欢迎访问作物学报,今天是

作物学报 ›› 2017, Vol. 43 ›› Issue (11): 1696-1704.doi: 10.3724/SP.J.1006.2017.01696

• 耕作栽培·生理生化 • 上一篇    下一篇

抗豆象绿豆胰蛋白酶抑制剂活性及理化性质

樊艳平1,张耀文2,赵雪英2,张仙红1,*   

  1. 1山西农业大学农学院,山西太谷030801; 2山西省农业科学园作物科学研究所,山西太原030000
  • 收稿日期:2016-12-18 修回日期:2017-07-23 出版日期:2017-11-12 网络出版日期:2017-08-10
  • 通讯作者: 张仙红, E-mail: zxh6288@sina.com
  • 基金资助:

    本研究由国家现代农业产业技术体系建设专项(GARS-08-G11)资助。

Activity and Physico Chemical Properties of Trypsin Inhibitor in Bruchid-Resistant Mung Bean

FAN Yan-Ping1,ZHANG Yao-Wen2,ZHAO Xue-Ying2,ZHANG Xian-Hong1,*   

  1. 1College of Agriculture, Shanxi Agricultural University, Taigu 030801, China; 2Institute of Crop Science, Shanxi Academy of Agricultural Sciences, Taiyuan 030000, China
  • Received:2016-12-18 Revised:2017-07-23 Published:2017-11-12 Published online:2017-08-10
  • Contact: 张仙红, E-mail: zxh6288@sina.com
  • Supported by:

    The study was supported by the China Agriculture Research System (GARS-08-G11).

摘要:

以4个抗豆象绿豆品系B18、B20、B24和A22为试材, 以感虫绿豆品种晋绿1号为对照,研究了不同绿豆中胰蛋白酶抑制剂活性及其在高温、酸碱及超声波下绿豆的胰蛋白酶抑制剂稳定性。结果表明,4个抗豆象绿豆品种胰蛋白酶抑制剂活性均显著高于对照感虫品种,且均与对照在0.01水平差异极显著,其中B18活性最高,高达70.2 TIU g–1,B20和A22活性次之,B24活性最差,但仍高达55.2 TIU g–1。4个抗豆象绿豆品种在不同温度、不同pH和不同振幅超声波下,残余活性均比对照高,且残余活性均随温度升高、温浴时间延长而降低,pH在2~12之间,随pH值的升高,残余活性均呈现先升高后降低的趋势,且pH值为6~8之间残余活性最高,残余活性也随超声波辐射强度升高、时间延长而降低,且4个抗虫品种中B18的耐高温性、耐酸碱性和耐辐射性最强,B20次之,B24的耐高温性、耐酸碱性最差,A22耐辐射性最差,说明在不同温度、pH和超声波处理后,B18、B20是抗豆象绿豆胰蛋白酶抑制剂残余活性保存最高的2个品种,应用价值较大。

关键词: 抗豆象绿豆, 胰蛋白酶抑制剂, 活性, 温度, pH, 超声波

Abstract:

Taking bruchid-resistant mung bean lines including B18, B20, B24, and A22 as experimental materials, a susceptible variety mung bean Jinlyu 1 as control, the activity of trypsin inhibitor and the stability of mung bean trypsin inhibitor under high temperature, pH and ultrasonic were measured. The trypsin inhibitor activities of four bruchid-resistant mung bean lines were significantly higher than those of control (Jinlyu 1). There were significant differences of trypsin inhibitor activity between four bruchid-resistant mung bean lines and the control at the 1% probability level. Among them, B18 had the highest activity (70.2 TI U g–1), following by B20 and A22, and B24 had the lowest one (55.2 TI U g–1). When treated with temperature, pH and amplitude of ultrasonic, the residual activities of trypsin inhibitor from the four bruchid-resistant mung bean lines were higher than those of control. The residual activities decreased with the increase of temperature and time of warm bath, which enhanced initially and then weakened when pH value was elevating between 2–12, with the highest when pH ranged from six to eight. The residual activities also reduced with the increasing ultrasonic intensity and treatment time. Among the four tested lines, B18 had the highest tolerance to high temperature, high acid and alkali stress, and ultrasonic intensity; B20 had the moderate tolerance, B24 had the lowest tolerance to high temperature, acid and alkali stress, while A22 had the lowest tolerance to ultrasonic treatment. We concluded that among four lines, B18 and B20 have the highest residual activity of bruchid-resistant mung bean trypsin inhibitor under temperature, pH and ultrasonic treatments, being of higher value of its application.

Key words: Bruchid-resistant mung bean, Trypsin inhibitor, Activity, Temperature, pH, Ultrasonic

[1] 廖海, 杜林方, 周嘉裕. 植物中蛋白类蛋白酶抑制剂的研究进展. 天然产物研究与开发, 2002, 14(1): 80–84
Liao H, Du L F, Zhou J Y. Research progress of protein protease inhibitors in plants. Nat Prod Res Dev, 2002, 14(1): 80–84 (in Chinese)
[2] 万善霞, 王婉婉, 滑静, 张淑平. 胰蛋白酶抑制剂在不同领域的研究概况. 北京农学院学报, 2003, 18: 152–155
Wan S X, Wang W W, Hua J, Zhang S P. Research status of trypsin inhibitor in different fields. J Beijing Agric Coll, 2003, 18: 152–155 ( in Chinese with English abstract)
[3] 罗玉娇, 李滨, 舒衡平, 蒋立平. Kunitz型胰蛋白酶抑制剂的研究进展. 中国生化药物杂志, 2012, 33: 316–319
Luo Y J, Li B, Shu H P, Jiang L P. Research advances in Kunitz trypsin inhibitor. Chin J Biochem Pharm, 2012, 33: 316–319 ( in Chinese)
[4] 吴国昭, 朱克岩, 曾任森. 大豆胰蛋白酶抑制剂对斜纹夜蛾生长发育的影响. 生态环境学报, 2013, 22: 1335–1340
Wu G Z, Zhu K Y, Zeng R S. Effect of soybean trypsin inhibitor on the growth and development of Spodoptera litura. Ecol Environl Sci, 2013, 22: 1335–1340 (in Chinese)
[5] 王荣春, 孙建华, 何述栋, 马莺. 胰蛋白酶抑制剂的结构与功能研究进展. 食品科学, 2013, 34(9): 364–368
Wang R C, Sun J H, He S D, Ma Y. Recent advance in research on the structure and function of trypsin inhibitor. Food Sci, 2013, 34(9): 364–368 ( in Chinese with English abstract)
[6] Oliveira A S, Migliolo L, Aquino R O, Ribeiro J K C, Macedo L L P, Andrade L B, Bemquerer M P, Santos E A, Kiyota S, Sales M P. Purification and characterization of a trypsin-papain inhibitor from Pithecelobium dumosum seeds and its vitro effects towards digestive enzymes from insect pest. Plant Physiol Biochem, 2007, 45: 858–865
[7] 刘大伟, 陈立杰, 段玉玺. 灰皮支黑豆胰蛋白酶抑制剂基因的克隆及其在胞囊线虫胁迫下的表达分析. 河南农业科学, 2016, 39(4): 94–97
Liu D W, Chen L J, Duan Y X. Cloning of soybean Kunitz trypsin inhibitor gene from huipizhiheidou and expression analysis in soybean infected by Heterodera glycines. J Henan Agric Sci, 2016, 39(4): 94–97 (in Chinese with English abstract)
[8] Ye X Y, Ng T B, Rao P F. A Bowman-Birk-type trypsin-chymotrypsin inhibitor from broad beans. Bichem Biophys Res Commun, 2001, 289: 91–96
[9] Evandro F F, Wong J H, Ng T B. Thermostable Kunitz trypsin inhibitor with cytokine inducing, antitumor and HIV-1 reverse transcriptase inhibitory activities from Korean large black soybeans. J Biosci Bioeng, 2010, 109: 211–217
[10] 王长良, 张永忠, 孙志刚. Bowman-Birk型大豆胰蛋白酶抑制剂研究进展. 大豆科学, 2007, 26: 757–761
Wang C L, Zhang Y Z, Sun Z G. Progress on the research of Bowman-Birk soybean trypsin inhibitor. Soybean Sci, 2007, 26: 757–761 (in Chinese with English abstract)
[11] Kobayashi H, Suzuki M, Kanayama N, Terao T. A soybean Kunitz trypsin inhibitor suppresses ovarian cancer cell invasion by blocking urokinase upregulation. Clin Exp Metastas, 2004, 21: 159–166
[12] 张少娟, 薛晓鸥, 刘同祥, 艾浩, 牛建昭. 大豆胰蛋白酶抑制剂对人宫颈癌Hela细胞增殖的影响. 辽宁医学院学报, 2008, 29: 106–109
Zhang S J, Xue X O, Liu T X, Ai H, Niu J Z. The effect of soybean typsin inhibitor on Proliferation of Human Hela Cells. J Liaoning Med Univ, 2008, 29: 106–109 (in Chinese with English abstract)
[13] Ho V S M, Ng T B. A Bowman-Birk trypsin inhibitor with antiproliferative activity from Hokkaido large black soybeans. J Pept Sci, 2008, 14: 278–282
[14] 吴燕子. 重组荞麦胰蛋白酶抑制剂对乳腺癌细胞MCF-7作用的研究. 山西大学硕士学位论文, 山西太原, 2015
Wu Y Z. Study on Effects of Recombinant Buckwheat Trypsin Inhibitor in Breast Cancer Cell Lines MCF-7. MS Thesis of Shanxi University, Shanxi, China, 2015 (in Chinese with English abstract)
[15] 白崇智, 李玉英, 李芳, 张政, 王转花. 重组荞麦胰蛋白酶抑制剂诱导肝癌细胞H22凋亡的作用及其机制. 细胞生物学杂志, 2009, 31: 79–83
Bai C Z, Li Y Y, Li F, Zhang Z, Wang Z H. Effect of recombinant buckwheat trypsin inhibitor on apoptosis of hepatocellular carcinoma cell line H22 and its mechanism. Chin J Cell Biol, 2009, 31: 79–83 (in Chinese)
[16] 李娇, 崔晓东, 马晓丽, 王转花. 重组荞麦胰蛋白酶抑制剂延长C. elegans寿命的作用机制. 中国生物化学与分子生物学报, 2016, 32: 1112–1120
Li J, Cui X D, Ma X L, Wang Z H. Mechanism underlying prolongevity induced by rBTI in Caenorhabditis elegans. Chin J Biochem Mol Biol, 2016, 32: 1112–1120 (in Chinese with English abstract)
[17] Sagili R R, Pankiw T, Zhu-Salzman K. Effects of soybean trypsin inhibitor on hypopharyngeal gland protein content, total midgut protease activity and survival of the honey bee(Apis mellifera L.). J Insect Physiol, 2005, 51: 953–957
[18] Zeng R S, Su Y J, Ye M, Xie L J, Chen M, Song Y Y. Plant induced defense and biochemical mechanisms. J South China Agric Univ, 2008, 29: 1–6
[19] Zeng R S, Niu G, Wen Z, Schuler M A, Berenbaum M R. Allelochemical induction of cytochrome P450 monooxygenases and amelioration of xenobiotic toxicity in Helicoverpa zea. J Chem Ecol, 2007, 33: 449–461
[20] 戚正武, 任梅轩, 屈贤铭, 罗珊珊, 周元聪, 王克夷, 曹天钦. 绿豆胰蛋白酶抑制剂化学与物化特征及其与活力的关系. 中国生理科学会学术会议论文, 北京, 1964. pp 43–44
Qi Z W, Ren M X, Qu X M, Luo S S, Zhou Y C, Wang K Y, Cao T Q. Characterization of chemical and physicochemical properties of mung bean trypsin inhibitor and its relationship with viability. In: Proceedings of the Chinese Society of Physiological Sciences, Beijing, China, 1964. pp 43–44 (in Chinese)
[21] 屈贤铭, 罗珊珊, 任梅轩, 戚正武; 曹天钦. 绿豆胰蛋白酶抑制剂的研究: Ⅱ. 抑制剂A、B组份的关系及其化学结构的特征. 生物化学与生物物理学报, 1964, 4: 588–597
Qu X M, Luo S S, Ren M X, Qi Z W, Cao T Q. Studies on inhibitors of mung bean trypsin: II. The relationship between inhibitors, A, B components and their chemical structure characteristics. Acta Biochim Biophysi Sin, 1964, 4: 588–597 (in Chinese)
[22] 谭复隆, 戚正武. 绿豆胰蛋白酶抑制剂两活性区域的拆分. 生理科学, 1982, 2(5): 13
Tan F L, Qi Z W. Resolution of two active region of mung bean trypsin inhibitor. Physiol Sci, 1982, 2(5): 13 (in Chinese)
[23] 曲梅, 韩锦铂, 孟延发. 绿豆胰蛋白酶抑制剂对蛋白质前体加工酶的抑制活性. 第二军医大学学报, 2006, 27: 258–262
Qu M, Han J B, Meng Y F. Inhibitory activity of mung bean trypsin inhibitor on protein precursor processing enzymes. Acad J Second Mil Med Univ, 2006, 27: 258–262 (in Chinese with English abstract)
[24] 赵现明. 豆类胰蛋白酶抑制剂的提取分离及纯化. 哈尔滨工业大学硕士学位论文, 黑龙江哈尔滨, 2013
Zhao X M. Extraction, Isolation and Purification of Trypsin Inhibitors from Leguminosae. MS Thesis of Harbin Institute of Technology, Harbin, China, 2013 (in Chinese with English abstract)
[25] 邵彪, 汪少芸, 饶平凡. 黑豆胰蛋白酶抑制剂的纯化及性质研究. 中国食品学报, 2010, 10(6): 47–53
Shao B, Wang S Y, Rao P F. Studies on Purification and characterization of trypsin inhibitor from black soybean. Chin J Food Sci, 2010, 10(6): 47–53 (in Chinese with English abstract)
[26] 阮景军. 苦荞麦胰蛋白酶抑制剂的分离纯化、基因克隆表达及其抗病虫害研究. 四川农业大学博士学位论文, 四川成都, 2011
Ruan J J. Study on Isolation, Purification, Gene Cloning and Expression of Trypsin Inhibitor of Tartary Buckwheat and Resistance to Diseases and Insect Pest. PhD Dissertation of Sichuan Agricultural University, Sichuan, China, 2011 (in Chinese with English abstract)
[27] 王静, 朱庆华, 陈杰. 紫花芸豆胰蛋白酶抑制剂的分离纯化及降糖作用研究. 临床合理用药杂志, 2015, 8(9): 126–127
Wang J, Zhu Q H, Chen J. Purification and partial characterization of trypsin inhibitor from Phaseolus vulgaris. J Clinic Ration Use Drugs, 2015, 8(9): 126–127 (in Chinese)
[28] 阮景军, 唐自钟, 陈惠, 程剑平. 核桃胰蛋白酶抑制剂的纯化及抑制植物病原真菌研究. 西南农业学报, 2016, 29: 826–830
Ruan J J, Tang Z Z, Chen H, Cheng J P. Purification of trypsin inhibitor from walnut and its inhibition on plant pathogenic fungi. Southwest China J Agric Sci, 2016, 29: 826–830 (in Chinese with English abstract)
[29] 赵亚蕊, 李宗伟, 赵超, 付荣, 王兴华, 李卓玉. 重组绿豆胰蛋白酶抑制剂片段对肠癌细胞SW480迁移的影响. 山西大学学报, 2012, 35: 126–129
Zhao Y R, Li Z W, Zhao C, Fu R, Wang X H, Li Z Y. Effect of recombinant mung bean trypsin inhibitor fragment on the migration of SW480 in human colon cancer cells. J Shanxi Univ, 2012, 35: 126–129 (in Chinese)
[30] 王莎莎, 马岳, 李玉银, 罗深恒, 刁爱坡, 龙民慧. 绿豆胰蛋白酶抑制剂BBI诱导肺腺癌A549细胞凋亡. 华南师范大学学报, 2013, 45(3): 91–94
Wang S S, Ma Y, Li Y Y, Luo S H, Diao A P, Long M H. Apoptosis of lung adenocarcinoma A549 cells induced by mung bean trypsin inhibitor BBI. J South China Norm Univ, 2013, 45(3): 91–94 (in Chinese)
[31] Godbole S, Krishna T, Bhatia C. Purification and characterization of protease inhibitors from pigeon pea (Cajanus cajan (L.) Millsp) seeds. J Sci Food agric, 1994, 64: 87–93
[32] Huang H, Kwok K C, Liang H H. Inhibitory activity and conformation changes of soybean trypsin inhibitors induced by ultrasound. Ultrason Sonochem, 2008, 15: 724–730
[33] EI-Shamei Z, WU J W, Haard N F. Influence of wound injury on accumulation of proteinase inhibitors in leaf and stem tissues of two processing tomato cultivars(L). J Food Biochm, 1996, 20(5): 155–171
[34] 江均平, 李春红, 张涛, 云冬梅, 杨雪丰. 绿豆胰蛋白酶抑制剂的含量、多型性及稳定性. 食品科学, 2013, 34(11): 32–35
Jiang J P, Li C H, Zhang T, Yun D M, Yang X F. Activity, Polymorphism and stability of trypsin inhibitor from mung Beans. Food Sci, 2013, 34(11): 32–35 (in Chinese with English abstract)
[35] 赵琳琳. 大豆胰蛋白酶抑制因子对小鼠胰腺结构功能及基因表达的影响. 吉林农业大学硕士学位论文, 吉林长春, 2014
Zhao L L. The Effect of Soybean Trypsin Inhibitor on Structure and Function and Gene Expression Profile in Pancreas of Mice. MS Thesis of Jilin Agricultural University, Jilin, China, 2014 (in Chinese with English abstract)
[36] 张宾. 大豆胰蛋白酶抑制剂的制备、理化性质和抗黄曲霉作用. 中国海洋大学博士学位论文, 山东青岛, 2010
Zhang B. Preparation, Purification and Properties of Soybean Trypsin Inhibitor with Anti-Aspergillus flavus Activity. PhD Dissertation of Ocean University of China, Qingdao, China, 2010 (in Chinese with English abstract)
[37] 黄惠华, 粱汉华, 郭乾初. 超声波对大豆胰蛋白酶抑制剂活性及二级结构的影响. 食品科学, 2004, 25(3): 29–33
Huang H H, Liang H H, Guo Q C. Li C H, Zhang T, Yun D M, Yang X F. Different Effects of Ultrasound on Two Types of Soybean Trypsin Inhibitors in Activity and Structures. Food Sci, 食品科学, 2004, 25(3): 29–33 (in Chinese with English abstract)
[38] Hilder V A, Gatehouse A M R, Sheerman S E, Barker R F, Boulter D. A novel mechanism of insect resistance engineered into tobacco. Nature, 1987, 300: 160–163
[39] 柳武革, 薛庆中. 蛋白酶抑制剂及其在抗虫基因工程中的应用. 生物技术通报, 2000, (1): 20–25
Liu W G, Xue Q Z. Proteinase inhibitors and their application in insect-resistant gene engineering. Biotechnol Inform, 2000, (1): 20–25 (in Chinese with English abstract)

[1] 颜为, 李芳军, 徐东永, 杜明伟, 田晓莉, 李召虎. 行距与氮肥或甲哌鎓化控对棉花冠层结构、温度和相对湿度的影响[J]. 作物学报, 2021, 47(9): 1654-1665.
[2] 韩玉洲, 张勇, 杨阳, 顾正中, 吴科, 谢全, 孔忠新, 贾海燕, 马正强. 小麦株高QTL Qph.nau-5B的效应评价[J]. 作物学报, 2021, 47(6): 1188-1196.
[3] 吴春花, 普雪可, 周永瑾, 勉有明, 苗芳芳, 李荣. 宁南旱区沟垄集雨结合覆盖对土壤水热肥与马铃薯产量的影响[J]. 作物学报, 2021, 47(11): 2208-2219.
[4] 侯慧芝, 张绪成, 方彦杰, 于显枫, 王红丽, 马一凡, 张国平, 雷康宁. 全膜微垄沟播对寒旱区春小麦苗期土壤水热环境及光合作用的影响[J]. 作物学报, 2020, 46(9): 1398-1407.
[5] 陈鹏飞,徐新刚. 无人机影像拼接软件在农业中应用的比较研究[J]. 作物学报, 2020, 46(7): 1112-1119.
[6] 韩展誉,管弦悦,赵倩,吴春艳,黄福灯,潘刚,程方民. 灌浆温度和氮肥及其互作效应对稻米贮藏蛋白组分的影响[J]. 作物学报, 2020, 46(7): 1087-1098.
[7] 要凯,赵章平,康益晨,张卫娜,石铭福,杨昕宇,范艳玲,秦舒浩. 沟垄覆膜对连作马铃薯土壤酶活性、理化性状及产量的影响[J]. 作物学报, 2019, 45(8): 1286-1292.
[8] 赵松超,李一凡,刘博远,赵铭钦. 晾制密度对雪茄烟叶膜脂过氧化作用及品质的影响[J]. 作物学报, 2019, 45(7): 1090-1098.
[9] 方彦杰,张绪成,于显枫,侯慧芝,王红丽,马一凡. 旱地全膜覆土穴播荞麦田土壤水热及产量效应研究[J]. 作物学报, 2019, 45(7): 1070-1079.
[10] 田景山,张煦怡,张丽娜,徐守振,祁炳琴,随龙龙,张鹏鹏,杨延龙,张旺锋,勾玲. 新疆机采棉花实现叶片快速脱落需要的温度条件[J]. 作物学报, 2019, 45(4): 613-620.
[11] 王凯,赵小红,姚晓华,姚有华,白羿雄,吴昆仑. 茎秆特性和木质素合成与青稞抗倒伏关系[J]. 作物学报, 2019, 45(4): 621-627.
[12] 孙凯,刘振,胡恒宇,李耕,刘文涛,杨柳,宁堂原,王彦玲. 有机培肥与轮耕方式对夏玉米田土壤碳氮和产量的影响[J]. 作物学报, 2019, 45(3): 401-410.
[13] 张晓红,胡根海,王寒涛,王聪聪,魏恒玲,付远志,喻树迅. 棉花中GhTFL1aGhTFL1c基因的表达及启动子分析[J]. 作物学报, 2019, 45(3): 469-476.
[14] 陈诗豪,李正阳,陈佳露,张元卿,魏育明,郑有良,蒲至恩. 品种与栽培条件对小麦籽粒生物活性物质含量的影响[J]. 作物学报, 2019, 45(11): 1756-1763.
[15] 王玲,刘峰,戴明剑,孙婷婷,苏炜华,王春风,张旭,毛花英,苏亚春,阙友雄. 甘蔗ScWRKY4基因的克隆与表达特性分析[J]. 作物学报, 2018, 44(9): 1367-1379.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!