欢迎访问作物学报,今天是

作物学报 ›› 2017, Vol. 43 ›› Issue (09): 1337-1346.doi: 10.3724/SP.J.1006.2017.01337

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

甘蔗与抗旱性相关差异蛋白质组分析

DO Thanh-Trung1,李健1,张风娟1,杨丽涛1,*,李杨瑞1,2,*,邢永秀1   

  1. 1 广西大学农学院 / 亚热带农业生物资源保护与利用国家重点实验室, 广西南宁 530005; 2 广西农业科学院 / 中国农业科学院甘蔗研究中心 / 农业部广西甘蔗生物技术与遗传改良重点实验室 / 广西甘蔗遗传改良重点实验室, 广西南宁 530007
  • 收稿日期:2016-06-04 修回日期:2017-05-10 出版日期:2017-09-12 发布日期:2017-06-05
  • 通讯作者: 李杨瑞, E-mail: lyr@gxaas.net; 杨丽涛, E-mail: litaoyang61@yahoo.com E-mail:trungduchanh@gmail.com
  • 基金资助:

    本研究由国家高技术研究发展计划项目(863计划)(2013AA102604), 广西八桂学者、特聘专家专项(2013), 国家现代农业产业技术体系广西甘蔗创新团队专项(gjnytxgxcxtd-03-01)和广西甘蔗遗传改良重点实验室项目(12-K-05-01)资助。

Analysis of Differential Proteome in Relation to Drought Resistance in Sugarcane

DO Thanh-Trung1, LI Jian1, ZHANG Feng-Juan1, YANG Li-Tao1,*, LI Yang-Rui1,2,*,XING Yong-Xiu1   

  1. 1 Agricultural College, State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Nanning 530005, China; 2 Guangxi Academy of Agricultural Sciences / Sugarcane Research Center, Chinese Academy of Agricultural Sciences / Guangxi Key Laboratory of Sugarcane Biotechnology and Genetic Improvement, Ministry of Agriculture / Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning 530007, China
  • Received:2016-06-04 Revised:2017-05-10 Online:2017-09-12 Published:2017-06-05
  • Contact: 李杨瑞, E-mail: lyr@gxaas.net; 杨丽涛, E-mail: litaoyang61@yahoo.com E-mail:trungduchanh@gmail.com
  • Supported by:

    This study was supported in part by the National High Technology Research and Development Program of China (863 program) (2013AA102604), the Special Funds for Bagui Scholars and Distinguished Experts in Guangxi (2013), the Guangxi Sugarcane Innovation Team of National Agricultural Industry Technology System (gjnytxgxcxtd-03-01), and the Guangxi Key Laboratory of Sugarcane Genetic Improvement (12-K-05-01).

摘要:

采用桶栽方式, 对抗旱性强的F172和抗旱性弱的YL6甘蔗品种在苗期进行重度干旱胁迫处理后, 应用蛋白质双向电泳技术进行差异蛋白质分析, 分别找出差异显著的28和20个差异蛋白点, 其中部分呈现上调表达, 部分呈现下调表达, 还有部分新增的蛋白点, 因品种抗性不同而表现各异, F172叶片中的差异蛋白主要表现为上调表达, 而YL6中大多表现为下调表达。在重度干旱胁迫下, 抗旱性不同的甘蔗品种蛋白质丰度变化有显著差异。采用MALDI-TOF-TOF/MS鉴定所获得的差异蛋白, 从YL6、F172中分别鉴定出18、14个蛋白的氨基酸序列, 对所鉴定的蛋白质根据功能分为8类。YL6中参与自由基清除的2个, 参与光合作用的6个, 参与细胞生长和分裂的1个, 参与基础代谢的6个, 参与防卫反应的2个, 未知功能蛋白1个。F172中参与自由基清除的1个, 参与光合作用的2个, 参与细胞生长和分裂的2个, 参与基础代谢的4个, 参与信号转导的2个, 参与蛋白加工的1个, 未知功能蛋白2个, 其中22 kD干旱诱导蛋白的丰度明显提高, 而在YL6中则检测不到此蛋白。这说明在干旱胁迫下抗旱性不同的甘蔗品种在蛋白质组成上有很大差异, 推测这是不同甘蔗品种间抗旱性差异的重要分子基础。

关键词: 甘蔗, 水分胁迫, 蛋白质组, 差异表达, 抗旱性

Abstract:

Drought stress is a major restraint in sugarcane production in China. Proteomic study in relation to drought stress provides valuable information in drought resistant breeding of sugarcane. In this study, the drought-resistant sugarcane variety, F172, and the drought-sensitive variety, YL6, were used in a pot experiment for differential proteome analysis. Seedlings of both varieties were exposed to severe drought stress for seven days and the leaf proteins were separated and analyzed using 2-DE technique and PDQuest software. From the protein profiles of F172 and YL6, 28 and 20 differential protein spots were detected between normal-irrigation and drought-stress treatments, respectively, including up- and down-regulated proteins and new protein spots. The differential proteins varied across the two varieties. Using MALDI-TOF-TOF/MS, 18 and 14 amino acid sequences were identified from YL6 and F172, respectively, and they were in eight function categories. In YL6, the 18 proteins consist of two participating in oxygen radical scavenging, six participating in photosynthesis, one participating in cell growth and division, six participating in basic metabolisms, two participating in protective response, and one unknown in function. In F172, the 14 proteins consist of one participating in oxygen radical scavenging, two participating in photosynthesis, two participating in cell growth and division, four participating in basic metabolisms, two participating in information transfer, one participating in protein processing, and one unknown in function. A drought-induced protein of 22 kDa was in high level in F172 but absence in YL6. These results indicate that protein compositions under drought stress are highly different in sugarcane varieties with different drought resistance and the differential proteins might give a hint to drought-resistant mechanism.

Key words: Sugarcane, Water stress, Proteome, Differential expression, Drought resistance

[1]Li Y R, Yang L T. Sugarcane agriculture and sugar industry in China. Sugar Tech, 2015, 17: 1–8
[2]Wasinger V C, Cordwell S J, Cerpa-Poljak A, Yan J X, Gooley A A, Wilkins M R, Duncan M W, Harris R, Williams K L,                                       Humphery-Smith I. Progress with gene-product mapping of the Mollicutes: ycoplasma genitalium. Electrophoresis, 1995, 16: 1090–1094
[3]Yang L, Lin H, Takahashi Y, Chen F, Walker M A, Civerolo E L. Proteomic analysis of grapevine stem in response to Xylella fastidiosa inoculation. Physiol Mol Plant Pathol, 2011, 75: 90–99
[4]Zhou G, Yang L T, Li Y R, Zou C L, Huang L P, Qiu L H, Huang X, Srivastava M K. Proteomic analysis of osmotic stress-     responsive proteins in sugarcane leaves. Plant Mol Biol Rep, 2012, 30: 349–359
[5]Song X P, Huang X, Tian D D, Yang L T, Li Y R. Proteomic analysis of sugarcane seedling in response to Ustilago scitaminea infection. Life Sci J, 2013, 10: 3026–3035
[6]李素丽. 不同冷敏感型甘蔗品种对低温的响应机制. 广西大学博士学位论文, 广西南宁, 2011
Li S L. Response Mechanism of Different Cold Sensitive Sugar-cane Cultivars to Low Temperature Stress. PhD Dissertation of Guangxi University, Nanning, China, 2011 (in Chinese with Eng-lish abstract)
[7]黄杏. ABA提高甘蔗抗寒力的生理及分子机制研究. 广西大学博士学位论文, 广西南宁, 2012
Huang X. Study on Physiological and Molecular Mechanism of Cold Resistance Enhanced by ABA Application in Sugarcane. PhD Dissertation of Guangxi University, Nanning, China, 2012 (in Chinese with English abstract)
[8]谢晓娜. 宿根矮化病菌的分离培养、抗体的制备及其对甘蔗防御酶活性和蛋白质表达的影响. 广西大学博士学位论文, 广西南宁, 2014
Xie X N. Isolation and Preparation of Antiserum Against the Pathogen of Sugarcane Ratoon Stunting Disease and the Effects of the Pathogen on Defensive Enzymes Activity and Proteome in Sugarcane. PhD Dissertation of Guangxi University, Nanning, China, 2014 (in Chinese with English abstract)
[9]Salekdeh G H, Siopongco J, Wade L J, Ghareyazie B, Benett J. Proteomic analysis of rice leaves during drought stress and re-covery. Proteomics, 2002, 2: 1131–1145
[10]Demirevska K, Zasheva D, Dimitrov R, Simova-Stoilova L, Sta-menova M, Feller U. Drought stress effects on rubisco in wheat: changes in the rubisco large subunit. Acta Physiol Plant, 2009, 31: 1129–1138
[11]Xiao X, Yang F, Zhang S, Korpelainen H, Li C. Physiological and proteomic responses of two contrasting Populus cathayana populations to drought stress. Physiol Plant, 2009, 136: 150–168
[12]孙存华, 杜伟, 徐新娜, 陈湘玲, 张亚红. 干旱胁迫对藜叶片干旱诱导蛋白的影响. 干旱地区研究, 2009, 26: 372–376
Sun C H, Du W, Xu X N, Chen X L, Zhang Y H. Effect of drought stress on drought-induced protein in leaves of Cheno-podium album L. Arid Zone Res, 2009, 26: 372–376 (in Chinese with English abstract)
[13]Su Y C, Xu L P, Wang Z Q, Peng Q, Yang Y T, Chen Y, Que Y X. Comparative proteomics reveals that central metabolism changes are associated with resistance against Sporisorium scitamineum in sugarcane. BMC Genom, 2016, 17: 800
[14]章玉婷, 周德群, 苏源, 余萍, 周晓罡, 姚春馨. 干旱胁迫条件下马铃薯耐旱品种宁蒗182叶片蛋白质组学分析. 遗传, 2013, 35: 666–672
Zhang Y T, Zhou D Q, Su Y, Yu P, Zhou X G, Yao C Q. Proteome analysis of potato drought resistance variety in Ninglang 182 leaves under drough stress. Hereditas (Beijing), 2013, 35: 666–672 (in Chinese with English abstract)
[15]韦汉文, 黄有总, 方良宝, 陈超君, 韩世健, 陆国盈, 余勇, 冉思贵. 引进甘蔗新品种对干旱胁迫的生理响应及抗旱性评判. 广西蔗糖, 2010, (1): 7–11
Wei H W, Huang Y Z, Fang L B, Chen C J, Han S J, Lu G Y, Yu Y, Ran S G. Physiological responses of introduced sugarcane varie-ties to drought stress and evaluation of drought resistance. Guangxi Sugarcane & Canesugar, 2010, (1): 7–11 (in Chinese with English abstract)
[16]檀小辉, 廖洁, 刘铭, 牛俊奇, 杨丽涛, 李杨瑞, 王爱勤. 广西28个区试甘蔗品种抗旱性分析. 安徽农业科学, 2011, 39: 12687–12690
Tan X H, Liao J, Liu M, Niu J Q, Yang L T, Li Y R, Wang A Q. Analysis of drought resistance of 28 sugarcane varieties in re-gional trials of Guangxi. J Anhui Agric Sci, 2011, 39: 12687–12690 (in Chinese with English abstract)
[17]朱理环, 邢永秀, 杨丽涛, 李杨瑞, 杨荣仲, 莫磊兴. 干旱胁迫对苗期甘蔗叶片水分和叶绿素荧光参数的影响. 安徽农业科学, 2010, 38: 12570−12573
Zhu L H, Xing Y X, Yang L T, Li Y R, Yang R Z, Mo L X. Effects of water stress on leaf water and chlorophyll fluorescence pa-rameters of sugarcane seedling. J Anhui Agric Sci, 2010, 38: 12570−12573 (in Chinese with English abstract)
[18]Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of pro-tein-dye binding. Anal Biochem, 1976, 72: 248–254
[19]Hashimoto M, Komatsu S. Proteomics analysis of rice seedling during cold stress. Proteomics, 2007, 7: 1293–1302
[20]Kjellsen T D, Shiryaeva L, Schröder W P, Strimbeck G R. Pro-teomics of extreme freezing tolerance in Siberian spruce (Picea obovata). J Proteomics, 2010, 73: 965–975
[21]Degand H, Faber A M, Dauchot N, Mingeot D, Watillon B, Van Cutsem P, Morsomme P, Boutry M. Proteomic analysis of chicory root identifies proteins typically involved in cold acclimation. Proteomics, 2009, 9: 2903–2907
[22]Yan S P, Zhang Q Y, Tang Z C, Su W A, Sun W N. Comparative proteomic analysis provides new insight into chilling stress re-sponse in rice. Mol Cell Proteomics, 2006, 5: 484–496
[23]Cui S, Huang F, Wang J, Ma X, Cheng Y S, Liu J Y. A proteomic analysis of cold stress responses in rice seedlings. Proteomics, 2005, 5: 3162–3172
[24]Kosova K, Vitamvas P, Prasil I T, Renaut J. Plant proteome changes under abiotic stress-contribution of proteomics studies to underetanding plant stress response. J Proteormcs, 2011, 74: 1301–1322
[25]Barreneche T, Bahrman N, Kremer A. Two dimensional gel electro-phoresis confirms the low level of genetic differentiation between Quercus robur and Quercus petraea. For Genet, 1996, 3: 89–92
[26]Shen S, Sharma A, Komatsu S. Characterization of proteins re-sponsive to gibberellin in the leaf-sheath of rice (Oryza sativa L.) seedling using proteome analysis. Biol Pharm Bull, 2003, 26: 129–136
[27]Hernandez J A, Ferrer M A, Jiménez A, Barceló A R, Sevilla F. Antioxidant systems and O2– / H2O2 production in the apoplast of pea leaves. Its relation with salt-induced necrotic lesions in minor veins. Plant Physiol, 2001, 127: 817–831
[28]Borsani O, Valpuesta V, Botella M A. Evidence for a role of sali-cylic acid in the oxidative damage generated by NaCl and os-motic stress in Arabidopsis seedlings. Plant Physiol, 2001, 126: 1024–1030
[29]Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci, 2002, 7: 405–410
[30]Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol, 2004, 55: 373–399
[31]Alscher R G, Erturk N, Heath L S. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot, 2002, 53: 1331–1341
[32]Brandalise M, Severino F E, Maluf M P, Maia I G. The promoter of a gene encoding an isoflavone reductase-like protein in coffee (Coffea arabica) drives a stress-responsive expression in leaves. Plant Cell Rep, 2009, 28: 1699–1708
[33]Kajikawa M, Hirai N, Hashimoto T. A PIP-family protein is re-quired for biosynthesis of tobacco alkaloids. Plant Mol Biol, 2009, 69: 287–298
[34]Tan B C, Chin C F, Liddell S, Alderson P. Proteomic analysis of callus development in Vanilla planifolia Andrews. Plant Mol Biol Rep, 2013, 31: 1220–1229
[35]Vierling E. The roles of heat shock proteins in plants. Annu Rev Plant Biol, 1991, 42: 579–620
[36]Ingvardsen C, Veierskov B. Ubiquitin and proteasome-dependent proteolysis in plants. Physiol Plant, 2001, 112: 451–459
[37]Maupin-Furlow J A, Humbard M A, Kirkland P A, Li W, Reuter C J. Wright A J, Zhou G. Proteasomes from structure to function: per-spectives from Archaea. Curr Top Dev Biol, 2006, 75: 125–169
[38]Semane B, Dupae J, Cuypers A, Noben J P, Tuomainen M, Ter-vahauta A, Kärenlampi S, Belleghem F, Smeets K, Vangronsveld J. Leaf proteome responses of Arabidopsis thaliana exposed to mild cadmium stress. J Plant Physiol, 2010, 167: 247–254
[39]Aina R, Labra M, Fumagalli P, Vannini C, Marsoni M, Cucchi U, Bracale M, Sgorbati S, Citterio S. Thiol-peptide level and pro-teomic changes in response to cadmium toxicity in Oryza sativa L. roots. Environ Exp Bot, 2007, 59: 381–392
[40]Sugiharto B, Ermawati N, Mori H, Sakakibara H. Identification and characterization of a gene encoding drought-inducible protein localizing in the bundle sheath cell of sugarcane. Plant Cell Physiol, 2002, 43: 350–354
[41]Desclos M, Dubousset L, Etienne P, Le Caherec F, Satoh H, Bonnefoy J, Ourry A, Avice J C. A proteomic profiling approach to reveal a novel role of Brassica napus drought 22 kD/water- soluble chlorophyll-binding protein in young leaves during ni-trogen remobilization induced by stressful conditions. Plant Physiol, 2008, 147: 1830–1844

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!