欢迎访问作物学报,今天是

作物学报 ›› 2017, Vol. 43 ›› Issue (12): 1767-1773.

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

LAZY1通过BR途径调控水稻叶夹角的发育

张晓琼,王晓雯,田维江,张孝波,孙莹,李杨羊,谢佳,何光华,桑贤春*   

  1. 西南大学水稻研究所 / 转基因植物与安全控制重庆市重点实验室,重庆 400716
  • 收稿日期:2017-04-05 修回日期:2017-07-23 出版日期:2017-12-12 网络出版日期:2017-08-07
  • 基金资助:

    本研究由中央高校基本科研业务费(XDJK2015C117)和重庆市基础科学与前沿技术研究(一般)项目(cstc2015jcyjA1517)资助。

LAZY1 Regulates the Development of Rice Leaf Angle through BR Pathway

ZHANG Xiao-Qiong, WANG Xiao-Wen, TIAN Wei-Jiang, ZHANG Xiao-Bo, Sun Ying, LI Yang-Yang, Xie Jia, HE Guang-Hua, and SANG Xian-Chun*   

  1. Rice Research Institute of Southwest University / Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Chongqing 400716, China
  • Received:2017-04-05 Revised:2017-07-23 Published:2017-12-12 Published online:2017-08-07
  • Supported by:

    This study was supported by the Fundamental Research Funds for the Central Universities (XDJK2015C117) and Chongqing Research Program of Basic Research and Frontier Technology (cstc2015jcyjA1517).

摘要:

叶夹角的大小直接影响水稻叶面积指数,进而调控群体光合作用,是水稻株型育种中重要的指标,研究其发育机制对水稻株型育种具有重要的意义。利用EMS诱变籼型水稻保持系西大1B,获得一个植株散生且叶夹角变大的突变体s524。田间种植条件下,苗期s524的叶夹角极显著大于野生型;分蘖期s524的分蘖角极显著增大,株型松散;成熟期s524整个植株呈匍匐状生长。而野生型株型在整个生育期均保持相对紧凑,叶夹角较小。石蜡切片分析显示,s524叶夹角增大是由叶枕近轴面细胞变大造成的。s524的主要农艺性状与野生型相比无明显变化。遗传分析表明该性状受1对隐性核基因控制,利用SSR标记进行基因定位,最终将S524定位在第11染色体标记RM4746和RM26742之间324 kb的物理范围内,包含散生基因LAZY1。测序结果显示s524突变体在LAZY1第3外显子上发生了一个T到C的碱基替换,导致第143位氨基酸由野生型的缬氨酸突变为丙氨酸,表明s524是一个新的LAZY1等位突变体。s524对外源油菜素内酯(BR)的敏感性降低,BR信号传导途径关键基因BU1在s524中的表达上调了近10倍,早期研究表明BU1基因的过表达可导致叶夹角变大。推测LAZY1/S524可能通过BR信号传导途径调控水稻叶夹角的发育。

关键词: 水稻(Oryza sativa L.), 叶夹角, LAZY1/S524, 油菜素内酯(BR)信号传导, BU1

Abstract:

The angle of rice leaf, as an important agronomic trait, influences leaf area index and yield in rice. Leaf angle mutant identification is of significant importance in rice breeding based on ideal plant architecture. A mutant s524, derived from the progeny of EMS-treated indica rice Xida1B, showed significantly larger leaf angle than the wild type. At tillering stage, the tiller angle and leaf angle of s524 increased and the whole plant crept, while the wild type in whole growth period maintained relatively compact phenotype. Longitudinal sections of the epidermis of pulvinus showed that the enlarged leaf angle of the mutant was mainly due to the much-elongated adaxial cells. The main agronomic traits of s524 did not change significantly compared with those of the wild-type. Genetic analysis suggested that the mutational traits were controlled by a recessive nuclear gene, which was finely mapped between SSR markers RM4746 and RM26742 on chromosome 11 with a physical distance of 324 kb. LAZY1 in the restricted region regulates rice tiller angle development. Sequencing revealed that a base substitution from T to C occurred on the third exon of LAZY1, leading to the amino acid change from valine to alanine at 143th protein sequence. Hormone treatment test indicated that BR sensitivity was reduced in s524. Quantitative analysis demonstrated that the expression of BR signaling related gene BU1 was obviously up-regulated. The previous study showed that over-expression of BU1 could enlarge rice leaf angle. Our research suggests that LAZY1/S524 may regulate the development of leaf angle through BR conduction pathway.

Key words: Rice (Oryza sativa L.), Tiller angle, LAZY1/S524, Signal transduction of brassinolide (BR), BU1

[1]Li Z K, Paterson A H, Pinson S R, Stansel J W. RFLP facilitated analysis of tiller and leaf angles in rice (Oryza sativa L.). Euphytica, 1999, 109(6): 79–84 [2]钱前, 何平, 滕胜, 曾大力, 朱立煌. 水稻分蘖角度的QTLs分析. 遗传学报, 2001, 28: 29–32 Qian Q, He P, Teng S, Zeng D L, Zhu L H. QTLs analysis of tiller angle in rice (Oryza sativa L.). Acta Genet Sin, 2001, 28: 29–32 (in Chinese with English abstract) [3]余传元, 刘裕强, 江玲, 王春明, 翟虎渠, 万建民. 水稻分蘖角度的QTL定位和主效基因的遗传分析. 遗传学报, 2005, 32: 948–954 Yu C Y, Liu Y Q, Jiang L, Wang C M, Zhai H Q, Wan J M. QTLs mapping and genetic analysis of tiller angle in rice (Oryza sativa L.). Acta Genet Sin, 2005, 32: 948–954 (in Chinese with English abstract) [4]Yu B, Lin Z, Li H, Li X, Li J, Wang Y, Zhang X, Zhu Z, Zhai W, Wang X, Xie D, Sun C. TAC1, a major quantitative trait locus controlling tiller angle in rice. Plant J, 2007, 52: 891–898 [5]Li P, Wang Y, Qian Q, Fu Z, Wang M, Zeng D, Li B, Wang X, Li J. LAZY1 controls rice shoot gravitropism through regulating polar auxin transport. Cell Res, 2007, 17: 402–410 [6]Yoshihara T, Lino M. Identification of the gravitropism-related rice gene LAZY1 and elucidation of LAZY1 dependent and independent gravity signaling pathways. Plant Cell Physiol, 2007, 48: 678–688 [7]Zhang C, Xu Y Y, Guo S Y, Zhu J Y, Huan Q, Liu H H, Wang L, Luo G Z, Wang X J, Chong K. Dynamics of brassinosteroid response modulated by negative regulator LIC in rice. PLoS Genet, 2012, 8(4): e1002686 [8]Zhao S Q, Xiang J J, Xue H W. Studies on the rice LEAF INCLINATION1 (LC1), an IAA-amido synthetase, reveal the effects of auxin in leaf Inclination control. Mol Plant, 2013, 6: 174–187 [9]Zhao S Q, Hu J, Guo L B, Qian Q, Xue H W. Rice leaf inclination2, a VIN3-like protein, regulates leaf angle through modulating cell division of the collar. Cell Res, 2010, 20: 935–947 [10]Zhang S N, Wang S K, Xu Y X, Yu C L, Shen C J, Qian Q, Geisler M, Jiang D A, Qi Y H. The auxin response factor, OsARF19, controls rice leaf angles through positively regulating OsGH3-5 and OsBRI1. Plant Cell Environ, 2015, 38: 638–654 [11]Wu X R, Tang D, Li M, Wang K J, Cheng Z K. Loose plant architecture 1, an indeterminate domain protein involved in shoot gravitropism, regulates plant architecture in rice. Plant Physiol, 2013, 161: 317–329 [12]Ning J, Zhang B C, Wang N L, Wang N, Zhou Y H, Xiong L Z. Increased leaf angle 1, a Raf-Like MAPKKK that interacts with a nuclear protein family, regulates mechanical tissue formation in the lamina joint of rice. Plant Cell, 2011, 23: 4334–4347 [13]Sang X C, Li Y F, Luo Z K, Ren D Y, Fang L K, Wang N, Zhao F M, Ling Y H, Yang Z L, Liu Y S, He G H. CHIMERIC FLORAL ORGANS1, encoding a monocot-specific MADS box protein, regulates floral organ identity in rice. Plant Physiol, 2012, 160: 788–807 [14]Porebski S, Bailey L.G, Baum B.R. Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol Biol Rep, 1997, 15: 8–15 [15]Tanaka A, Nakagawa H, Tomita C, Shimatani Z, Ohtake M, Nomura T, Jiang C J, Dubouzet J G, Kikuchi S, Sekimoto H, Yokota T, Asami T, Kamakura T, Mori M. BRASSINOSTEROID UPREGULATED1, encoding a helix-loop-helix Protein, is a novel gene involved in brassinosteroid signaling and controls bending of the lamina joint in rice. Plant Physiol, 2009, 151: 669–680 [16]Bai M Y, Zhang L Y, Gampala S S, Zhu S W, Song W Y, Chong K, Wang Z Y. Functions of OsBZR1 and 14-3-3 proteins in brassinosteroid signaling in rice. Proc Natl Acad Sci USA, 2007, 104: 13839–13844 [17]Zhang L Y, Bai M Y, Wu J, Zhu J Y, Wang H, Zhang Z, Wang W, Sun Y, Zhao J, Sun X, Yang H, Xu Y, Kim S H, Fujioka S, Lin W H, Chong K, Lu T, Wang Z Y. Antagonistic HLH/bHLH transcription factors mediate brassinosteroid regulation of cell elongation and plant development in rice and arabidopsis. Plant Cell, 2009, 21: 3767–3780 [18]Hu X M, Qian Q, Xu T, Zhang Y E, Dong G J, Gao T, Xie Q,?Xue Y B. The U-box E3 ubiquitin ligase TUD1 functions with a heterotrimeric g α subunit to regulate brassinosteroid-mediated growth in rice. PLoS Genet, 2013, 9(3): e1003391 [19]Sakamoto T, Morinaka Y, Ohnishi T, Sunohara H, Fujioka S, Ueguchi-Tanaka M, Mizutani M, Sakata K, Takatsuto S, Yoshida S, Tanaka H, Kitano H, Matsuoka M. Erect leaves caused by brassinosteroid deficiency increase biomass production and grain yield in rice. Nat Biotechnol, 2006, 24: 105–109 [20]Hong Z, Ueguchi-Tanaka M, Umemura K, Uozu S, Fujioka S, Takatsuto S, Yoshida S,?Ashikari M,?Kitano H, Matsuok M. A rice brassinosteroid-deficient mutant, ebisu dwarf (d2), is caused by a loss of function of a new member of cytochrome p450. Plant Cell, 2003, 15: 2900–2910 [21]Sakamoto T, Morinaka Y, Inukai Y, Kitano H, Fujioka S. Auxin signal transcription factor regulates expression of the brassinosteroid receptor gene in rice. Plant J, 2013, 73: 676–688 [22]Sun S, Chen D, Li X, Qiao S, Shi C, Li C, Shen H, Wang X. Brassinosteroid signaling regulates leaf erectness in Oryza sativa via the control of a specific U-type cyclin and cell proliferation. Dev Cell, 2015, 34: 220–228 [23]Duan K, Li L, Hu P, Xu S P, Xu Z H, Xue H W. A brassinolide-suppressed rice MADS-box transcription factor, OsMDP1, has a negative regulatory role in BR signaling. Plant J, 2006, 47: 519–531

[1] 彭勃,赵晓雷,王奕,袁文娅,李春辉,李永祥,张登峰,石云素,宋燕春,王天宇,黎裕. 玉米叶向值的全基因组关联分析[J]. 作物学报, 2020, 46(6): 819-831.
[2] 殷跃军;左示敏**;王辉;张亚芳;陈宗祥;马玉银;顾世梁;潘学彪. 抗水稻纹枯病qSB-9Tq基因效应及作用方式分析[J]. 作物学报, 2009, 35(2): 279-285.
[3] 于永红;朱智伟;樊叶杨;段彬伍;庄杰云. 应用重组自交系群体检测控制水稻糙米粗蛋白和粗脂肪含量的QTL[J]. 作物学报, 2006, 32(11): 1712-1716.
[4] 华志华;朱雪峰;吴明国;于彦春;赵艳;高振宇;颜美仙;钱前;黄大年. 水稻转基因整合模式中外源基因的遗传规律[J]. 作物学报, 2003, 29(01): 44-48.
[5] 苏书文; 高合明; 郭新林. 不同叶夹角玉米杂交种产量潜势的研究[J]. 作物学报, 1990, 16(04): 364-372.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!