欢迎访问作物学报,今天是

作物学报 ›› 2017, Vol. 43 ›› Issue (10): 1527-1535.doi: 10.3724/SP.J.1006.2017.01527

• 耕作栽培·生理生化 • 上一篇    下一篇

缺钾诱导早衰条件下应用嫁接技术研究根-冠互作对棉花下胚轴解剖结构的影响

张巧玉1,张睿1,刘朝辉2,*,田晓莉1,*   

  1. 1中国农业大学农学院作物化控研究中心, 北京100193; 2 中国农业大学生物学院植物科学系, 北京100193
  • 收稿日期:2017-03-07 修回日期:2017-05-10 出版日期:2017-10-12 网络出版日期:2017-06-05
  • 通讯作者: 田晓莉, E-mail: tianxl@cau.edu.cn, Tel: 010-62734550; 刘朝辉, E-mail: zhaoh@cau.edu.cn
  • 基金资助:

    本研究由国家自然科学基金项目(31271629)资助。

Effect of Root-shoot Interaction on Cotton Hypocotyl Anatomy by Using Grafting Technique under Premature Senescence Induced by Potassium Deficiency

ZHANG Qiao-Yu1, ZHANG Rui1, LIU Zhao-Hui2,*,TIAN Xiao-Li1,*   

  1. 1Center of Crop Chemical Regulation, College of Agricultural and Biotechnology, China Agricultural University, Beijing 100193, China; 2Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing 100193, China
  • Received:2017-03-07 Revised:2017-05-10 Published:2017-10-12 Published online:2017-06-05
  • Contact: 田晓莉, E-mail: tianxl@cau.edu.cn, Tel: 010-62734550; 刘朝辉, E-mail: zhaoh@cau.edu.cn
  • Supported by:

    This study was supported by the National Natural Science Foundation of China (31271629).

摘要:

缺钾诱导早衰条件下,根-冠互作对棉花叶片早衰的调节包括地上部主导型和根系主导型。本研究主要观察缺钾条件下2种根-冠互作类型单接穗单砧木(I型)和双接穗单砧木(Y型)嫁接接穗下胚轴的解剖结构,并判断其与下胚轴木质部中CTK和ABA的流量是否有关。结果表明,地上部主导型I型嫁接接穗下胚轴解剖结构与砧木品种更为相似,与其木质部CTK和ABA的流量主要受地上部调节不符;Y型嫁接2个不同品种接穗之间下胚轴解剖结构的差异与其木质部CTK和ABA流量的差异虽然具有相关性,但可能是一种伴生现象。根系主导型I型嫁接砧木对接穗的影响很大,但这与砧木对接穗下胚轴木质部CTK和ABA流量的调节可能也是一种伴生现象;Y型嫁接2个不同接穗之间下胚轴解剖结构差异较大,与二者之间CTK和ABA流量无显著差异的结果不符。因此,棉花叶片早衰2种根-冠互作类型接穗下胚轴解剖结构与其木质部中CTK和ABA的流量无关。此外,无论是地上部主导型还是根系主导型,2个品种自身嫁接的接穗下胚轴结构差异在Y型嫁接与I型嫁接中不一致,可能与Y型嫁接的2个接穗之间存在冠-冠互作有关。

关键词: 棉花, 嫁接, 根-冠互作, 下胚轴, 解剖结构

Abstract:

Under potassium (K) deficiency, effect of root-shoot interaction on cotton leaf premature senescence includes shoot-dominated and root-dominated patterns. Indirect evidences from grafting study under K deficiency have suggested that scion hypocotyl of shoot-dominated pattern (CCRI41 and SCRC22 combination) may have the ability to synthesize, metabolize and/or radially by transport cytokinin (CTK) and abscisic acid (ABA), while that of root-dominated pattern (CCRI41 and CCRI49 combination) mainly delivers CTK and ABA from roots. In the present study, we observed the anatomy of scion hypocotyls of both patterns under K deficiency (0.03 mmol L–1), and evaluated if it is associated with the flux of CTK and ABA in xylem. In terms of I type grafts (one scion grafted onto one rootstock) of shoot-dominated pattern, the anatomy of scion hypocotyl was clearly influenced by rootstocks, which is inconsistent with the fact that the delivery rate of CTK and ABA in scion xylem was mainly affected by shoot. For Y type grafts (two scions grafted onto one rootstock) of shoot-dominated pattern, the scion with greater CTK flux accompanied by lower ABA flux showed growth superiority as compared with its counterpart. However, the two processes referring to flux of phytohormone in scion xylem and scion growth likely occurred concomitantly but not causally. As the results of CTK and ABA flux in scion xylem, the anatomy of scion hypocotyls of root-dominated pattern was obviously altered by rootstock in I grafts. Nevertheless, they might be also concomitant processes rather than the relationship of cause and effect. Additionally, there were significant differences in anatomy between two different scions of Y grafts of root-dominated pattern, which was disagreement with the similar CTK and ABA flux in xylem of two scions. In conclusion, the scion hypocotyl anatomy of either shoot- or root-dominated pattern regarding cotton leaf premature senescence induced by K deficiency is independent of CTK and ABA flux in its xylem. In addition, the differences in scion hypocotyl anatomy between two cultivars in I graft type were inconsistent with those in Y graft type, which is possibly due to shoot-shoot interaction in Y graft.

Key words: Cotton, Grafts, Root-shoot interaction, Hypocotyl, Anatomy

[1]Li B, Wang Y, Zhang Z Y, Wang B M, Eneji A E, Duan L S, Li ZH, Tian X L. Cotton shoot plays a major role in mediating senescence induced by potassium deficiency. J Plant Physiol, 2012, 169: 327–335 [2]Wang Y, Li B, Du M W, Eneji A E, Wang B M, Duan L S, Li Z H, Tian X L. Mechanism of phytohormone involvement in feedback regulation of cotton leaf senescence induced by potassium deficiency. J Exp Bot, 2012, 63: 5887–5901 [3]张巧玉, 王逸茹, 安静, 王保民, 田晓莉. 根-冠互作对棉花叶片衰老的影响. 作物学报, 2017, 43: 226–237 Zhang Q Y, Wang Y R, An J, Wang B M, Tian X L. Effect of root-shoot interaction on cotton leaf senescence. Acta Agron Sin, 2017, 43: 226–237 (in Chinese with English abstract) [4]Bauerle T L, Centinari M, Bauerle W L. Shifts in xylem vessel diameter and embolisms in grafted apple trees of differing rootstock growth potential in response to drought. Planta, 2011, 234: 1045–1054 [5]Tombesi S, Almehdi A, DeJong T M. Phenotyping vigour control capacity of new peach rootstocks by xylem vesselanalysis. Sci Hort, 2011, 127: 353–357 [6]Olmstead M A, Lang N S, Ewers F W, Owens S A. Xylem vessel anatomy of sweet cherries grafted onto dwarfing and nondwarfing rootstocks. J Am Soc Hort Sci, 2006, 131: 577–585 [7]Santarosa E, Souza P V D D, Mariath J E D A, Lourosa GV. Physiological Interaction between rootstock-scion: effects on xylem vessels in cabernet sauvignon and merlot grapevines. Am J Enol Viticult, 2016, 67: 65–76 [8]Rodríguezgamir J, Intrigliolo D S, Primomillo E, Fornerginer, MA. Relationships between xylem anatomy, root hydraulic conductivity, leaf/root ratio and transpiration in citrus trees on different rootstocks. Physiol Plant, 2010, 139:159–169 [9]杨志威. 嫁接对棉花吸收和运输14C-ZR的影响. 中国农业大学硕士学位论文, 北京, 2016 Yang Z W. The Effect of Grafting on the Uptake and Transportion of 14C-ZR in Cotton. MS thesis of China Agricultural University, Beijing, China, 2016 (in Chinese with English abstract) [10]Miyawaki K, Matsumoto-Kitano M, Kakimoto T. Expression of cytokinin biosynthetic isopentenyltransferase genes in Arabidopsis: tissue specificity and regulation by auxin, cytokinin, and nitrate. Plant J, 2004, 37: 128–138 [11]Ko D, Kang J, Kiba T, Park J, Kojima M, Do J, Kim K Y, Kwon M, Endler A, Song W Y, Martinoia E, Sakakibara H, Lee Y. Arabidopsis ABCG14 is essential for the root-to-shoot translocation of cytokinin. Proc Natl Acad Sci USA, 2014, 111: 7150–7155 [12]Zhang K W, Novak O R, Wei Z Y, Gou M Y, Zhang X B, Yu Y, Yang H J, Cai Y H, Strnad M, Liu C J. Arabidopsis ABCG14 protein controls the acropetal translocation of root-synthesized cytokinins. Nat Commun, 2014, 5: 3274 [13]Endo A, Sawada Y, Takahashi H, Okamoto M, Ikegami K, KoiwaiH, Seo M, Toyomasu T, Mitsuhashi W, Shinozaki K, Nakazono M, Kamiya Y, Koshiba T, Nambara E. Drought induction of arabidopsis 9-cis-epoxycarotenoid dioxygenase occurs in vascular parenchyma cells. Plant Physiol, 2008, 147: 1984–1993 [14]Cheng W H, Endo A, Zhou L, Penny J, Chen H C, Arroyo A, Leon P, Nambara E, Asami T, Seo M, Koshiba T, Sheen J. A unique short-chain dehydrogenase/reductase in arabidopsis glucose signaling and abscisic acid biosynthesis and functions. Plant Cell, 2002, 14: 2723–2743 [15]Koiwai H, Nakaminami K, Seo M, Mitsuhashi W, Toyomasu T, Koshiba T. Tissue-pecific localization of an abscisic acid biosynthetic enzyme, AAO3, in Arabidopsis. Plant Physiol, 2004, 134: 1697–1707 [16]Kuromori T, Sugimoto E, Shinozaki K. Intertissue signal transfer of abscisic acid from vascular cells to guard cells. Plant Physiol, 2014, 164: 1587–1592 [17]王逸茹. 根冠互作对棉花下胚轴细胞分裂素和脱落酸相关基因表达的影响. 中国农业大学硕士学位论文, 北京, 2015 Wang Y R. The Effect of Rootstock on The Expression of Cytokinin and Abscisic Acid Related Gene in Cotton Hypocotyl. MS thesis of China Agricultural University, Beijing, China, 2015 (in Chinese with English abstract) [18]李博, 王春霞, 张志勇, 段留生, 李召虎, 田晓莉. 适用于低钾条件下棉花苗期根冠通讯研究的三种嫁接方法. 作物学报, 2009, 35: 363–369 Li B, Wang C X, Zhang Z Y, Duan L S, Li Z H, Tian X L. Three types of grafting techniques available for research of root-shoot communication in cotton (Gossypium hirsutum) seedlings under low-potassium condition. Acta Agron Sin, 2009, 35: 363–369 (in Chinese with English abstract) [19]Milhinhos A, Miguel C M. Hormone interactions in xylem development: a matter of signals. Plant Cell Reports, 2013, 32: 867–883 [20]Oles V, Panchenko A, Smertenko A. Modeling hormonal control of cambium proliferation. PLoS One, 2017, 12: e0171927 [21]Biemelt S, Tschiersch H, Sonnewald U. Impact of altered gibberellin metabolism on biomass accumulation, lignin biosynthesis, and photosynthesis in transgenic tobacco plants. Plant Physiol, 2004, 135: 254–265 [22]Mauriat M, Moritz T. Analyses of GA20ox- and GID1-over-expressing aspen suggest that gibberellins play two distinct roles in wood formation. Plant J, 2009, 58: 989–1003 [23]Ragni L, Nieminen K, Pacheco-Villalobos D, Sibout R, Schwechheimer C, Hardtke C S. Mobile gibberellin directly stimulates Arabidopsis hypocotyl xylem expansion. Plant Cell, 2011, 23: 1322–1336 [24]Guo H Y, Wang Y C, Liu H Z, Hu P, Jia Y Y, Zhang C R, Wang Y M, Gu S, Yang C P, Wang C. Exogenous GA(3) application enhances xylem development and induces the expression of secondary wall biosynthesis related genes in betula platyphylla. Internl J Mol Sci, 2015, 16: 22960–22975 [25]Ohashi-lto K, Fukuda H. HD-zip III homeobox genes that include a novel member, ZeHB-13 (Zinnia)/ATHB-15 (Arabidopsis), are involved in procambium and xylem cell differentiation. Plant Cell Physiol, 2003, 44: 1350–1358 [26]Cano-Delgado A, Yin Y H, Yu C, Vafeados D, Mora-Garcia S, Cheng J C, Nam K H, Li J M, Chory J. BRL1 and BRL3 are novel brassinosteroid receptors that function in vascular differentiation in Arabidopsis. Development, 2004, 131: 5341–5351 [27]Yamamoto R, Fujioka S, Iwamoto K, Demura T, Takatsuto S, Yoshida S, Fukuda H. Co-regulation of brassinosteroid biosynthesis-related genes during xylem cell differentiation. Plant Cell Physiol, 2007, 48: 74–83
[1] 周静远, 孔祥强, 张艳军, 李雪源, 张冬梅, 董合忠. 基于种子萌发出苗过程中弯钩建成和下胚轴生长的棉花出苗壮苗机制与技术[J]. 作物学报, 2022, 48(5): 1051-1058.
[2] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[3] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[4] 郑曙峰, 刘小玲, 王维, 徐道青, 阚画春, 陈敏, 李淑英. 论两熟制棉花绿色化轻简化机械化栽培[J]. 作物学报, 2022, 48(3): 541-552.
[5] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[6] 张特, 王蜜蜂, 赵强. 滴施缩节胺与氮肥对棉花生长发育及产量的影响[J]. 作物学报, 2022, 48(2): 396-409.
[7] 赵文青, 徐文正, 杨锍琰, 刘玉, 周治国, 王友华. 棉花叶片响应高温的差异与夜间淀粉降解密切相关[J]. 作物学报, 2021, 47(9): 1680-1689.
[8] 岳丹丹, 韩贝, Abid Ullah, 张献龙, 杨细燕. 干旱条件下棉花根际真菌多样性分析[J]. 作物学报, 2021, 47(9): 1806-1815.
[9] 曾紫君, 曾钰, 闫磊, 程锦, 姜存仓. 低硼及高硼胁迫对棉花幼苗生长与脯氨酸代谢的影响[J]. 作物学报, 2021, 47(8): 1616-1623.
[10] 马欢欢, 方启迪, 丁元昊, 池华斌, 张献龙, 闵玲. 棉花GhMADS7基因正调控棉花花瓣发育[J]. 作物学报, 2021, 47(5): 814-826.
[11] 许乃银, 赵素琴, 张芳, 付小琼, 杨晓妮, 乔银桃, 孙世贤. 基于GYT双标图对西北内陆棉区国审棉花品种的分类评价[J]. 作物学报, 2021, 47(4): 660-671.
[12] 周冠彤, 雷建峰, 代培红, 刘超, 李月, 刘晓东. 棉花CRISPR/Cas9基因编辑有效sgRNA高效筛选体系的研究[J]. 作物学报, 2021, 47(3): 427-437.
[13] 卢合全, 唐薇, 罗振, 孔祥强, 李振怀, 徐士振, 辛承松. 商品有机肥替代部分化肥对连作棉田土壤养分、棉花生长发育及产量的影响[J]. 作物学报, 2021, 47(12): 2511-2521.
[14] 王晔, 刘钊, 肖爽, 李芳军, 吴霞, 王保民, 田晓莉. 转PSAG12-IPT基因对棉花叶片衰老及产量和纤维品质的影响[J]. 作物学报, 2021, 47(11): 2111-2120.
[15] 杨琴莉, 杨多凤, 丁林云, 赵汀, 张军, 梅欢, 黄楚珺, 高阳, 叶莉, 高梦涛, 严孙艺, 张天真, 胡艳. 棉花花器官突变体的鉴定及候选基因的克隆[J]. 作物学报, 2021, 47(10): 1854-1862.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!