmann-Benning S, Kende H. On the role of abscisic acid and gibberellin in the regulation of growth in rice. Plant Physiol, 1992, 99: 1156–1161
[32] 宋平, 高红胜, 曹显祖, 谢迎兰. 不同籼稻品种的矮生性与内源ABA水平及其结合蛋白的关系. 西北植物学报, 1998, 18: 380–385
Song P, Gao H S, Cao X Z, Xie Y L. The relationships between dwarfism of indica rice and ABA/ABA-binding proteins. Acta Bot Boreali-Occident Sin, 1998, 18: 380–385(in Chinese with English abstract)
[33] Wu K, Wang J Y, Kong Z X, Ma Z Q. Characterization of a single recessive yield trait mutant with elevated endogenous ABA concentration and deformed grains, spikelets and leaves. Plant Sci, 2011, 180: 306–312
[34] Du H, Chang Y, Huang F, Xiong L Z. GID1 modulates stomatal response and submergence tolerance involving abscisic acid and gibberellic acid signaling in rice. J Integr Plant Biol, 2015, 57: 954–968
[35] Bailey-Serres J, Voesenek L A. Life in the balance: a signaling network controlling survival of flooding. Curr Opin Plant Biol, 2010, 13: 489–494
[36] Fukao T, Bailey-Serres J. Submergence tolerance conferred by Sub1A is mediated by SLR1 and SLRL1 restriction of gibberellin responses in rice. Proc Natl Acad Sci USA, 2008, 105: 16814–16819
[37] Fukao T, Yeung E, Bailey-Serres J. The submergence tolerance regulator SUB1A mediates crosstalk between submergence and drought tolerance in rice. Plant Cell, 2011, 23: 412–427
[38] Gazzarrini S, Tsuchiya Y, Lumba S, Okamoto M, McCourt P. The transcription factor FUSCA3 controls developmental timing in Arabidopsis through the hormones gibberellin and abscisic acid. Dev Cell, 2004, 7: 373–385
[39] CurabaJ,MoritzT,Blervaque R,Parcy F,Raz V,Herzog M,Gilles V. AtGA3ox2, a key gene responsible for bioactive gibberellin biosynthesis, is regulated during embryogenesis by LEAFY COTYLEDON2 and FUSCA3 in Arabidopsis. Plant Physiol, 2004, 136: 3660–3669
[40] Gómez-Cadenas A, Zentella R, Walker-Simmons M K, Ho T D. Gibberellin/abscisic acid antagonism in barley aleurone cells: site of action of the protein kinase PKABA1 in relation to gibberellin signaling molecules. Plant Cell, 2001, 13: 667–679
[41] Hartweck L M, Olszewski N E. Rice GIBBERELLIN INSENSITIVE DWARF1 is a gibberellin receptor that illuminates and raises questions about GA signaling. Plant Cell, 2006, 18: 278–282
[42] Zentella R, Zhang Z L, Park M, Thomas S G, Endo A, Murase K, Fleet C M, Jikumaru Y, Nambara E, Kamiya Y, Sun T P. Global analysis of DELLA direct targets in early gibberellin signaling in Arabidopsis. Plant Cell, 2007, 10: 3037–3057
[43] Chandler P M, Harding C A. “Overgrowth” mutants in barley and wheat: new alleles and phenotypes of the “Green Revolution” DELLA gene. J Exp Bot, 2013, 64: 1603–1613

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!