欢迎访问作物学报,今天是

作物学报 ›› 2018, Vol. 44 ›› Issue (04): 522-532.doi: 10.3724/SP.J.1006.2018.00522

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

基于SSSL群体的玉米穗下节间长QTL分析

郭海平1(), 孙高阳1, 张晓祥2, 闫鹏帅1, 刘坤1, 谢惠玲1, 汤继华1, 丁冬1, 李卫华1,*()   

  1. 1河南农业大学农学院 / 省部共建小麦玉米作物学国家重点实验室, 河南郑州450002
    2四川农业大学玉米研究所, 四川成都 611130
  • 收稿日期:2017-06-14 接受日期:2017-11-21 出版日期:2018-04-12 网络出版日期:2017-12-01
  • 通讯作者: 李卫华
  • 作者简介:

    guohaiping885@126.com

  • 基金资助:
    本研究由国家自然科学基金项目(U1604231), 河南省重大科技专项(161100110500)和河南省科技攻关项目(152102110060)资助

QTL Analysis of Under-ear Internode Length Based on SSSL Population

Hai-Ping GUO1(), Gao-Yang SUN1, Xiao-Xiang ZHANG2, Peng-Shuai YAN1, Kun LIU1, Hui-Ling XIE1, Ji-Hua TANG1, Dong DING1, Wei-Hua LI1,*()   

  1. 1 College of Agronomy, Henan Agricultural University / Key Laboratory of Wheat and Maize Crops Science, Zhengzhou 450002, Henan, China
    2 Maize Research Institute of Sichuan Agricultural University, Chengdu 611130, Sichuan, China
  • Received:2017-06-14 Accepted:2017-11-21 Published:2018-04-12 Published online:2017-12-01
  • Contact: Wei-Hua LI
  • Supported by:
    This study was supported by the National Natural Science Foundation of China (U1604231), the Major Science and Technology Projects in Henan Province (161100110500), and Henan Science and Technology Project (152102110060).

摘要:

穗下节间长决定着玉米的穗位高和株高, 而株高和穗位高与产量、抗倒伏性等重要农艺性状密切相关。玉米穗下第7、第8、第9节间长对穗位高具有决定作用, 与其他农艺性状相比, 对穗下节间长的遗传基础了解甚少。因此, 研究玉米穗下节间长的遗传基础, 对玉米育种有重要意义。本研究以lx9801为受体亲本, 昌7-2为供体亲本通过连续回交和自交所构建的一套包含260份染色体单片段代换系的群体为研究对象, 通过两年两环境的表型鉴定, 并结合基因型数据对第7、第8、第9节间长和穗位高的QTL进行定位。共检测到18个第7节间长QTL, 23个第8节间长QTL和17个第9节间长QTL, 其中8个QTL是为第7、第8、第9节间长所共有。穗位高定位到的20个QTL中, 有12个(60%)与第7、第8、第9节间长QTL共定位。说明第7、第8、第9节间长与穗位高有着共同的遗传基础, 节间长也是穗位高的重要构成因子, 决定着玉米的株高和穗位高。

关键词: 玉米, 单片段代换系, 穗下节间长, 穗位高, 数量性状位点

Abstract:

The under-ear internode length determines maize plant height and ear height, which are two agronomic traits associated with yield and lodging resistance. The lengths of the 7th, 8th, and 9th internode play a decisive role in ear height. Compared with other agronomic traits, there is little knowledge for genetic basis of under-ear internode length. Thus, exploring the genetic basis of internode length plays an important role in maize breeding. In this study, a set of 260 chromosome segment substitution lines (CSSLs), using Chang 7-2 as the donor parent and lx9801 as recipient parent, was constructed and used to map QTLs for the 7th, 8th, and 9th internode length and ear height at two-environments in two years. In total, 18, 23, and 17 QTLs were detected for the 7th, 8th, and 9th internode length, respectively. Among them, eight QTLs were simultaneously detected for the 7th, 8th, and 9th internode length. For ear height, 20 QTLs were detected, 12 (60%) of these 20 QTLs were found to co-localize to the 7th, 8th, and 9th internode length. The results indicated that length of the 7th, 8th, and 9th internode and ear height have same genetic basis. Furthermore, length of the 7th, 8th, and 9th internode are important components of ear height and also determining the plant height and ear height in maize.

Key words: maize, single segment substitution lines (SSSL), under-ear internode length, ear height, quantitative trait loci (QTL)

表1

亲本及SSSL群体第7、第8、第9节间长及穗位高田间表现"

表2

两亲本间第7、第8、第9节间长及穗位高的t测验"

性状
Trait
2012 2013
浚县 Xunxian 长葛 Changge 浚县 Xunxian 长葛 Changge
第7节间长7th internode length 4.047** 3.036** 0.045* 0.874**
第8节间长8th internode length 0.626** 2.145** 2.443** 2.991**
第9节间长9th internode length 6.024** 8.374** 2.967** 6.889**
穗位高Ear height 1.171** 2.609* 2.369* 2.085**

表3

SSSL群体第7、第8、第9节间长与穗位高相关系数"

年份
Year
性状
Trait
浚县 Xunxian 长葛 Changge
第7节间长
7th IL
第8节间长
8th IL
第9节间长
9th IL
穗位高
EH
第7节间长
7th IL
第8节间长
8th IL
第9节间长
9th IL
穗位高
EH
2012 第7节间长7th IL 1 1
第8节间长8th IL 0.760** 1 0.633** 1
第9节间长9th IL 0.597** 0.635** 1 0.558** 0.538** 1
穗位高EH 0.432** 0.455** 0.439** 1 0.415** 0.443** 0.431** 1
2013 第7节间长7th IL 1 1
第8节间长8th IL 0.684** 1 0.645** 1
第9节间长9th IL 0.680** 0.677** 1 0.364** 0.482** 1
穗位高EH 0.398** 0.417** 0.403** 1 0.386** 0.412** 0.393** 1

表4

在SSSL群体中检测到第7、第8、第9节间长与穗位高QTLs"

[1] Hallauer A R, Russell W A, Lamkey K R.Corn breeding.Corn & Corn Improvement, 1988, 48: 463-564
[2] 张建华. 玉米DH群体株高、节间长、穗部性状和一般配合力的分析和QTL定位. 河北农业大学硕士学位论文, 河北保定, 2009
Zhang J H.Analysis of Plant Height, Internode Length, Panicle Traits and General Combining Ability of Maize DH Population and QTL Mapping. MS Thesis of Hebei Agricultural University, Baoding, Hebei,China, 2009 (in Chinese with English abstract)
[3] Sibov S T, De Souza Jr C L, Garcia A A F, Silva A R, Garcia A F, Mangolin C A, Benchimol L L, De Souza A P. Molecular mapping in tropical maize(Zea mays L.) using microsatellite markers.2. Quantitative trait loci (QTL) for grain yield, plant height, ear height and grain moisture. Hereditas, 2003, 139: 107-115
[4] Lu H, Romero-Severson J, Bernardo R.Genetic basis of heterosis explored by simple sequence repeat markers in a random-mated maize population.Theor Appl Genet, 2003, 107: 494-502
[5] 严建兵, 汤华, 黄益勤, 郑用琏, 李建生. 玉米和水稻重要性状QTL的比较研究. 遗传学报, 2004, 31: 1401-1407
Yan J B, Tang H, Huang Y Q, Zheng Y L, Li J S.A comparative study on QTLs for important traits of maize and rice.Acta Genet Sin, 2004, 31: 1401-1407 (in Chinese with English abstract)
[6] 吴建伟, 刘成, 石云素, 宋燕春, 张桂寅, 马峙英, 王天宇, 黎裕. 对不同水分条件下玉米株高和穗位高的QTL分析. 植物遗传资源学报, 2005, 6: 266-271
Wu J W, Liu C, Shi Y S, Song C Y, Zhang G Y, Ma Z Y, Wang T Y, Li Y.QTL analysis of plant height and ear height in maize under different water regimes.J Plant Genet Resour, 2005, 6: 266-271 (in Chinese with English abstract)
[7] 兰进好, 褚栋. 玉米株高和穗位高遗传基础的QTL剖析. 遗传学报, 2005, 25: 925-934
Lan J H, Chu D.Study on the genetic basis of plant height and ear height in maize by QTL dissection.Acta Genet Sin, 2005, 25: 925-934 (in Chinese with English abstract)
[8] 汤华, 严建兵, 黄益勤, 郑用琏, 李建生. 玉米5个农艺性状的QTL定位. 遗传学报, 2005, 32: 203-309
Tang H, Yan J B, Huang Y Q, Zheng Y L, Li J S.QTL mapping of five agronomic traits in maize.Acta Genet Sin, 2005, 32: 203-309 (in Chinese with English abstract)
[9] 杨俊品, 荣廷昭, 向道权, 唐海涛, 黄烈健, 戴景瑞. 玉米数量性状基因定位. 作物学报, 2005, 31: 188-196
Yang J P, Rong T Z, Xiang D Q, Tang H T, Huang L J, Dai J R.QTL mapping of quantitative traits in maize. Acta Agron Sin, 2005, 31: 188-196 (in Chinese with English abstract)
[10] Lima M, Souza A, Bento D, Carlini-Garcia L.Mapping QTL for grain yield and plant traits in a tropical maize population.Mol Breed, 2006, 17: 227-239
[11] Teng F, Zhai L, Liu R, Bai W, Wang L.ZmGA3ox2, a candidate gene for a major QTL, qPH3.1, for plant height in maize. Plant J, 2013, 73: 405-416
[12] Tang Z, Yang Z, Hu Z, Zhang D, Lu X.Cytonuclear epistatic quantitative trait locus mapping for plant height and ear height in maize.Mol Breed, 2013, 31: 1-14
[13] Cai H, Chu Q, Gu R, Yuan L, Liu J.Identification of QTLs for plant height, ear height and grain yield in maize (Zea mays L.) in response to nitrogen and phosphorus supply. Mol Breed, 2012, 131: 502-510
[14] Li Z Q, Zhang H M, Wu X P, Sun Y, Liu X H.Quantitative trait locus analysis for ear height in maize based on a recombinant inbred line population.Genet Mol Res, 2014, 13: 450
[15] Meghiji M R, Dudley J W, Lambert R J, Sprague G F.Inbreeding depression, inbred and hybrid grain yields, and other traits of maize genotypes representing three eras.Crop Sci, 1984, 24: 545-549
[16] 张君, 库丽霞, 张伟强, 杨爽, 刘海英, 赵瑞芳, 陈彦惠. 玉米穗上节间距的QTL定位. 玉米科学, 2010, 18(04): 45-48
Zhang J, Ku L X, Zhang W Q, Yang S, Liu H Y, Zhao R F, Chen Y H.QTL mapping of internodes length above upmost ear in maize.J Maize Sci, 2010, 18(04): 45-48 (in Chinese with English abstract)
[17] 袁亮, 丁冬, 李卫华, 谢惠玲, 汤继华, 付志远. 玉米优良自交系单片段代换系的构建. 玉米科学, 2012, 2(2): 52-55
Yuan L, Ding D, Li W H, Fu Z Y.Constroction of Single Segment Substitution Lines (SSSLs) of the elite inbred lines in maize. J Maize Sci, 2012, 2(2): 52-55 (in Chinese with English abstract)
[18] Eshed Y, Zamir D.Less-than-additive epistatic interactions of quantitative trait loci in tomato.Genetics, 1996, 143: 1807-1817
[19] 刘胜群, 刘铁东, 宋凤斌, 王洋, 齐晓宁, 朱先灿. 行向和种植方式对玉米穗下节间与茎倒伏相关性状的影响. 土壤与作物, 2016, 5(3): 159-165
Liu S Q, Liu T D, Song F B, Wang Y, Qi X N, Zhu X C.Effects of row orientation and planting pattern on traits associated with stem lodging in maize.Soils & Crops, 2016, 5(3): 159-165 (in Chinese with English abstract)
[20] 季洪强, 常纪苹, 付志远, 丁冬, 谭晓军, 汤欣欣, 刘宗华. 玉米植株抗倒伏性状的遗传分析. 河南农业大学学报, 2011, 45: 263-266
Ji H Q, Chang J P, Fu Z Y, Ding D, Tan X J, Tang X X, Liu Z H.Inheritance of plant traits on lodging resistance in maize.J Henan Agric Univ, 2011, 45: 263-266 (in Chinese with English abstract)
[21] Ku L X, Zhang L K, Tian Z Q, Guo S L, Su H H, Ren Z Z, Wang Z Y, Li G H, Wang X B, Zhu Y G, Zhou J L, Chen Y H.Dissection of the genetic architecture underlying the plant density response by mapping plant height-related traits in maize ( Zea mays L.).Mol Genet Genomics, 2015, 290: 1223-1233
[22] 季兰, 杨仁崔. 水稻茎伸长生长与植物激素. 植物学报, 2002, 19: 109-115
Ji L, Yang R C.Rice stem elongation and plant hormones.Chin Bull Bot, 2002, 19: 109-115 (in Chinese with English abstract)
[23] 杨晓军, 路明, 张世煌, 周芳, 曲延英, 谢传晓. 玉米株高和穗位高的QTL定位. 遗传, 2008, 30: 1477-1486
Yang X J, Lu M, Zhang S H, Zhou F, Qu Y Y, Xie C X.QTL mapping of plant height and ear position in maize (Zea mays L.).Hereditas(Beijing), 2008, 30: 1477-1486 (in Chinese with English abstract)
[24] 徐德林, 蔡一林, 吕学高, 代国丽, 王国强, 王久光,孙海艳, 覃鸿妮. 玉米株型性状的QTL定位. 玉米科学, 2009, 17(6): 27-31
Xü D L, Cai Y L, Lyu X G, Dai G L, Wang G Q, Wang J G, Sun H Y, Qin H N.QTL mapping for plant-tape traits in maize.J Maize Sci, 2009, 17(6): 27-31 (in Chinese with English abstract)
[25] 吴建伟, 刘成, 石云素, 宋燕春, 张桂寅, 马峙英, 王天宇, 黎裕. 不同水分条件下玉米株高和穗位高的QTL分析. 植物遗传资源学报, 2005, 6: 266-271
Wu J W, Liu C, Shi Y S, Song C Y, Zhang G Y, Ma Z Y, Wang T Y, Li Y.QTL analysis of plant height and ear height in maize under different water regimes.J Plant Genet Resour, 2005, 6: 266-271 (in Chinese with English abstract)
[26] 李慧敏, 李卫华, 郭海平, 刘坤, 张向歌, 张晓祥, 谢惠玲, 汤继华, 丁冬. 玉米穗下节间长的杂种优势位点解析. 中国农业科学, 2017, 50: 978-989
Li H M, Li W H, Guo H P, Liu K, Zhang X G, Zhang X X, Xie H L, Tang J H, Ding D.Heterosis analysis of internode length under ear in maize.Sci Agric Sin, 2017, 50: 978-989 (in Chinese with English abstract)
[27] Guo X, Guo Y, Ma J, Wang F, Sun M Z, Gui L J, Zhou J J, Song X L, Sun X Z, Zhang T Z.Mapping heterotic loci for yield and agronomic traits using chromosome segment introgression lines in cotton.J Integr Plant Biol, 2013, 55: 759-774
[28] 马西青. 玉米株高杂种优势遗传基础剖析. 中国农业大学硕士学位论文, 北京, 2005
Ma X Q.Dissection of Genetic Basis of Plant Height Heterosis in Maize. MS Thesis of China Agricultural University, Beijing,China, 2005 (in Chinese with English abstract)
[29] 马西青, 汤继华, 滕文涛, 严建兵, 吴为人, 戴景瑞, 李建生.利用“永久F2”群体定位玉米株高的 QTL与杂种优势位点. 2006, 51: 2864-2869
Tang J H, Ma X Q, Teng W T, Yan J B, Wu W R, Dai J R, Li J S.Detection of quantitative trait loci and heterosis for plant height in maize in “immortalized F2” (IF2) population.Chin Sci Bull, 2006, 51: 2864-2869 (in Chinese without English abstract)
[30] 华金平. 汕优63 “永久F2” 群体构建及其杂种优势的遗传研究. 华中农业大学博士学位论文, 湖北武汉, 2001
Hua J P.Genetic Dissection on the Basis of Heterosis Using an “Immortalized F2” Population. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei,China, 2001 (in Chinese with English abstract)
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[7] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[8] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[9] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[10] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[11] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[12] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
[13] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[14] 张倩, 韩本高, 张博, 盛开, 李岚涛, 王宜伦. 控失尿素减施及不同配比对夏玉米产量及氮肥效率的影响[J]. 作物学报, 2022, 48(1): 180-192.
[15] 苏达, 颜晓军, 蔡远扬, 梁恬, 吴良泉, MUHAMMAD AtifMuneer, 叶德练. 磷肥对甜玉米籽粒植酸和锌有效性的影响[J]. 作物学报, 2022, 48(1): 203-214.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!