欢迎访问作物学报,今天是

作物学报 ›› 2018, Vol. 44 ›› Issue (03): 423-430.doi: 10.3724/SP.J.1006.2018.00423

• 耕作栽培·生理生化 • 上一篇    下一篇

叶面喷施硒对紫甘薯硒吸收、分配及品质的影响

侯松(), 田侠, 刘庆*()   

  1. 青岛农业大学资源与环境学院, 山东青岛 266109
  • 收稿日期:2017-07-27 接受日期:2018-11-21 出版日期:2018-03-12 网络出版日期:2017-12-18
  • 通讯作者: 刘庆
  • 作者简介:

    第一作者联系方式:E-mail: hhousong@163.com

  • 基金资助:
    本研究由国家现代农业产业技术体系建设专项资金项目(CARS-10-B10), 山东省重点研发计划项目(2016GNC110020)和国家公益性行业科研专项项目(201303106)资助

Effects of Foliage Spray of Se on Absorption Characteristics of Se and Quality of Purple Sweet Potato

Song HOU(), Xia TIAN, Qing LIU*()   

  1. College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, Shandong, China
  • Received:2017-07-27 Accepted:2018-11-21 Published:2018-03-12 Published online:2017-12-18
  • Contact: Qing LIU
  • Supported by:
    This study was supported by China Agriculture Research System (CARS-10-B10), the Key Project of the Shandong Research and Development Program (2016GNC110020), and Special Projects for Public Welfare Research (201303106).

摘要:

为研究叶面施硒条件下紫甘薯对硒的吸收利用特征及其品质效应, 于2015年和2016年分别布置紫甘薯叶面施硒田间试验, 设纯硒施用量0、30和60 g hm-2 3个水平, 研究了叶面喷施外源硒对紫甘薯块根产量、不同器官硒含量、块根硒累积量与硒利用率的影响, 并分析了块根中粗蛋白、氨基酸和矿质元素含量随施硒量的变化。结果表明, 施硒对紫甘薯块根产量的影响不显著, 但可提高块根中的总硒含量、有机硒含量和硒累积量, 60 g hm-2施硒量下, 块根中的硒含量可达311.3 µg kg-1(干重), 是对照处理的8.54倍; 随施硒量增加, 块根中硒含量和硒累积量显著增加, 块根对硒的利用率下降, 但施硒对块根中有机硒占总硒的比例无显著影响; 紫甘薯块根中的粗蛋白含量随施硒量增加而显著提高, 两个施硒量下分别比对照增加11.67%和29.71%; 60 g hm-2施硒量下, 块根中除苏氨酸外的其他7种人体必需氨基酸含量显著增加, 天冬氨酸、丝氨酸、谷氨酸等6种人体非必需氨基酸含量显著增加, 胱氨酸含量降低; 施硒还可提高紫甘薯块根中K、Na、Mg、Fe、Cu等元素的含量, 使块根中Ca、Mn等元素含量降低, 两个施硒量对块根中的Zn元素含量均未产生显著影响。本研究结果对富硒紫甘薯生产具有指导意义。

关键词: 紫甘薯, 硒, 吸收与累积, 蛋白质, 氨基酸, 矿质元素, 叶面喷施

Abstract:

In order to clarify the absorption characteristics of selenium (Se), root yield, Se utilization, content of amino acids and mineral elements in purple sweet potato, a field experiment of foliage spraying with three treatments of 0, 30, and 60 g ha-1 pure Se application were carried out in 2015 and 2016 respectively. The root yield of purple sweet potato received no significantly effect from Se foliage spray, the Se content, organic Se content and the Se accumulation in root were improved, with a root Se content of 311.3 µg kg-1 (DW), 8.54 times as high as that of the control under 60 g ha-1 Se application. Se content and accumulation amount in root increased and the utilization rate of Se decreased significantly with the increase of Se application, while the content of organic Se in root received no significantly effect from Se foliage spray. With increasing Se application, the content of crude protein in root of purple sweet potato was significantly increased, which was 11.67% and 29.71% higher than that of CK under Se treatment of 30 g ha-1 and 60 g ha-1 respectively. Under 60 g ha-1 Se application treatment, seven essential amino acids for human body contained in roots increased significantly except Threonine, and the other six nonessential amino acids in roots also increased significantly such as Asparagine, Serine, Glutamic acid, but the content of Cysteine decreased. Se application treatments increased the contents of K, Na, Mg, Fe, Cu and decreased the contents of Ca, Mn in roots of purple sweet potato, but had no effect on content of Zn. The results of this study are of significance guiding production of Se-enriched purple sweet potato.

Key words: purple sweet potato, selenium, absorption and accumulation, protein, amino acid, mineral elements, foliar spraying

图1

不同施硒量下紫甘薯块根产量同一年份不同处理间标以不同字母的值差异达显著水平(P < 0.05)。"

表1

不同施硒量下紫甘薯各器官中的总硒含量"

年度
Year
处理
Treatment
各器官含硒量 Se content in organs
块根 Root tuber 茎 Stem 叶 Leaf 叶柄 Petiole
2015 CK 39.9±8.2 c 54.2±7.4 c 156.3±12.4 c 63.7±9.7 c
Se1 209.7±25.3 b 289.1±28.7 b 503.9±47.6 b 277.0±32.1 b
Se2 301.6±33.2 a 680.1±45.3 a 1333.5±105.7 a 589.3±62.3 a
2016 CK 33.5±6.1 c 50.3±6.5 c 134.8±18.3 c 55.4±6.8 c
Se1 189.1±23.4 b 266.9±30.2 b 487.6±55.9 b 283.6±27.2 b
Se2 311.3±38.7 a 649.6±51.9 a 1299.0±111.2 a 567.8±58.4 a

表2

不同施硒量下紫甘薯块根有机硒含量及其占总硒的比例"

年度
Year
处理
Treatment
总硒
Total selenium
(µg kg-1 DW)
有机硒
Organic selenium
(µg kg-1 DW)
有机硒占总硒的比例
Ratios of organic selenium to total selenium (%)
2015 CK 39.9±8.2 c 30.6±7.6 c 76.81 a
Se1 209.7±25.3 b 154.1±22.3 b 73.43 a
Se2 301.6±33.2 a 229.2±30.8 a 75.96 a
2016 CK 33.5±6.1 c 25.9±6.4 c 77.33 a
Se1 189.1±23.4 b 140.5±22.9 b 74.25 a
Se2 311.3±38.7 a 244.6±38.1 a 78.56 a

表3

不同施硒量下紫甘薯块根的硒累积量和利用率"

年度
Year
处理
Treatment
块根硒含量
Concentration of
selenium in root tuber
(µg kg-1 DW)
块根产量
Yield of root tuber
(t hm-2 FW)
薯块含水率
Moisture content
in root tuber (%)
块根硒累积量
Selenium accumulation in root tuber (mg hm-2)
块根硒利用率
Utilization ratio of selenium in root tuber (%)
2015 CK 39.9±8.2 c 31.6±3.66 a 71.24 362.6
Se1 209.7±25.3 b 30.7±4.24 a 70.83 1877.9 5.05
Se2 301.6±33.2 a 29.6±3.58 a 70.36 2646.1 3.81
2016 CK 36.5±6.1 c 30.7±4.01 a 71.05 324.4
Se1 189.1±23.4 b 29.6±3.23 a 70.77 1636.1 4.37
Se2 311.3±38.7 a 28.9±3.79 a 71.39 2573.9 3.75

图2

不同施硒量下紫甘薯各器官中的粗蛋白含量同一年份不同处理间标以不同字母的值差异达显著水平(P < 0.05)。"

图3

不同施硒量下紫甘薯块根中8种人体必需氨基酸含量不同处理间标以不同字母的值差异达显著水平(P < 0.05)。"

图4

不同施硒量下紫甘薯块根中10种人体非必需氨基酸含量不同处理间标以不同字母的值差异达显著水平(P < 0.05)。"

表4

不同施硒量下紫甘薯块根中矿质元素含量"

处理 K Na Ca Mg Fe Mn Zn Cu
CK 7642.3 b 3762.4 b 2970.8 a 1202.1 b 163.47 b 19.09 a 35.03 a 8.56 b
Se1 8184.4 b 3603.7 b 2693.8 b 1147.4 b 180.71 b 17.33 a 36.45 a 9.39 b
Se2 9475.7 a 4014.8 a 2410.0 b 1455.1 a 255.44 a 11.56 b 37.04 a 12.06 a
[1] 李继云, 任尚学, 陈代中. 陕西省环境中的硒与大骨节病关系的研究. 环境科学学报, 1982, 2: 91-101
Li J Y, Ren S X, Chen D Z.A study of kaschi-beck disease associated with environmental selenium in Shaanxi area.Acta Sci Circumst, 1982, 2: 91-101 (in Chinese with English abstract)
[2] 陈铭, 谭见安, 王五一. 环境硒与健康关系研究中的土壤化学与植物营养学. 土壤学进展, 1994, 22(4): 1-10
Chen M, Tan J A, Wang W Y.Soil chemistry and plant nutrition of environmental selenium and healthy relations.Prog Soil Sci, 1994, 22(4): 1-10 (in Chinese with English abstract)
[3] 彭安, 王子健, Whnager P D, Combs G F, Yeh J Y.硒的环境生物无机化学. 北京: 中国环境科学出版社, 1995. pp 11-12
Peng A, Wang Z J, Whanger P D, Combs G F, Yeh J Y.Environmental Bio-inorganic Chemistry of Selenium. Beijing: China Environmental Science Press, 1995. pp 11-12 (in Chinese)
[4] 刘庆, 田侠, 史衍玺. 施硒对小麦籽粒硒富集、转化及蛋白质与矿质元素含量的影响. 作物学报, 2016, 42: 778-783
Liu Q, Tian X, Shi Y X.Effects of Se application on Se accumulation and transformation and content of gross protein and mineral elements in wheat grain.Acta Agron Sin, 2016, 42: 778-783 (in Chinese with English abstract)
[5] Chilimba A D C, Young S D, Black C R, Meacham M C, Lammel J, Broadley M R. Agronomic biofortification of maize with selenium (Se) in Malawi.Field Crops Res, 2012, 125: 118-128
[6] 李韬, 兰国防. 植物硒代谢机理及其以小麦为载体进行补硒的策略. 麦类作物学报, 2012, 32: 173-177
Li T, Lan G F.Metabolism of selenium in plants and the strategies for selenium biofortification using wheat.J Triticeae Crops, 2012, 32: 173-177 (in Chinese with English abstract)
[7] Brown T A, Shrift A.Selenium: toxicity and tolerance in higher plants.Biol Rev, 1982, 57: 59-84
[8] 彭琴, 李哲, 梁东丽, 王梦柯, 郭璐. 不同作物对外源硒动态吸收/转运的差异及其机制. 环境科学, 2017, 38: 1667-1674
Peng Q, Li Z, Liang D L, Wang M K, Guo L.Dynamic differences of uptake and translocation of exogenous selenium by different crops and its mechanism. Environ Sci, 2017, 38: 1667-1674 (in Chinese with English abstract)
[9] Keskinen R, Turakainen M, Hartikainen H.Plant availability of soil selenate additions and selenium distribution within wheat and ryegrass.Plant & Soil, 2010, 333: 301-313
[10] 周鑫斌, 施卫明, 杨林章. 富硒与非富硒水稻品种对硒的吸收分配的差异及机理. 土壤, 2007, 39: 731-736
Zhou X B, Shi W M, Yang L Z.Genotypical differences and characteristics of Se uptake and accumulation in rice. Soils, 2007, 39: 731-736 (in Chinese with English abstract)
[11] 陈思杨, 江荣风, 李花粉. 苗期小麦和水稻对硒酸盐/亚硒酸盐的吸收及转运机制. 环境科学, 2011, 32: 284-289
Chen S Y, Jiang R F, Li H F.Uptake and translocation of selenate or selenite by wheat and rice seedlings.Environ Sci, 2011, 32: 284-289 (in Chinese with English abstract)
[12] 殷金岩, 耿增超, 李致颖, 李慧娟. 硒肥对马铃薯硒素吸收、转化及产量、品质的影响. 生态学报, 2015, 35: 823-829
Yin J Y, Geng Z C, Li Z Y, Li H J.Effects of three fertilizers on uptake, transformation, yield and quality of potatoes.Acta Ecol Sin, 2015, 35: 823-829 (in Chinese with English abstract)
[13] Li H F, McGrath S P, Zhao F J. Selenium uptake, translocation and speciation in wheat supplied with selenate or selenite.New Phytologist, 2008, 178: 92-102
[14] Yao X, Chu J, He X, Ba C.Protective role of selenium in wheat seedlings subjected to enhanced UV-B radiation.Russian J Plant Physiol, 2011, 58: 283-289
[15] Hasanuzzaman M, Fujita M.Selenium pretreatment up regulates the antioxidant defense and methylglyoxal detoxification system and confers enhanced tolerance to drought stress in rapeseed seedlings.Biol Trace Element Res, 2011, 143: 1758-1776
[16] 李彦, 史衍玺, 张英鹏, 董晓霞, 孙明. 盐胁迫条件下硒对小白菜抗氧化活性及膜脂过氧化作用的影响. 植物营养与肥料学报, 2008, 14: 749-753
Li Y, Shi Y X, Zhang Y P, Dong X X, Sun M.Effects of selenium on the antioxidant capacity and membrane lipid peroxidation of pakchoi cabbage under salt stress.Plant Nutr Fert Sci, 2008, 14: 749-753 (in Chinese with English abstract)
[17] Feng R, Wei C, Tu S.The roles of selenium in protecting plants against abiotic stresses.Environ Exp Bot, 2013, 87: 58-68
[18] 郭文慧, 刘庆, 史衍玺. 施硒对紫甘薯硒素累积及产量和品质的影响研究. 中国粮油学报, 2016, 31(9): 31-36
Guo W H, Liu Q, Shi Y X.Effects of applying selenium on the accumulation of selenium, yield, and quality of purple sweetpotato.J Chin Cereals Oils Assoc, 2016, 31(9): 31-36 (in Chinese with English abstract)
[19] 中华人民共和国卫生部. GB/T5009.93-2010. 食品安全国家标准: 食品中硒的测定. 2010
Ministry of Health of the People’s Republic of China. GB/T5009. 93-2010. National Food Safety Standard: Determination of Selenium in Foods, 2010 (in Chinese)
[20] Sun M, Liu G J, Wu Q H.Speciation of organic and inorganic selenium in selenium-enriched rice by graphite furnace atomic absorption spectrometry after cloud point extraction. Food Chem, 2013, 141: 66-71
[21] 鲍士旦. 土壤农化分析(第3版). 北京: 中国农业出版社, 2005.
Bao S D.Soil and Agricultural Chemistry Analysis (3rd edn). Beijing: China Agriculture Press, 2005 (in Chinese)
[22] 穆婷婷, 杜慧玲, 张福耀, 景小兰, 郭琦, 李志华, 刘璋, 田岗. 外源硒对谷子生理特性、硒含量及其产量和品质的影响. 中国农业科学, 2017, 50: 51-63
Mu T T, Du H L, Zhang F Y, Jing X L, Guo Q, Li Z H, Liu Z, Tian G.Effects of exogenous selenium on the physiological activity, grain selenium content, yield and quality of foxtail millet.Sci Agric Sin, 2017, 50: 51-63 (in Chinese with English abstract)
[23] 张新军, 杨才, 曾昭海, 田长叶, 胡跃高. 叶面喷施硒肥对裸燕麦产量和品质的影响. 麦类作物学报, 2015, 35: 408-412
Zhang X J, Yang C, Zeng Z H, Tian C Y, Hu Y G.Effect of Se foliar fertilizer rate on yield and quality of naked oat (Avena nuda). J Triticeae Crops, 2015, 35: 408-412 (in Chinese with English abstract)
[24] 李春霞, 曹慧. 植物硒的营养特点及吸收转化机理研究进展. 农业科学研究, 2006, 27(4): 72-76
Li C X, Cao H.The research overview of the nutrition characteristics, absorption and transformation of the plant selenium.J Agric Sci, 2006, 27(4): 72-76 (in Chinese with English abstract)
[25] Sajedi N, Ardakani M, Madani H, Naderi A, Miransari M.The effects of selenium and other micronutrients on the antioxidant activities and yield of corn (Zea mays L.) under drought stress. Physiol Mol Biol Plants, 2011, 17: 215-222
[26] 李永华, 王五一. 硒的土壤环境化学研究进展. 土壤通报, 2002, 33: 230-233
Li Y H, Wang W Y.Progress on the study of soil environmental chemistry of selenium.Chin J Soil Sci, 2002, 33: 230-233 (in Chinese with English abstract)
[27] 胡秋辉, 朱建春, 潘根兴. 硒的土壤生态环境、生物地球化学与食物链的研究现状. 农村生态环境, 2000, 16(4): 54-57
Hu Q H, Zhu J C, Pan G X.Biological geochemistry and selenium in food chain.Rural Eco-environ, 2000, 16(4): 54-57 (in Chinese with English abstract)
[28] 杨玉玲. 硒对大豆籽粒中硒代氨基酸和辅酶Q10含量的影响. 东北农业大学博士学位论文, 黑龙江哈尔滨, 2014
Yang Y L.Effect of Selenium on the Content of Seleno Amino Acids and Coenzyme Q10 in Soybean Seeds. PhD Dissertation of Northeast Agricultural University, Harbin,China, 2014 (in Chinese with English abstract)
[29] Curtin D, Hanson R, Lindley T N, Butler R C.Selenium concentration in wheat (Triticum aestivum) grain as influenced by method, rate, and timing of sodium selenate application. N Z J Exp Agric, 2006, 34: 329-339
[1] 黄婷苗, 于荣, 王朝辉, 黄冬琳, 王森, 靳静静. 不同硒形态和施硒方式对小麦硒吸收利用的影响及残效[J]. 作物学报, 2022, 48(6): 1516-1526.
[2] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[3] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[4] 刘培勋,马小飞,万洪深,郑建敏,罗江陶,蒲宗君. 两个不同籽粒硬度小麦的比较蛋白组学分析[J]. 作物学报, 2020, 46(8): 1275-1282.
[5] 马金姣,兰金苹,张彤,陈悦,郭亚璐,刘玉晴,燕高伟,魏健,窦世娟,杨明,李莉云,刘国振. 过表达OsMPK17激酶蛋白质增强了水稻的耐旱性[J]. 作物学报, 2020, 46(01): 20-30.
[6] 时丽洁,蒋枞璁,王方梅,杨平,冯宗云. 大麦蛋白质二硫键异构酶基因家族的鉴定与表达分析[J]. 作物学报, 2019, 45(9): 1365-1374.
[7] 李萍,侯万伟,刘玉皎. 青海高原耐旱蚕豆品种青海13号响应干旱胁迫蛋白质组学分析[J]. 作物学报, 2019, 45(2): 267-275.
[8] 宋奇琦,Pratiksha SINGH,Rajesh Kumar SINGH,宋修鹏,李海碧,农友业,杨丽涛,李杨瑞. 基于iTRAQ技术的甘蔗受黑穗病菌侵染蛋白组分析[J]. 作物学报, 2019, 45(1): 55-69.
[9] 王道平,徐江,牟永莹,闫文秀,赵梦洁,马博,李群,张丽娜,潘映红. 表油菜素内酯影响水稻幼苗响应低温胁迫的蛋白质组学分析[J]. 作物学报, 2018, 44(6): 897-908.
[10] 赵燕燕, 习岗. 高粱种子萌发过程中超微弱光子辐射的特征[J]. 作物学报, 2018, 44(05): 783-789.
[11] 邓昌哲,姚慧,安飞飞,李开绵,陈松笔. 木薯块根有色体分离及其蛋白质组学的研究[J]. 作物学报, 2017, 43(09): 1290-1299.
[12] DO Thanh-Trung,李健,张风娟,杨丽涛,李杨瑞,邢永秀. 甘蔗与抗旱性相关差异蛋白质组分析[J]. 作物学报, 2017, 43(09): 1337-1346.
[13] 吴坤,吴文雄,杨敏敏,刘红艳,郝国存,赵应忠. 白芝麻籽粒油脂、蛋白质及芝麻素含量QTL定位分析[J]. 作物学报, 2017, 43(07): 1003-1011.
[14] 黄明,王朝辉,罗来超,王森,包明,何刚,曹寒冰,刁超朋,李莎莎. 膜侧施肥对旱地小麦产量、籽粒蛋白质含量和水分利用效率的影响[J]. 作物学报, 2017, 43(06): 899-911.
[15] 于涛,李耕,张成芬,刘鹏,董树亭,张吉旺,赵斌. 玉米籽粒早期发育相关蛋白的差异表达特性[J]. 作物学报, 2017, 43(04): 608-619.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!