欢迎访问作物学报,今天是

作物学报 ›› 2018, Vol. 44 ›› Issue (03): 343-356.doi: 10.3724/SP.J.1006.2018.00343

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

玉米油菜素甾醇生物合成关键酶基因ZmCYP90B1的克隆及其对逆境胁迫的响应

段方猛1(), 罗秋兰2, 鲁雪莉3, 齐娜伟1, 刘宪舜1, 宋雯雯1,*()   

  1. 1青岛农业大学植物医学学院, 山东青岛266109
    2深圳市海洋生物资源与生态环境重点实验室 / 深圳市海洋藻类开发与应用工程实验室 / 深圳大学生命科学学院, 广东深圳 518060
    3中国农业科学院烟草研究所, 山东青岛266101
  • 收稿日期:2017-07-05 接受日期:2017-11-21 出版日期:2018-03-12 网络出版日期:2017-12-18
  • 通讯作者: 宋雯雯
  • 作者简介:

    fmduan@hotmail.com

  • 基金资助:
    本研究由青岛市应用基础研究计划项目(16-5-1-54-jch), 山东省自然科学基金项目(ZR2013CQ028), 深圳市科技计划项目(JCYJ2015 0324141711583)和青岛农业大学博士基金项目(663/1111316)资助

Cloning of the Key Gene ZmCYP90B1 in Brassinosteroids Biosynthesis from Zea mays and Its Response to Adversity Stresses

Fang-Meng DUAN1(), Qiu-Lan LUO2, Xue-Li LU3, Na-Wei QI1, Xian-Shun LIU1, Wen-Wen SONG1,*()   

  1. 1 College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, Shandong, China
    2 Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science / Shenzhen Engineering Laboratory of Marine Algal Biotechnology / College of Life Science, Shenzhen University, Shenzhen 518060, Guangdong, China
    3 Tobacco Research Institute of Chinese Academy, Agricultural Sciences, Qingdao 266101, Shandong, China
  • Received:2017-07-05 Accepted:2017-11-21 Published:2018-03-12 Published online:2017-12-18
  • Contact: Wen-Wen SONG
  • Supported by:
    This study was supported by Qingdao Applied Basic Research Project (16-5-1-54-jch), Shandong Province Natural Science Foundation (ZR2013CQ028), Shenzhen Grant Plan for Science & Technology (JCYJ20150324141711583), and the Doctor Program of Higher Education (663/1111316).

摘要:

油菜素甾醇作为一类重要植物激素, 在植物生长发育和抵御逆境胁迫等过程中发挥重要作用。CYP90B1基因编码酶是其合成途径中关键限速酶。本研究针对迄今有关玉米CYP90B1基因应答逆境胁迫特征尚未见报道现状, 采用RT-PCR结合RACE技术, 从玉米中克隆了油菜素甾醇生物合成关键基因ZmCYP90B1 (GenBank登录号KY242373)。ZmCYP90B1全长2058 bp, 开放阅读框为1518 bp, 编码506个氨基酸。ZmCYP90B1蛋白预测分子量为57.66 kD, 等电点为9.54, 含有1个跨膜结构域及1个p450保守结构域。序列比对表明, ZmCYP90B1与其他物种CYP90B1蛋白高度相似, 但在单双子叶植物中进化上具有明显差异。实时荧光定量PCR结果表明, 非生物胁迫(干旱、高盐、低温和脱落酸)、虫害(甜菜夜蛾取食)和茉莉酸甲酯均诱导ZmCYP90B1表达, 表明该基因响应多种非生物胁迫, 参与植物对虫害和茉莉酸甲酯的响应。进一步构建过量表达ZmCYP90B1基因的烟草株系并检测表明该烟草株系抗旱性增强, 叶片失水率下降, SPAD值增大。此外, 干旱胁迫下转基因烟草超氧化物歧化酶(SOD)、过氧化氢酶(CAT)和过氧化物酶(POD)的活性以及游离脯氨酸(Pro)的积累量均显著高于野生型, 丙二醛(MDA)和脱落酸(ABA)含量明显低于野生型。通过检测下游胁迫响应基因表达, 表明ZmCYP90B1提高植物抗旱性可能不依赖ABA途径, 而与其对抗氧化相关途径相关基因的转录调控有关。

关键词: 油菜素甾醇, ZmCYP90B1基因, 实时荧光定量PCR, 逆境胁迫

Abstract:

Brassinosteroids (BRs) as an important phytohormone, play essential roles in plant growth, development and responses to adversity stresses. The key enzyme encoded by CYP90B1 is involved in the BRs biosynthesis. However, the characteristic of CYP90B1 gene response to stress has not been reported in maize. In this study, we cloned ZmCYP90B1 gene from Zea mays, GenBank accession number KY242373, via RT-PCR in combination of RACE technique. The full-length sequence of this gene is 2058 bp and the the complete open reading frame is 1518 bp, encoding 506 amino acid peptides. The predicted protein has the molecular weight of 57.66 kD and isoelectric point of 9.54, containing one transmembrane domain and one conserved domain of p450. Multiple sequences alignment analysis indicated the predicted protein shared high similarities with CYP90B1 from other plant species. The phylogenetic tree revealed a notable difference in the evolution of CYP90B1 between dicotyledons and monocotyledons. The qRT-PCR result showed that the expression of ZmCYP90B1 was induced by drought, high salt, low temperature, ABA, Spodoptera exigua attack, and methyl jasmonate (MeJA), suggesting that ZmCYP90B1 was involved in various abiotic stresses, insect resistance and response to MeJA. Overexpressing ZmCYP90B1 in tobacco seedlings could enhance drought resistance with less water loss rate and higher SPAD value in the transgenic lines. In addition, the activities of SOD, CAT, and POD and the content of proline increased significantly in all transgenic tobacco lines than in the wild type; both MDA and ABA contents were obviously lower in the transgenic lines than in the wild type. Through expression analysis of the down-stream stress-responsive genes, we demonstrated that drought tolerance enhancement by overexpressing ZmCYP90B1 might be involved in ABA-independent pathway and related to transcriptional regulation of antioxidant- related genes.

Key words: brassionsteroids, ZmCYP90B1 gene, real-time quantitative PCR, adversity stresses

表1

克隆基因所用引物"

引物
Primer
序列
Sequence (5°-3°)
DP-F GGCGGCATCCTGGGCAAGT
DP-R CCCGCGAAGAGCAGGCTCA
5°-GSP TGGACCACTTGCCCAGGATGCC
3°-GSP GAAGATGGAGGACAGGCTTGAGA
FP-F CTCTCTCCAACCCATCCGTC
FP-R GGGAGGTAATGTTGGGGTTTG

表2

荧光定量PCR所需引物信息"

基因名称
Gene name
GenBank登录号
GenBank number
引物序列
Primer sequence (5°-3°)
产物长度
Product size
(bp)
退火温度
Annealing
temperature (°C)
NtAPX NM_001324874.1 F: CAAATGTAAGAGGAAACTCAGAGGA
R: AGCAACAACTCCAGCTAATTGATAG
262 60
NtCAT NM_001326196.1 F: AGGTACCGCTCATTCACACC
R: AAGCAAGCTTTTGACCCAGA
151 60
NtSOD AF443178.1 F: CCGTCGCCAAATTGCATAG
R: CGATAGCCCAACCAAGAGAAC
238 62
NtNCED1 NM_001326185.1 F: CTATTTCCACTTCAAAACCAACCAC
R: GGCACTTTCCACGGCATCT
131 62
NtERD10C AB049337.1 F: ACGTGGAGGCTACAGATCGTGGTTT
R: TCTCCACTGGTACAGCCGTGTCCTCAC
366 70
NtLEA5 AF053076.1 F: GAACCCAACAAGAGCGAGAGA
R: CGACAGGAAGCATTGACGAG
350 62
Tob103 U60495.1 F: CAAGGAAATCACCGCTTTGG
R: AAGGGATGCGAGGATGGA
106 60
ZmCYP90B1 KY242373 F: GGCTGTGGTCTCGTGTTTTATG
R: ACCATCCTCCCCTTTGCTCT
104 62
Actin NM_00115473.1 F: CTGAGGTTCTATTCCAGCCATCC
R: CCACCACTGAGGACAACATTACC
133 62

图1

ZmCYP90B1基因扩增结果 A: ZmCYP90B1部分片段扩增结果; B: ZmCYP90B1 5´-RACE扩增结果; C: ZmCYP90B1 3´-RACE扩增结果; D: ZmCYP90B1的ORF区扩增结果; E: 重组载体双酶切鉴定结果; M1: DL2000 marker; M2: 15000 marker。"

图2

ZmCYP90B1基因编码产物的氨基酸序列下画线部分为跨膜结构域氨基酸位点: 12~31; 灰色阴影部分为p450保守结构域位点: 2~491。"

图3

ZmCYP90B1预测的氨基酸亲水性和疏水性分析"

图4

8种植物CYP90B1蛋白的多序列比对"

图5

ZmCYP90B1与其他植物CYP90B1蛋白的系统发生分析"

表3

不同植物来源的CYP90B1氨基酸理化性质的比较"

类别
Category
物种
Species
氨基酸残基数
Residues
分子量
Molecular weight (kD)
等电点pI 负电荷氨基酸比例
Negatively charged residues (%)
正电荷氨基酸比例
Positively charged residues (%)
不稳定
系数
Instability index
总平均亲水性
Hydropathicity
单子叶植物
Monocotyledons
Zea mays 506 57.66 9.54 10.47 13.44 46.74 -0.171
Dichanthelium oligosanthes 507 57.87 9.25 10.65 12.62 48.82 -0.161
Oryza brachyantha 504 57.12 9.27 10.52 12.70 52.69 -0.138
Aegilops tauschii 501 57.01 8.11 11.58 11.98 52.53 -0.133
Triticum urartu 525 59.75 8.09 11.62 12.00 51.61 -0.162
双子叶植物
Dicotyledons
Arabidopsis thaliana 513 58.87 6.62 12.87 12.28 49.50 -0.301
Nicotiana attenuata 491 55.78 8.89 9.98 11.41 44.36 -0.166
Brassica napus 495 56.71 8.17 11.72 12.12 48.90 -0.213
Glycine soja 492 55.77 8.85 10.16 11.38 43.87 -0.128
Theobroma cacao 496 56.75 8.64 10.89 11.90 46.51 -0.219
Gossypium hirsutum 485 55.42 8.94 10.52 12.16 44.88 -0.163

图6

ZmCYP90B1基因在不同组织中的相对表达水平图柱上不同小写字母表示在0.05水平上差异显著。"

图7

ZmCYP90B1在非生物胁迫下的表达模式图柱上不同小写字母表示在0.05水平上差异显著。"

图8

ZmCYP90B1在甜菜夜蛾取食和茉莉酸甲酯下的表达模式图柱上不同小写字母表示在0.05水平上差异显著。"

图9

转基因烟草植株的分子鉴定 M: marker; P: 阳性质粒; N: 空载体; W: 双蒸水; WT: 野生型; 1~10: 转基因株系。"

图10

野生型和转基因烟草植株在干旱胁迫下的功能鉴定 A: 干旱胁迫前野生型和转基因株系(L4和L9)的表型; B: 20% PEG处理10 h后野生型和转基因株系(L4和L9)的表型; C: 20% PEG处理10 h后野生型和转基因株系(L4和L9)的叶片失水率; D: 20% PEG处理前后野生型和转基因株系(L4和L9)的SPAD值。图柱上不同小写字母表示在0.05水平上差异显著。"

图11

干旱胁迫前后野生型和转基因烟草的生理指标图柱上不同小写字母表示在0.05水平上差异显著。"

图12

干旱胁迫前后胁迫相关基因的表达图柱上不同小写字母表示在0.05水平上差异显著。"

[1] Arteca J M, Arteca R N.Brassinosteroid-induced exaggerated growth in hydroponically grown Arabidopsis plants. Physiol Plant, 2001, 112: 104-112
[2] Hu Y X, Bao F, Li J Y.Promotive effect of brassinosteroids on cell division involves a distinct CycD3-induction pathway in Arabidopsis. Plant J, 2000, 24: 693-701
[3] Yu J Q, Huang L F, Hu W H, Zhou Y H, Mao W H, Nogués S.A role for brassinosteroids in the regulation of photosynthesis in Cucumis sativus. J Exp Bot, 2004, 55: 1135-1143
[4] Divi U K, Krishna P.Brassinosteroid: a biotechnological target for enhancing crop yield and stress tolerance.New Biotechnol, 2009, 26: 131-136
[5] Kurepin L V, Qaderi M M, Back T G, Reid D M, Pharis R P.A rapid effect of applied brassinolide on abscisic acid concentrations in Brassica napus leaf tissue subjected to short-term heat stress. Plant Growth Regul, 2008, 55: 165-167
[6] El-Mashad A A A, Mohamed H I. Brassinolide alleviates salt stress and increases antioxidant activity of cowpea plants (Vigna sinensis). Protoplasma, 2012, 249: 625-635
[7] Nakashitaetal H, Yasuda M, Nitta T, Asami T, Fujioka S, Arai Y, Sekimata K, Takatsuto S, Yamaguchi I, Yoshida S.Brassinosteroid function in a broad range of disease resistance in tobacco and rice.Plant J, 2003, 33: 887-898
[8] 李艳楠. 油菜素内酯处理对番茄根结线虫的防治效果研究. 河南科技大学硕士学位论文, 河南洛阳, 2012
Li Y N.The Research of Control Effects of Brassinosteroids Treatment on Tomato Root-knot Nematode Caused by Meloidogyne Incognita. MS Thesis of Henan University of Science and Technology, Luoyang,China, 2012 (in Chinese with English abstract)
[9] 张丹丹. 油菜素内酯提高黄瓜对根结线虫抗性的机制研究及田间效应. 浙江大学硕士学位论文, 浙江杭州, 2012
Zhang D D.Field Effect and Molecular Mechanisms of Brassinosteroids-increased the Resistance to Root-knot Nematode in Cucumis sativus. MS Thesis of Zhejiang University, Hangzhou,China, 2012 (in Chinese with English abstract)
[10] 孙超, 黎家. 油菜素甾醇类激素的生物合成、代谢及信号转导. 植物生理学报, 2017, 53: 291-307
Sun C, Li J.Biosynthesis, catabolism, and signal transduction of brassinosteroids.J Plant Physiol, 2017, 53: 291-307 (in Chinese with English abstract)
[11] Sahni S, Prasad B D, Liu Q, Grbic V, Sharpe A, Singh S P, Krishnaa P.Overexpression of the brassinosteroid biosynthetic gene DWF4 in Brassica napus simultaneously increases seed yield and stress tolerance. Sci Rep, 2016, 6: 28298
[12] Shimada Y, Fujioka S, Miyauchi N, Kushiro M, Takatsuto S, Nomura T, Yokota T, Kamiya Y, Bishop G J, Yoshida S.Brassinosteroid-6-oxidases from Arabidopsis and tomato catalyze multiple C-6 oxidations in brassinosteroid biosynthesis. Plant Physiol, 2001, 126: 770-779
[13] 申强. 过量表达ZmDWF4基因改良玉米产量性状的研究. 山东农业大学硕士学位论文,山东泰安, 2011
Shen Q.Overexpression of ZmDWF4 Improves Yield Traits in Maize. MS Thesis of Shandong Agricultural University, Tai’an,China, 2011 (in Chinese with English abstract)
[14] Choe S, Fujioka S, Noguchi T, Takatsuto S, Yoshida S, Feldmann K A.Overexpression of DWARF4 in the brassinosteroid biosynthetic pathway results in increased vegetative growth and seed yield in Arabidopsis. Plant J, 2001, 26: 573-582
[15] 武海军, 司建萍, 王新宇. 胡杨DWF4基因的克隆及其在拟南芥中的异源表达和功能分析. 见: 中国细胞生物学学会主编. 中国细胞生物学学会2013年全国学术大会论文摘要集. 湖北武汉: 2013. p 247
Wu H J, Si J P, Wang X Y.Cloning of the DWF4 gene from Populus euphratica, its heterologous expression and functional analysis in Arabidopsis. In: Chinese Academy of Cell Biology, eds. Proceedings of Academic Conference of Chinese Academy of Cell Biology in 2013. Wuhan, China, 2013. p 247 (in Chinese)
[16] Wu C Y, Trieu A, Radhakrishnan P, Kwok S F, Harris S, Zhang K, Wang J L, Wan J M, Zhai H Q, Takatsuto S, Matsumoto S, Fujioka S, Feldmann K A, Pennella R I.Brassinosteroids regulate grain filling in rice.Plant Cell, 2008, 20: 2130-2145
[17] Maharjan P M, Schulz B, Choe S.BIN2/DWF12 antagonistically transduces brassinosteroid and auxin signals in the roots of Arabidopsis. J Plant Physiol, 2011, 54: 126-134
[18] 徐涛, 王建斌, 洛世明. 玉米oxylipins信号途径关键基因的克隆及其在虫害诱导防御中的作用. 科学通报, 2005, 50: 2217-2225
Xu T, Wang J B, Luo S M.Cloning of key genes involved in oxylipins signaling pathway and their roles in insect induced defense in maize.Chin Sci Bull, 2005, 50: 2217-2225 (in Chinese)
[19] Xu F, Zhao Y X, Wang F, Guo D L, Wei Y L, Huang X Z.Cloning of a vacuolar H+-pryophosphatase gene from emphemeral plant olimarabidopsispumila whose overexpression improve salt tolerance in tobacco.Afr J Biotechnol, 2013, 12: 6817-6825
[20] Horsch R, Fry J, Hoffmann N, Eichholtz D, Rogers S A, Fraley R.A simple and general method for transferring genes into plants.Science, 1985, 227: 1229-1231
[21] Du H, Wang N, Cui F, Li X, Xiao J, Xiong L.Characterization of the beta-carotene hydroxylase gene DSM2 conferring drought and oxidative stress resistance by increasing xanthophylls and abscisic acid synthesis in rice. Plant Physiol, 2010, 154: 1304-1318
[22] 苍晶, 赵会杰. 植物生理学实验教程. 北京: 高等教育出版社, 2013. pp 151-153
Cang J, Zhao H J.Experimental Guide of Plant Physiology. Beijing: Higher Education Press, 2013. pp 151-153 (in Chinese)
[23] Liu T, Zhang J, Wang M, Wang Z, Li G, Qu L, Wang G.Expression and functional analysis of ZmDWF4, an ortholog of Arabidopsis DWF4 from maize(Zea mays L.). Plant Cell Rep, 2007, 26: 2091-2099
[24] Divi U K, Krishna P.Overexpression of the brassinosteroid biosynthetic gene AtDWF4 in Arabidopsis seeds overcomes abscisic acid-induced inhibition of germination and increases cold tolerance in transgenic seedlings. Plant Growth Regul, 2010, 29: 385-393
[25] Wang Y, Chen Y F, Chang X H, Wang X, Li N, Gao Y F.Heterologous expression of Populus euphratica DWF4 (PeDWF4) enhanced tolerance to abiotic stress in tobacco plants. Genomics Appl Biol, 2017, Heterologous expression of Populus euphratica DWF4 (PeDWF4) enhanced tolerance to abiotic stress in tobacco plants. Genomics Appl Biol, 2017, (in Chinese with English abstract)
[26] Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R.Reactive oxygen species homeostasis and signaling during drought and salinity stresses.Plant Cell Environ, 2010, 33: 453-457
[27] Kessler A, Baldwin I T.Plant response to insect herbivory: The emerging molecular analysis.Annu Rev Plant Biol, 2002, 53: 299-328
[28] Ryan C A.The systemin signaling pathway: differential activation of plant defensive genes.Biochim Biophy Acta, 2000, 1477: 112-121
[29] Li L, Li C, Lee G I, Howe G A.Distinct roles for jasmonate synthesis and action in the systemic wound response of tomato.Proc Natl Acad Sci USA, 2002, 99: 6416-6421
[1] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[2] 李增强, 丁鑫超, 卢海, 胡亚丽, 岳娇, 黄震, 莫良玉, 陈立, 陈涛, 陈鹏. 铅胁迫下红麻生理特性及DNA甲基化分析[J]. 作物学报, 2021, 47(6): 1031-1042.
[3] 黄兴, 习金根, 陈涛, 覃旭, 谭施北, 陈河龙, 易克贤. 剑麻苯丙氨酸裂解酶基因的鉴定及表达分析[J]. 作物学报, 2021, 47(6): 1082-1089.
[4] 李文兰, 李文才, 孙琦, 于彦丽, 赵勐, 鲁守平, 李艳娇, 孟昭东. 玉米生长素响应因子家族基因的表达模式分析[J]. 作物学报, 2021, 47(6): 1138-1148.
[5] 姚佳瑜, 于吉祥, 王志琴, 刘立军, 周娟, 张伟杨, 杨建昌. 水稻内源油菜素甾醇对施氮量的响应及其对颖花退化的调控作用[J]. 作物学报, 2021, 47(5): 894-903.
[6] 卢海, 李增强, 唐美琼, 罗登杰, 曹珊, 岳娇, 胡亚丽, 黄震, 陈涛, 陈鹏. 红麻DNA甲基化响应镉胁迫及甲基化差异基因的表达分析[J]. 作物学报, 2021, 47(12): 2324-2334.
[7] 王丹丹, 柳洪鹃, 王红霞, 张鹏, 史春余. 甘薯蔗糖转运蛋白基因IbSUT3的克隆及功能分析[J]. 作物学报, 2020, 46(7): 1120-1127.
[8] 郑清雷,余陈静,姚坤存,黄宁,阙友雄,凌辉,许莉萍. 甘蔗Rieske Fe/S蛋白前体基因ScPetC的克隆及表达分析[J]. 作物学报, 2020, 46(6): 844-857.
[9] 梁思维,姜昊梁,翟立红,万小荣,李小琴,蒋锋,孙伟. 玉米HD-ZIP I亚家族基因鉴定及表达分析[J]. 作物学报, 2020, 46(4): 532-543.
[10] 高世武,傅志伟,陈云,林兆里,许莉萍,郭晋隆. 甘蔗热带种金属硫蛋白家族基因的克隆及响应重金属胁迫的表达分析[J]. 作物学报, 2020, 46(02): 166-178.
[11] 马金姣,兰金苹,张彤,陈悦,郭亚璐,刘玉晴,燕高伟,魏健,窦世娟,杨明,李莉云,刘国振. 过表达OsMPK17激酶蛋白质增强了水稻的耐旱性[J]. 作物学报, 2020, 46(01): 20-30.
[12] 孙婷婷,王文举,娄文月,刘峰,张旭,王玲,陈玉凤,阙友雄,许莉萍,李大妹,苏亚春. 甘蔗脂氧合酶基因ScLOX1的克隆与表达分析[J]. 作物学报, 2019, 45(7): 1002-1016.
[13] 王作敏,刘瑾,孙士超,张新宇,薛飞,李艳军,孙杰. 彩色棉多药和有毒化合物输出蛋白MATE家族基因的鉴定及表达分析[J]. 作物学报, 2018, 44(9): 1380-1392.
[14] 王玲,刘峰,戴明剑,孙婷婷,苏炜华,王春风,张旭,毛花英,苏亚春,阙友雄. 甘蔗ScWRKY4基因的克隆与表达特性分析[J]. 作物学报, 2018, 44(9): 1367-1379.
[15] 吕有军,杨卫军,赵兰杰,姚金波,陈伟,李燕,张永山. 陆地棉SRO基因家族的鉴定及表达分析[J]. 作物学报, 2017, 43(10): 1468-1479.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!