欢迎访问作物学报,今天是

作物学报 ›› 2017, Vol. 43 ›› Issue (09): 1401-1409.doi: 10.3724/SP.J.1006.2017.01401

• 研究简报 • 上一篇    下一篇

棉花花铃期低温对叶片PSI和PSII光抑制的影响

肖飞1,杨延龙2,王娅婷2,马慧2,张旺锋2,*   

  1. 1石河子大学生命科学学院, 新疆石河子832003; 2石河子大学农学院 / 新疆生产建设兵团绿洲生态农业重点实验室, 新疆石河子 832003
  • 收稿日期:2017-01-10 修回日期:2017-05-10 出版日期:2017-09-12 发布日期:2017-05-25
  • 通讯作者: 张旺锋, E-mail: zhwf_agr@shzu.edu.cn, Tel: 0993-2057326 E-mail:15699321528@163.com
  • 基金资助:

    本研究由国家自然科学基金项目(U1203283)资助。

Effects of Low Temperature on PSI and PSII Photoinhibition in Cotton Leaf at Boll Stage

XIAO Fei1,YANG Yan-Long2,WANG Ya-Ting2,MA Hui2,ZHANG Wang-Feng2,*   

  1. 1 College of Life Science, Shihezi University, Shihezi 832003, China; 2 College of Agriculture, Shihezi University / Key Laboratory of Oasis Ecology Agriculture of Xinjiang Production and Construction Groups, Shihezi 832003, China
  • Received:2017-01-10 Revised:2017-05-10 Online:2017-09-12 Published:2017-05-25
  • Contact: 张旺锋, E-mail: zhwf_agr@shzu.edu.cn, Tel: 0993-2057326 E-mail:15699321528@163.com
  • Supported by:

    This study was supported by the National Natural Science Foundation of China (U1203283).

摘要:

选用陆地棉(Gossypium hirsutum L.)品种新陆早45,在室外盆栽至开花结铃期后,移至人工气候室,模拟新疆棉花花铃期易出现的低温逆境条件,设置处理T (16°C/10°C,昼/夜),以常温(30°C/18°C,昼/夜)处理作为对照,采用叶绿素荧光和P700同步测定技术,研究低温对棉花花铃期叶片光合机构PSII能量分配、PSI氧化还原状态及环式电子传递流的影响。结果表明,与对照相比,低温处理显著降低了棉花叶片PSII光适应状态下最大光化学量子产量(Fv¢/Fm¢)、光化学猝灭系数(qP)和PSII有效光化学量子产量[Y(II)],并使PSII非调节性能量耗散[Y(NO)]和调节性能量耗散[Y(NPQ)]量子产量显著升高,诱导PSII发生光抑制。低温引起棉花叶片光合机构PSI受体侧限制[Y(NA)]显著下降和供体侧限制[Y(ND)]显著升高,但未引起有效的PSI复合体含量(Pm)显著降低,表明与PSII相比,棉花叶片PSI对低温不敏感。此外,低温引起环式电子传递量子产量[Y(CEF)]以及与PSII实际量子产量比率的[Y(CEF)/Y(II)]显著升高,进一步表明在低温下,光破坏防御机制中环式电子传递流对棉花PSI、PSII起着重要的保护作用,是主要的光破坏防御机制。非光化学热耗散(NPQ)和调节性非光化学热耗散[Y(NPQ)]与[Y(CEF)]具有显著的正相关关系,表明低温引起棉花花铃期叶片PSII反应中心过度关闭产生过剩的激发能,造成了PSII可逆的光抑制,环式电子传递流的响应及较高的调节性能量耗散共同保护了棉花叶片PSI和PSII免受光抑制的损伤,这可能是棉花叶片PSI对低温不敏感的重要原因。

关键词: 棉花, 低温, 光抑制, 光合作用, 环式电子传递流

Abstract:

Cotton (Gossypium hirsutum L.) variety Xinluzao 45 was grown in pots under low temperature until bolling stage and the seedings were moved in phytotron in northern Xinjiang. Chl fluorescence and P700+ absorbance signal were determined simultaneously by Dual-PAM-100. The treatment was day/night temperature of 16°C/10°C with a suitable temperature condition (30°C/18°C) as control. The light-adapted maximum quantum yield of PSII (Fv¢/Fm¢), photochemical quenching coefficient (qP) and effective quantum yield of PSII [Y(II)] decreased significantly under low temperature stress. Low temperature significantly increased non-photochemical quantum yield of PSI caused by donor side limitation [Y(ND)]. The yield of regulated energy dissipation [Y(NPQ)] and non-regulated energy dissipation of PSII [Y(NO)] were significantly increased, including reversible photoinhibition in cotton leaf. Compared with control, low temperature stress significantly decreased the acceptor side limitation of PSI [Y(NA)] and increased donor side limitation of PSI[Y(ND)], while effective PSI complex content (Pm) was not significantly decreased, suggesting that PSI in cotton leaf is insensitive to low temperature compared with PSII. The quantum yield of cyclic electron flow [Y(CEF)] and the ratio of [Y(CEF)] to the effective quantum yield of PSII[Y(CEF)/Y(II)] were enhanced by low temperature stress in cotton suggesting that stimulation of cyclic electron flow plays an important role in protecting PSI and PSII from photoinhibition caused by low temperature stress in cotton. Furthermore, the non-photochemical quenching (NPQ) and regulated heat dissipation [Y(NPQ)] had significantly positive correlation with the quantum yield of cyclic electron flow [Y(CEF)], indicating that the strong excess excitation energy due to the overclosure of PSII reaction center results in reversible photoinhibition of PSII under low temperature stress. In conclusion, the strong stimulation of cyclic electron flow and regulated heat dissipation powerfully prevent PSII and PSI of cotton from photoinhibition and photodamage induced by low temperature stress, which may be the main mechanism of the insusceptibility of PSI in cotton to low temperature stress.

Key words: Cotton, Low temperature, Photoinhibition, Photosynthesis, Cyclic electron transport flow

[1]李新国, 段伟, 孟庆伟, 邹琦. PSI的低温光抑制. 植物生理学通讯, 2002, 38: 375–381
Li X G, Duan W, Meng Q W, Zou Q. PSI photoinhibition under low temperature. Plant Physiol Commun, 2002, 38: 375–381 (in Chinese with English abstract)
[2]张子山, 张立涛, 高辉远, 贾裕娇, 部建雯, 孟庆伟. 不同光强与低温交叉胁迫下黄瓜PSI与PSII的光抑制研究. 中国农业科学, 2009, 42: 4288–4293
Zhang Z S, Zhang L T, Gao H Y, Jia Y J, Bu J W, Meng Q W. Research of the photoinhibition of PSI and PSII in leaves of cucumber under chilling stress combined with different light intensities. Sci Agric Sin, 2009, 42: 4288–4293 (in Chinese with English abstract)
[3]Prasil O, Adir N, Ohad I. Dynamics of photosystem II, mechanism of photoinhibition and recovery process. Top Photosynth, 1992, 11: 295–348
[4]Aro E M, Virgin I, Andersson B. Photoinhibition of photosystem II. Inactivation, protein damage and turnover. BBA-Bioenergetics, 1993, 1143: 113–134
[5]Havaux M, Davaud A. Photoinhibition of photosynthesis in chilled potato leaves is not correlated with a loss of photosystem II activity. Photosynth Res, 1994, 40: 75–92
[6]Sonoike K, Terashima I. Mechanism of photosystem I photoinhibition in leaves of Cucumis sativus L. Planta, 1994, 194: 287–293
[7]孙山, 张立涛, 王家喜, 王少敏, 高华君, 高辉远. 低温弱光胁迫对日光温室栽培杏树光系统功能的影响. 应用生态学报, 2008, 19: 512–516
Sun S, Zhang L T, Wang J X, Wang S M, Gao H J, Gao H Y. Effects of low temperature and weak light on the functions of photosystem in Prunusarme. Chin J Appl Ecol, 2008, 19: 512–516 (in Chinese with English abstract)
[8]Sonoike K. Photoinhibition of photosystem I: its physiological significance in the chilling sensitivity of plants. Plant Cell Physiol, 1996, 37: 239–247
[9]Murata N, Takahashi S, Nishiyama Y, Allakhverdiev S I. Photoinhibition of photosystem II under environmental stress. Biochim Biophys Acta: Bioenergetics, 2007, 1767: 414–421
[10]Takahashi S, Murata N. How do environmental stresses accelerate photoinhibition? Trends Plant Sci, 2008, 13: 178–182
[11]Sonoike K. Photoinhibition of photosystem I. Physiol Plant, 2011, 142: 56–64
[12]Zhang Z S, Jia Y, Gao H Y, Zhang L, Li H, Meng Q W. Characterization of PSI recovery after chilling-induced photoinhibition in cucumber (Cucumis sativus L.) leaves. Planta, 2011, 234: 883–889
[13]Golbeck J H. Structure, function and organization of the photosystem I reaction center complex. Biochim Biophys Acta: Rev Bioenergetics, 1987, 895: 167–204
[14]Mi H, Klughammer C, Schreiber U. Light-induced dynamic changes of NADPH fluorescence in synechocystis PCC 6803 and its ndhB-defective mutant M55. Plant Cell Physiol, 2000, 41: 1129–1135
[15]Sonoike K. The different roles of chilling temperatures in the photoinhibition of photosystem I and photosystem II. J Photoch Photobio B, 1999, 48: 136–141
[16]Zhang S, Scheller H V. Photoinhibition of photosystem I at chilling temperature and subsequent recovery in Arabidopsis thaliana. Plant Cell Physiol, 2004, 45: 1595–1602
[17]Kim S J, Lee C H, Hope A B, Chow W S. Inhibition of photosystems I and II and enhanced back flow of photosystem I electrons in cucumber leaf discs chilled in the light. Plant Cell Physiol, 2001, 42: 842–848
[18]Munekage Y, Hojo M, Meurer J, Endo T, Tasaka M, Shikanai T. PGR5 is involved in cyclic electron flow around photosystem I and is essential for photoprotection in Arabidopsis. Cell, 2002, 110: 361–371
[19]Takahashi S, Milward S E, Fan D Y, Chow W S, Badger M R. How does cyclic electron flow alleviate photoinhibition in Arabidopsis? Plant Physiol, 2009, 149: 1560–1567
[20]Nuijs A M, Shuvalov V A, Van Gorkom H J, Plijter J J, Duysens L N. Picosecond absorbance difference spectroscopy on the primary reactions and the antenna-excited states in photosystem I particles. Biochim Biophys Acta: Bioenergetics, 1986, 850: 310–318
[21]Shikanai T. Cyclic electron transport around photosystem I: genetic approaches. Annu Rev Plant Biol, 2007, 58: 199–217
[22]Satoh K. Mechanism of photoinactivation in photosynthetic systems I: the dark reaction in photoinactivation. Plant Cell Physiol, 1970, 11: 15–27
[23]Sonoike K. Selective photoinhibition of photosystem I in isolated thylakoid membranes from cucumber and spinach. Plant Cell Physiol, 1995, 36: 825–830
[24]Kudoh H, Sonoike K. Irreversible damage to photosystem I by chilling in the light: cause of the degradation of chlorophyll after returning to normal growth temperature. Planta, 2002, 215: 541–548
[25]Niyogi K K. Safety valves for photosynthesis. Curr Opin Plant Biol, 2000, 3: 455–460
[26]Asada K. The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Biol, 1999, 50: 601–639
[27]Miyake C, Shinzaki Y, Miyata M, Tomizawa K I. Enhancement of cyclic electron flow around PSI at high light and its contribution to the induction of non-photochemical quenching of Chl fluorescence in intact leaves of tobacco plants. Plant Cell Physiol, 2004, 45, 1426–1433
[28]黄伟, 张石宝, 曹坤芳. 高等植物环式电子传递的生理作用. 植物科学学报, 2012, 30: 100–106
Huang W, Zhang S B, Cao K F. Physiological role of cyclic electron flow in higher plants. Plant Sci J, 2012, 30: 100–106 (in Chinese with English abstract)
[29]Yamori W, Shikanai T. Physiological functions of cyclic electron transport around photosystem I in sustaining photosynthesis and plant growth. Annu Rev Plant Biol, 2016, 67: 81–106
[30]邹陈, 陈冬花, 吉春容, 杨举芳, 尹育红, 李新建. 障碍型冷害对石河子棉区花铃期棉花生长的影响研究. 中国农学通报, 2012, 12: 54–59
Zou C, Chen D H, Ji C R, Yang J F, Yin Y H, Li X J. Experiments and studies about effect of obstacle cold disaster on cotton during the flowering and boll stages in the cotton region of Shihezi. Chin Agric Bull, 2012, 12: 54–59 (in Chinese with English abstract)
[31]刘鹏, 孟庆伟, 赵世杰. 冷敏感植物的低温光抑制及其生化保护机制. 植物生理学通讯, 2001, 37: 76–82
Liu P, Meng Q W, Zhao S J. Chilling–induced photoinhibition and biochemical protective mechanism of chilling-sensitive plants. Plant Physiol Commun, 2001, 37: 76–82 (in Chinese with English abstract)
[32]张旺锋, 王振林, 余松烈, 李少昆, 曹连莆, 王登伟. 氮肥对新疆高产棉花群体光合性能和产量形成的影响. 作物学报, 2002, 28, 789–796
Zhang W F, Wang Z L, Yu S L, Li S K, Cao L P, Wang D W. Effect of under–mulch–drip irrigation on canopy apparent photosynthesis, canopy structure and yield formation in high yield cotton of Xinjiang. Acta Agron Sin, 2002, 28: 789–796 (in Chinese with English abstract)
[33]武辉, 戴海芳, 张巨松, 焦晓玲, 刘翠, 石俊毅, 范志超. 棉花幼苗叶片光合特性对低温胁迫及恢复处理的响应. 植物生态学报, 2014, 38: 1124–1134
Wu H, Dai H F, Zhang J S, Jiao X L, Liu C, Shi J Y, Fan Z C. Responses of photosynthetic characteristics to low temperature stress and recovery treatment in cotton seedling leaves. Chin J Plant Ecol, 2014, 38: 1124–1134 (in Chinese with English abstract)
[34]Liu Y F, Qi M F, Li T L. Photosynthesis, photoinhibition, and antioxidant system in tomato leaves stressed by low night temperature and their subsequent recovery. Plant Sci, 2012, 196: 8–17
[35]Kramer D M, Johnson G, KIIrats O, Edwards G E. New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. Photosynth Res, 2004, 79: 209–218
[36]Genty B, Briantais J M, Baker N R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta: Gen Subjects, 1989, 990: 87–92
[37]Huang W, Yang S J, Zhang S B, Zhang J L, Cao K F. Cyclic electron Flow plays an important role in photoprotection for the resurrection plant Paraboea rufescens under drought stress. Planta, 2012, 235: 819–828
[38]Miyake C, Horiguchi S, Makino A, Shinzaki Y, Yamamoto H, Tomizawa K I. Effects of light intensity on cyclic electron Flow around PSI and its relationship to non-photochemical quenching of Chl fluorescence in tobacco leaves. Plant Cell Physiol, 2005, 46: 1819–1830
[39]Fan D Y, Hope A B, Jia H, Chow W S. Separation of light-induced linear, cyclic and stroma-sourced electron fluxes to P700+ in cucumber leaf discs after pre-illumination at a chilling temperature. Plant Cell Physiol, 2008, 49: 901–911
[40]Huang W, Zhang S B, Cao K F. Cyclic electron flow plays an important role in photoprotection of tropical trees illuminated at temporal chilling temperature. Plant Cell Physiol, 2011, 52: 297–305
[41]Clarke J E, Johnson G N. In vivo temperature dependence of cyclic and pseudocyclic electron transport in barley. Planta, 2001, 212: 808–816
[42]Hendrickson L, Ball M C, Osmond C B, Furbank R T, Chow W S. Assessment of photoprotection mechanisms of grapevines at low temperature. Funct Plant Biol, 2003, 30: 631–642
[43]Kudoh H, Sonoike K. Irreversible damage to photosystem I by chilling in the light: cause of the degradation of chlorophyll after returning to normal growth temperature. Planta, 2002, 215: 541–548
[44]Wise R R. Chilling-enhanced photooxidation: the production, action and study of reactive oxygen species produced during chilling in the light. Photosynth Res, 1995, 45: 79–97
[45]Kudoh H, Sonoike K. Dark-chilling pretreatment protects PSI from light-chilling damage. J Photosci, 2002, 9: 59–62
[46]Sonoike K. Degradation of psaB gene product, the reaction center subunit of photosystem I, is caused during photoinhibition of photosystemI: possible involvement of active oxygen species. Plant Sci, 1996, 115: 157–164
[47]Kim S J, Lee C H, Hope A B, Chow W S. Photosystem I acceptor side limitation is a prerequisite for the reversible decrease in the maximum extent of P700 oxidation after short-term chilling in the light in four plant species with different chilling sensitivities. Physiol Plant, 2005, 123: 100–107
[48]Li J W, Zhang S B. Differences in the responses of photosystems I and II in Cymbidium sinense and C. tracyanum to long-term chilling stress. Front Plant Sci, 2015, 6: 1–10
[49]Kintake S. Photoinhibition and Protection of Photosystem I: Photosystem I. Springer Netherlands, 2007. pp 657–668
[50]张子山, 张立涛, 高辉远, 贾裕娇, 部建雯, 孟庆伟. 不同光强与低温交叉胁迫下黄瓜PSI与PSII的光抑制研究. 中国农业科学, 2009, 42: 4288–4293
Zhang Z S, Zhang L T, Gao H Y, Jia Y J, Bu J W, Meng Q W. Research of the photoinhibition of PSI and PSII in leaves of cucumber under chilling stress combined with different light intensities. Sci Agric Sin, 2009, 42: 4288–4293 (in Chinese with English abstract)
[51]Yamori W, Shikanai T. Physiological functions of cyclic electron transport around photosystem I in sustaining photosynthesis and plant growth. Annu Rev Plant Biol, 2016, 67: 81–106
[52]Barth C, Krause H G. Study of tobacco transformants to assess the role of chloroplastic NAD(P)H dehydrogenase in photoprotection of photosystems I and II. Planta, 2002, 216: 273–279
[53]Zivcak M, Kalaji H M, Shao H B, Olsovska K, Brestic M. Photosynthetic proton and electron transport in wheat leaves under prolonged moderate drought stress. J Photoch Photobiol B, 2014, 137: 107–115
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!