欢迎访问作物学报,今天是

作物学报 ›› 2018, Vol. 44 ›› Issue (7): 1055-1066.doi: 10.3724/SP.J.1006.2018.01055

• 耕作栽培·生理生化 • 上一篇    下一篇

半干旱区沟垄集雨种植谷子的肥料效应及其增产贡献

陈雪娇1,2,张旭东1,2,韩治中1,2,张鹏1,2,贾志宽1,2,连延浩1,韩清芳1,2,*   

  1. 1 农业部西北黄土高原作物生理生态与耕作重点实验室 / 西北农林科技大学农学院, 陕西杨凌 712100
    2 西北农林科技大学旱区农业水土工程教育部重点实验室 / 中国旱区节水农业研究院, 陕西杨凌 712100
  • 收稿日期:2017-10-01 接受日期:2018-03-26 出版日期:2018-07-10 网络出版日期:2018-04-23
  • 通讯作者: 韩清芳
  • 基金资助:
    本研究由国家高技术研究发展计划项目(2013AA102902), 国家科技支撑计划项目(2012BAD09B03)和高等学校学科创新引智计划项目(B12007)资助

Fertilizer Response and Its Contribution to Yield of Foxtail Millet under Ridge-furrow Rainfall Harvesting Planting Model in Semi-arid Areas

Xue-Jiao CHEN1,2,Xu-Dong ZHANG1,2,Zhi-Zhong HAN1,2,Peng ZHANG1,2,Zhi-Kuan JIA1,2,Yan-Hao LIAN1,Qing-Fang HAN1,2,*   

  1. 1 Key Laboratory of Crop Physi-ecology and Tillage Science in Northwestern Loess Plateau, Ministry of Agriculture / College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China;
    2 Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education / Institute of Water-saving Agriculture in Arid Area of China, Northwest A&F University, Yangling 712100, Shaanxi, China;
  • Received:2017-10-01 Accepted:2018-03-26 Published:2018-07-10 Published online:2018-04-23
  • Contact: Qing-Fang HAN
  • Supported by:
    This study was supported by the National High Technology Research and Development Program of China (2013AA102902), the National Key Technology Support Program of China (2012BAD09B03), and the “111” Project of Chinese Education Ministry (B12007).

摘要:

研究沟垄集雨种植施肥水平对谷子生长的影响及其对产量的贡献, 为完善集雨种植技术理论体系及半干旱区谷子的合理施肥提供科学依据。在宁南旱农区进行了2个年型的二因素大田试验, 研究了沟垄半覆膜集雨(R)和传统裸地平作(T) 2种种植模式下4个施肥水平(高量N 270 kg hm -2 + P2O5 180 kg hm -2, H; 中量N 180 kg hm -2 + P2O5120 kg hm -2, M; 低量N 90 kg hm -2 + P2O5 60 kg hm -2, L; 不施肥对照, CK)对谷子株高、叶面积、光合指标、干物质积累量和水肥利用效率的影响, 并分析了集雨模式下的增产贡献来源。结果表明: (1)集雨模式有效促进了边行谷子光合生理和生长, 在各施肥水平下谷子株高、顶三叶叶面积、Pn (净光合速率)、Tr (蒸腾速率)和生物量较平作模式分别提高7.1%~23.5%、1.7%~22.7%、10.4%~20.3%、8.0%~55.9%和9.8%~30.0%; 中行各指标较平作模式均下降不显著。(2)集雨种植模式显著提高了谷子的水肥利用效率, 配施氮磷肥水分利用效率显著增加, 在丰水年高肥处理显著高于中、低肥处理, 欠水年中肥处理最高且显著高于高肥处理, 与低肥处理差异不显著; 肥料利用效率随着施肥量的增加而下降, 在丰水年低肥处理的肥料利用率显著大于高肥和中肥处理, 欠水年各施肥水平间差异显著。(3)施肥对谷子的增产贡献大于种植模式。施肥对产量的贡献率在丰水年随施肥量的增加而增加, 高、中、低施肥处理间差异显著, 达27.8%~49.3%, 欠水年各施肥处理间差异不显著(19.2%~23.7%); 种植模式贡献率在2年中各施肥处理间差异均不显著。综合考虑, 集雨模式在丰水年施高肥、欠水年施中肥可实现谷子高产高效生产。

关键词: 垄沟集雨, 施肥, 谷子, 产量, 综合作用

Abstract:

A field experiment was conducted under ridge-furrow rainfall harvesting planting model in 2013 (flood years) and 2014 (drought years) to explore the combined effect of planting model and fertilizer level on yield and fertilizer utilization efficiency of foxtail millet. A two-factor randomized block designed pot with two planting models (rainfall harvesting planting model, R; traditional flat planting model, T) and four fertilizer levels (N 270 kg ha -1+P2O5 180 kg ha -1, H; N 180 kg ha -1+P2O5 120 kg ha -1, M; N 90 kg ha -1+P2O5 60 kg ha -1, L; with no fertilizer as control) was used in the experiment. Plant height, leaf area, photosynthetic rate, water and fertilizer use efficiency, and source of yield increase of foxtail millet were analysed. Compared with T, R effectively promoted the photosynthetic physiology and growth of side row of foxtail millet, increasing plant height by 7.1%-23.5%, the top three leaves area by 1.7%-22.7%, Pn (photosynthetic rate) by 10.4%-20.3%, Tr (transpiration rate) by 8.0%-55.9%, and dry matter by 9.8%-30.0% in different fertilization treatments. There was no significantly difference between the middle rows of R and T on the five indexes. R significantly improved water and fertilizer use efficiency. Application of nitrogen and phosphorus fertilizer significantly improved WUE, in flood years H was significantly higher than M and L, in drought years M was significantly higher than H and no significantly difference with L, Fertilizer use efficiency decreased with the increase of fertilization amount, which was significantly higher in L than in M and H in flood years, with significant difference between the treatments of fertilization in drought years. Effect of fertilizer was bigger than that of planting factor in contribution rate to foxtail millet yield. Contribution rate of fertilization increased by 27.8%-49.3% with increasing fertilizer amount in flood years, with significant, difference among treatments while these was no significant difference in all treatments in the drought years (19.2%-23.7%), Contribution rate of planting model was not significantly different between treatments in two years. Therefore, RH in flood years and RM in drought years could be regarded as a better farming management with high yield and high efficiency in semi-arid area of southern Ningxia.

Key words: ridge-furrow rainfall harvesting planting, fertilizer, foxtail millet, yield, combined action

表1

试验地0~60 cm土层土壤养分状况"

年份
Year
土层
Soil layer
(cm)
有机质
Organic matter
(g kg-1)
全氮
Total N
(g kg-1)
碱解氮
Hydro-N
(mg kg-1)
速效磷
Available P
(mg kg-1)
速效钾
Available K
(mg kg-1)
2013 0-20 12.30 0.85 20.65 8.76 59.18
20-40 13.90 0.85 20.37 3.77 86.16
40-60 12.83 0.81 21.21 3.25 73.73
2014 0-20 14.86 0.98 63.16 23.68 136.47
20-40 13.41 0.92 48.25 5.09 103.71
40-60 14.21 0.93 47.42 4.41 90.11

表2

试验各处理"

处理
Treatment
种植模式
Planting model
施肥水平
Fertilizer level
集雨种植模式下高量施肥RH 集雨种植模式R N 270 kg hm-2, P2O5 180 kg hm-2(H)
集雨种植模式下中量施肥RM 集雨种植模式R N 180 kg hm-2, P2O5 120 kg hm-2(M)
集雨种植模式下低量施肥RL 集雨种植模式R N 90 kg hm-2, P2O5 60 kg hm-2(L)
集雨种植模式下不施肥RCK 集雨种植模式R N 0 kg hm-2, P2O5 0 kg hm-2(CK)
平作模式下高量施肥TH 平作种植模式T N 270 kg hm-2, P2O5 180 kg hm-2(H)
平作模式下中量施肥TM 平作种植模式T N 180 kg hm-2, P2O5 120 kg hm-2(M)
平作模式下低量施肥TL 平作种植模式T N 90 kg hm-2, P2O5 60 kg hm-2(L)
平作模式下不施肥TCK 平作种植模式T N 0 kg hm-2, P2O5 0 kg hm-2(CK)

图1

2013-2014年试验地(彭阳县)月降雨量和多年平均月降雨量"

图2

集雨种植谷子的边、中行植株株高变化RH-S: 集雨模式下高量施肥边行谷子; RH-M: 集雨模式下高量施肥中行谷子; TH: 平作模式下高量施肥谷子; RM-S: 集雨模式下中量施肥边行谷子; RM-M: 集雨模式下中量施肥中行谷子; TM: 平作模式下中量施肥谷子; RL-S: 集雨模式下低量施肥边行谷子; RL-M: 集雨模式下低量施肥中行谷子; TL: 平作模式下低量施肥谷子; RCK-S: 集雨模式下不施肥边行谷子; RCK-M: 集雨模式下不施肥中行谷子; TCK: 平作模式下不施肥谷子; S: 苗期; J: 拔节期; EH: 抽穗前期; MH: 抽穗中期; LH: 抽穗后期; F: 灌浆期。"

图3

集雨种植不同施肥处理谷子的边、中行植株顶三叶叶面积动态缩写同图2。"

表3

不同年份下种植模式、施肥量对谷子灌浆期光合特性影响的显著性检验P值"

测定项目
Item
种植模式
Planting model (P)
施肥水平
Fertilizer (F)
年份
Year (Y)
P×F P×Y F×Y P×F×Y
净光合速率
Pn (mol m-2 s-1)
边行 Side row <0.01 <0.01 <0.01 <0.05 <0.01 0.54 0.54
中行 Middle row <0.01 <0.01 0.91 0.43 0.92 0.35 0.35
蒸腾速率
Tr (mol m-2 s-1)
边行 Side row <0.01 <0.01 0.35 0.41 0.73 0.78 0.92
中行 Middle row <0.01 <0.01 0.52 0.25 0.96 0.28 0.57
气孔导度
Gs (mol m-2 s-1)
边行 Side row <0.01 <0.01 <0.01 0.90 <0.01 <0.01 0.99
中行 Middle row <0.05 <0.01 <0.01 0.25 <0.01 <0.01 0.07

表4

不同处理谷子灌浆期旗叶光合特性"

年份
Year
处理
Treatment
净光合速率 Pn (mol m-2 s-1) 蒸腾速率 Tr (mol m-2 s-1) 气孔导度 Gs (mol m-2 s-1)
边行
Side row
中行
Middle row
边行
Side row
中行
Middle row
边行
Side row
中行
Middle row
2013 RH 20.33 a 19.39 a 5.82 a 5.25 a 0.27 a 0.21 a
RM 17.41 b 17.62 ab 5.53 ab 5.46 a 0.26 ab 0.21 a
RL 14.81 bcd 17.21 ab 5.08 b 5.57 a 0.21 bc 0.22 a
RCK 14.67 cd 11.15 d 4.28 c 3.32 bc 0.18 c 0.11 bc
TH 16.78 bc 16.78 b 5.20 ab 5.20 a 0.19 c 0.19 a
TM 15.21 bcd 15.21 bc 4.96 b 4.96 a 0.16 cd 0.16 ab
TL 13.76 d 13.76 c 4.10 c 4.10 b 0.12 de 0.12 bc
TCK 8.44 e 8.44 e 2.50 d 2.50 c 0.09 e 0.09 c
2014 RH 22.03 a 18.47 ab 6.05 a 5.23 ab 0.14 a 0.12 ab
RM 20.76 ab 17.68 abc 5.70 a 5.40 ab 0.14 a 0.11 abc
RL 20.52 ab 15.82 bcd 5.55 a 4.93 ab 0.13 a 0.09 bc
RCK 17.94 bc 13.75 d 4.70 ab 4.75 ab 0.11 ab 0.09 c
TH 19.96 ab 19.96 a 5.60 a 5.60 a 0.12 ab 0.12 a
TM 18.57 abc 18.57 ab 4.38 ab 4.38 ab 0.11 ab 0.11 abc
TL 17.82 bc 17.82 abc 4.36 ab 4.36 ab 0.11 ab 0.11 abc
TCK 14.91 c 14.91 cd 3.02 b 3.02 b 0.09 b 0.09 bc

图4

集雨种植不同施肥处理谷子生育期的边、中行单株生物量缩写同图2。"

表5

不同年份、种植模式与施肥量对谷子产量、水分利用效率和肥料利用效率影响的显著性检验P值"

测定项目
Item
种植模式
Planting model (P)
施肥水平
Fertilizer (F)
年份
Year (Y)
P×F P×Y F×Y P×F×Y
籽粒产量Yield (kg hm-2) <0.05 <0.01 <0.01 0.52 <0.01 <0.01 <0.05
水分利用效率WUE (kg hm-2 mm-1) <0.01 <0.01 <0.01 <0.01 <0.01 <0.05 <0.01
氮(磷)肥农学效率N (P2O5) AE (kg kg-1) <0.05 <0.01 <0.01 0.06 0.52 0.10 <0.01
氮(磷)肥偏生产力N (P2O2) PPE (kg kg-1) <0.05 <0.01 <0.01 0.47 <0.01 <0.01 <0.01

表6

不同处理的谷子籽粒产量与水分利用效率"

年份
Year
处理
Treatment
籽粒产量Yield
(kg hm-2)
生物产量Biomass
(kg hm-2)
收获指数Harvest index
(%)
耗水量
ET
(mm)
水分利用效率WUE
(kg hm-2 mm-1)
氮(磷)肥农学效率N(P2O5) AE
(kg kg-1)
氮(磷)肥偏生产力N(P2O2) PPE
(kg kg-1)
2013 RH 7075 a 13722 a 51.7 a 505.6 c 14.0 a 12.9 bc (19.4 b) 26.2 d (39.3 d)
RM 6171 c 12019 b 51.6 a 486.4 de 12.7 b 14.4 b (21.6 b) 34.3 c (51.4 c)
RL 4966 e 10019 d 49.6 ab 477.0 e 10.4 c 15.4 ab (23.0 a) 55.2 b (82.8 b)
RCK 3584 f 7989 f 45.2 c 460.4 f 7.8 d
TH 6715 b 13893 a 48.3 b 534.4 a 12.6 b 10.7 c (16.0 c) 24.9 d (37.3 d)
TM 6269 c 12455 b 50.4 ab 522.3 b 12.0 b 13.5 b (20.3 b) 34.8 c (52.2 c)
TL 5353 d 10937 c 49.0 b 515.1 bc 10.4 c 16.9 a (25.3 a) 59.5 a (89.2 a)
TCK 3836 f 9134 e 42.0 d 491.9 d 7.8 d
2014 RH 7394 a 14502 a 50.9 bc 318.1 a 23.3 bc 6.5 c (9.7 c) 27.4 d (41.1 d)
RM 7325 ab 14093 a 51.9 ab 299.1 bc 24.5 a 9.3 b (14.0 b) 40.7 c ( 61.0 c)
RL 6984 c 13030 b 53.5 a 293.2 c 23.8 ab 14.9 a (22.3 a) 77.6 a (116.4 a)
RCK 5643 e 11262 c 49.6 c 266.0 d 21.2 e
TH 7116 bc 14027 a 50.7 bc 320.7 a 22.2 d 7.0 c (10.5 c) 26.4 d (39.5 d)
TM 7038 c 14164 a 49.6 c 307.4 b 22.9 cd 10.0 b (15.1 b) 39.1 c (58.7 c)
TL 6236 d 12658 b 49.2 cd 291.4 c 21.4 e 11.2 b (16.8 b) 69.3 b (103.9 b)
TCK 5231 f 11035 c 47.2 d 275.2 d 19.0 f

表7

集雨模式谷子籽粒产量贡献率"

处理
Treatment
基础地力 Basic fertility 种植模式 Planting 施肥 Fertilizer 种植模式与施肥综合作用 IPCF
产量
Yield
(kg hm-2)
贡献率Contribution rate
(%)
增产量
Increase of yield
(kg hm-2)
贡献率Contribution rate (%) 增产量
Increase of yield
(kg hm-2)
贡献率Contribution rate (%) 增产量
Increase of yield
(kg hm-2)
贡献率Contribution rate (%)
2013
RH 3836 54.3 c -251.8 -3.5 a 3491 a 49.3 a 3239 a 45.8 a
RM 62.2 b -4.1 a 2587 b 41.9 b 2335 b 37.8 b
RL 77.3 a -5.1 a 1382 c 27.8 c 1130 c 22.8 c
RCK
2014
RH 5231 70.8 a 412.4 5.6 a 1751 a 23.7 a 2163 a 29.3 a
RM 71.4 a 5.7 a 1682 a 23.0 a 2094 a 28.6 a
RL 74.9 a 5.9 a 1341 a 19.2 a 1753 a 25.1 a
RCK
[1] 钮溥, 贾永萤, 韩思明 . 农业开发中的一项科技发展战略——中国干旱半干旱地区农业开发与科技发展战略问题探讨. 科学学研究, 1984,2(3):51-57
Niu F, Jia Y Y, Han S M . A science and technology development strategy in agricultural development: a discussion on agricultural development and science and technology development strategy in arid and semi-arid areas of China. Stud Sci Sci, 1984,2(3):51-57 (in Chinese)
[2] 张德奇, 廖允成, 贾志宽, 季书勤, 刘加平, 李永平, 刘世新 . 宁南旱区谷子地膜覆盖的土壤水温效应. 中国农业科学, 2005,38:2069-2075
doi: 10.3321/j.issn:0578-1752.2005.10.018
Zhang D Q, Liao Y C, Jia Z K, Ji S Q, Liu J P, Li Y P, Liu S X . Effects of plastic film mulching of millet on soil moisture and temperature in semi-arid areas in South Ningxia. Sci Agric Sin, 2005,38:2069-2075 (in Chinese with English abstract)
doi: 10.3321/j.issn:0578-1752.2005.10.018
[3] 任瑞玉, 何继红, 董孔军, 刘天鹏, 张磊, 杨天育 . 旱地谷子渗水地膜覆盖栽培的土壤水温效应及其生长发育研究. 干旱地区农业研究, 2016,34(3):127-131
doi: 10.7606/j.issn.1000-7601.2016.03.20
Ren R Y, He J H, Dong K J, Liu T P, Zhang L, Yang T Y . Effects of water-permeability plastic film mulching on soil moisture, temperature and growth and development of foxtail millet in dry land. Agric Res Arid Areas, 2016,34(3):127-131 (in Chinese with English abstract)
doi: 10.7606/j.issn.1000-7601.2016.03.20
[4] 李永平, 刘世新, 贾志宽, 聂俊峰, 曹秀霞, 李明芳 . 垄沟集水种植对土壤有效蓄水量及谷子生长、光合特性的影响. 西北农林科技大学学报(自然科学版), 2007,35(10):163-167
doi: 10.3321/j.issn:1671-9387.2007.10.032
Li Y P, Liu S X, Jia Z K, Nie J F, Cao X X, Li M F . Effects of water retaining planting technique under ridge and ditch micro-collection on growth, photosynthetic rate and transpiration rate of dry-land foxtail millet. J Northwest A&F Univ ( Nat Sci Edn), 2007,35(10):163-167 (in Chinese with English abstract)
doi: 10.3321/j.issn:1671-9387.2007.10.032
[5] 高玉红, 牛俊义, 闫志利, 郭丽琢, 姜寒玉, 马朋丽, 马菊红 . 不同覆膜栽培方式对玉米干物质积累及产量的影响. 中国生态农业学报, 2012,20:440-446
doi: 10.3724/SP.J.1011.2012.00440
Gao Y H, Niu J Y, Yan Z L, Guo L Z, Jiang H Y, Ma P L, Ma J H . Effects of different plastic-film mulching techniques on maize (Zea mays L.) dry matter accumulation and yield. Chin J Eco-Agric, 2012,20:440-446 (in Chinese with English abstract)
doi: 10.3724/SP.J.1011.2012.00440
[6] Zhu L, Liu J L, Luo S S, Bu L D, Chen X P, Li S Q . Soil mulching can mitigate soil water deficiency impacts on rain fed maize production in semiarid environments. J Integr Agric, 2015,14:58-66
doi: 10.1016/S2095-3119(14)60845-5
[7] 汪德水, 程宪国, 张美荣, 周涌 . 旱地土壤中的肥水激励机制. 植物营养与肥料学报, 1995,1:64-70
doi: 10.11674/zwyf.1995.0110
Wang D S, Cheng X G, Zhang M R, Zhou Y . The excitation mechanism between fertilizer and water under dryland condition. Plant Nutr Fert Sci, 1995,1:64-70 (in Chinese with English abstract)
doi: 10.11674/zwyf.1995.0110
[8] 李生秀 . 中国旱地土壤植物氮素. 北京: 科学技术出版社, 2008. pp 695-696
Li S X. Soil and Plant Nitrogen in Dryland Areas of China. Beijing: Science Press, 2008. pp 695-696(in Chinese)
[9] 李科江, 李保国, 胡克林, 曹彩云, 郑春莲 . 不同水肥管理对冬小麦灌浆影响的模拟研究. 植物营养与肥料学报, 2004,10:449-454
doi: 10.3321/j.issn:1008-505X.2004.05.001
Li K J, Li B G, Hu K L, Cao C Y, Zheng C L . Modeling kernel filling of winter wheat for optimum field management. Plant Nutr Fert Sci, 2004,10:449-454 (in Chinese with English abstract)
doi: 10.3321/j.issn:1008-505X.2004.05.001
[10] Shen Y F, Li S Q . Effects of the spatial coupling of water and fertilizer on the chlorophyll fluorescence parameters of winter wheat leaves. J Integr Agric, 2011,10:1923-1931
doi: 10.1016/S1671-2927(11)60193-4
[11] 郭天文, 谢永春, 张平良, 刘晓伟, 姜小凤 . 不同种植和施肥方式对旱地春玉米土壤水分含量及其水分利用效率的影响. 水土保持学报, 2015,29(5):231-238
doi: 10.13870/j.cnki.stbcxb.2015.05.042
Guo T W, Xie Y C, Zhang P L, Liu X W, Jiang X F . Effects of different patterns of planting and fertilization on soil moisture and water use efficiency of spring maize on dryland. J Soil Water Conserv, 2015,29(5):231-238 (in Chinese with English abstract)
doi: 10.13870/j.cnki.stbcxb.2015.05.042
[12] 张仁陟, 李小刚, 胡恒觉 . 施肥对提高旱地农田水分利用效率的机理. 植物营养与肥料学报, 1999,5:221-226
Zhang R Z, Li X G, Hu H J . The mechanism of fertilization in increasing water use efficiency. Plant Nutr Fert Sci, 1999,5:221-226 (in Chinese with English abstract)
[13] 王浩, 王淑兰, 徐宗贵, 李军 . 耕作与施肥对旱地玉米田土壤耗水量和水分利用效率的影响. 中国生态农业学报, 2017,25:856-864
doi: 10.13930/j.cnki.cjea.160990
Wang H, Wang S L, Xu Z G, Li J . Effect of tillage and fertilization on water use efficiency of maize in dryland conditions. Chin J Eco-Agric, 2017,25:856-864 (in Chinese with English abstract)
doi: 10.13930/j.cnki.cjea.160990
[14] Li S X, Wang Z H, Li S Q, Gao Y J . Effect of nitrogen fertilization under plastic mulched and non-plastic mulched conditions on water use by maize plants in dryland areas of China. Agric Water Manage, 2015,162:15-32
doi: 10.1016/j.agwat.2015.08.004
[15] 于亚军, 李军, 贾志宽, 王蕾 . 不同水肥条件对宁南旱地谷子产量、WUE及光合特性的影响. 水土保持研究, 2006,13(2):87-90
doi: 10.3969/j.issn.1005-3409.2006.02.029
Yu Y J, Li J, Jia Z K, Wang L . Effect of different water and fertilizer on yield, WUE and photosynthetic characteristics of millet in southern Ningxia semi-arid area. Res Soil Water Conserv, 2006,13(2):87-90 (in Chinese with English abstract)
doi: 10.3969/j.issn.1005-3409.2006.02.029
[16] 陶林威, 马洪, 葛芬丽 . 陕西省降水特性分析. 陕西气象, 2000, ( 5):6-9
Tao L W, Ma H, Ge F L . Analysis on the characteristics of precipitation in Shaanxi province. J Shaanxi Meteorol, 2000, ( 5):6-9 (in Chinese)
[17] 古世禄 . 谷子抽穗后干物质积累与运转及不同叶位叶片对产量的作用. 山西农业科学, 1981, ( 7):10-11
Gu S L . Effect of accumulation and translocation and leaves at different positions on the yield of dry millet after heading. J Shanxi Agric Sci, 1981, ( 7):10-11 (in Chinese)
[18] 王会肖, 刘昌明 . 作物水分利用效率内涵及研究进展. 水科学进展, 2000,11(1):99-104
doi: 10.3321/j.issn:1001-6791.2000.01.018
Wang H X, Liu C M . Advances in crop water use efficiency research. Adv Water Sci, 2000,11(1):99-104 (in Chinese with English abstract)
doi: 10.3321/j.issn:1001-6791.2000.01.018
[19] 马兴华, 王东, 于振文, 王西芝, 许振柱 . 不同施氮量下灌水量对小麦耗水特性和氮素分配的影响. 生态学报, 2010,30:1955-1965
Ma X H, Wang D, Yu Z W, Wang X Z, Xu Z Z . Effect of irrigation regirues on water consumption characteristics and nitrogen distribution in wheat at different nitrogen applications. Acta Ecol Sin, 2010,30:1955-1965 (in Chinese with English abstract)
[20] 张璐, 沈善敏, 宇万太, 廉鸿志 . 辽西褐土施肥及养分循环再利用中长期试验: V. 不同降水年景作物产量对施肥的反应和水肥交互作用. 应用生态学报, 2003,14:2205-2207
Zhang L, Shen S M, Yu W T, Lian H Z . Long-term trial on fertilization and on use of recycled nutrients in farming systems: V. Response of crop yields to fertilization in different precipitation years and estimates of water and nutrient interaction. Chin J Appl Ecol, 2003,14:2205-2207 (in Chinese with English abstract)
[21] 张福锁, 王激清, 张卫峰, 崔振岭, 马文奇, 陈新平, 江荣风 . 中国主要粮食作物肥料利用率现状与提高途径. 土壤学报, 2008,45:915-924
doi: 10.3321/j.issn:0564-3929.2008.05.018
Zhang F S, Wang J Q, Zhang W F, Cui Z L, Ma W Q, Chen X P, Jiang R F . Nutrient use efficiencies of major cereal crops in China and measures for improvement. Acta Pedol Sin, 2008,45:915-924 (in Chinese with English abstract)
doi: 10.3321/j.issn:0564-3929.2008.05.018
[22] 马强, 宇万太, 沈善敏, 张璐 . 旱地农田水肥效应研究进展. 应用生态学报, 2007,18:665-673
Ma Q, Yu W T, Shen S M, Zhang L . Research advances in water-fertilizer effect on dry land farmland. Chin J Appl Ecol, 2007,18:665-673 (in Chinese with English abstract)
[23] 张德奇, 廖允成, 贾志宽, 刘世新, 李永平 . 宁南旱区谷子集水保水技术效应研究. 中国生态农业学报, 2006,14(4):51-53
Zhang D Q, Liao Y C, Jia Z K, Liu S X, Li Y P . Effects of techniques of water harvesting and water conservation on millet planting in semi-arid areas in South Ningxia. Chin J Eco-Agric, 2006,14(4):51-53 (in Chinese with English abstract)
[24] 王俊鹏, 马林, 蒋骏, 贾志宽 . 宁南半干旱地区谷子微集水种植技术研究. 水土保持通报, 2000,20(3):41-43
Wang J P, Ma L, Jiang J, Jia Z K . Research on millet planting technique of micro-water harvesting in semi-arid area of the south part of Ningxia province. Bull Soil Water Conserv, 2000,20(3):41-43 (in Chinese with English abstract)
[25] 张野, 王显瑞, 赵禹凯, 李书田, 赵敏 . 覆膜对谷子农艺性状、产量及土壤物理性质的影响. 作物杂志, 2012, ( 5):153-158
Zhang Y, Wang X R, Zhao Y K, Li S T, Zhao M . The impacts of plastic film mulching on foxtail millet agronomic traits, yield and soil physical properties. Crops, 2012, ( 5):153-158 (in Chinese with English abstract)
[26] 丁瑞霞, 贾志宽, 韩清芳, 任广鑫, 王俊鹏 . 宁南旱区微集水种植条件下谷子边际效应和生理特性的响应. 中国农业科学, 2006,39:494-501
Ding R X, Jia Z K, Han Q F, Ren G X, Wang J P . Border effect and physiological characteristic responses of foxtail millet to different micro-catchment strip shapes in semiarid region of South Ningxia. Sci Agric Sin, 2006,39:494-501 (in Chinese with English abstract)
[27] 韩清芳, 李向拓, 王俊鹏, 蒋骏, 丁瑞霞, 刘正辉, 贾志宽 . 微集水种植技术的农田水分调控效果模拟研究. 农业工程学报, 2004,20(2):78-82
Han Q F, Li X T, Wang J P, Jiang J, Ding R X, Liu Z H, Jia Z K . Simulated study on soil moisture of field under water micro-collecting farming conditions. Trans CSAE, 2004,20(2):78-82 (in Chinese with English abstract)
[28] 丁瑞霞, 贾志宽, 韩清芳, 任广鑫, 王俊鹏 . 宁南旱区沟垄微型集水种植谷子最优沟垄宽度的确定. 干旱地区农业研究, 2007,25(2):12-16
doi: 10.3321/j.issn:1000-7601.2007.02.003
Ding R X, Jia Z K, Han Q F, Ren G X, Wang J P . Optimum width of ridge and furrow for planting foxtail millet in micro-water harvesting systems in arid area of the south part of Ningxia province. Agric Res Arid Areas, 2007,25(2):12-16 (in Chinese with English abstract)
doi: 10.3321/j.issn:1000-7601.2007.02.003
[29] 严昌荣, 梅旭荣, 居辉, 赤杰 . 施肥对春谷子生长发育及水分利用效率的影响. 中国生态农业学报, 2006,14(1):142-144
Yan C R, Mei X R, Ju H, Chi J . Effects of fertilization on the growth, development and water use efficiency of spring millet. Chin J Eco-Agric, 2006,14(1):142-144 (in Chinese with English abstract)
[30] 封志明, 孙通, 杨艳昭 . 2003-2013年中国粮食增产格局及其贡献因素研究. 自然资源学报, 2016,31:895-907
Feng Z M, Sun T, Yang Y Z . Study on the spatiotemporal patterns and contribution factors of China’s grain output increase during 2003-2013. J Nat Resour, 2016,31:895-907 (in Chinese with English abstract)
[31] 曾希柏, 陈同斌, 林忠辉, 胡清秀 . 中国粮食生产潜力和化肥增产效率的区域分异. 地理学报, 2002,57:539-546
Zeng X B, Chen T B, Lin Z H, Hu Q X . Grain productivity and its potential as related to fertilizer consumption among different counties of China. Acta Geogr Sin, 2001,57:539-546 (in Chinese with English abstract)
[32] 董文 . “十一五”粮食丰产科技工程增产增效的成效分析. 作物杂志, 2012, ( 3):12-15
Dong W . The analysis of food production and agricultural efficiency of eleventh five-year science and technology project for food production. Crops, 2012, ( 3):12-15 (in Chinese with English abstract)
[33] 夏雪岩, 李顺国, 刘恩魁, 师志刚, 张德荣, 张婷, 陈媛, 杨起旺, 庞素芬, 刘芳, 连启超, 张敏, 赵建所, 程汝宏 . 半干旱区‘冀谷31’微集水种植增产机理研究. 干旱地区农业研究, 2015,33(3):184-189
doi: 10.7606/j.issn.1000-7601.2015.03.30
Xia X Y, Li S G, Liu E K, Shi Z G, Zhang D R, Zhang T, Chen Y, Yang Q W, Pang S F, Liu F, Lian Q C, Zhang M, Zhao J S, Cheng R H . Yield increasing effect of rainfall micro-catchments on the foxtail millet cultivar Jigu 31 in semiarid area. Agric Res Arid Areas, 2015,33(3):184-189 (in Chinese with English abstract)
doi: 10.7606/j.issn.1000-7601.2015.03.30
[34] 刘启, 贾志宽, 连延浩, 张旭东, 任小龙, 王俊鹏, 韩清芳 . 沟垄集雨种植模式下谷子种植密度对土壤水分及产量的影响. 干旱地区农业研究, 2016,34(2):81-87
doi: 10.7606/j.issn.1000-7601.2016.02.13
Liu Q, Jia Z K, Lian Y H, Zhang X D, Ren X L, Wang J P, Han Q F . Effects of planting density on water consumption and yield of foxtail millet under ridge-furrow rainfall harvesting planting mode. Agric Res Arid Areas, 2016,34(2):81-87 (in Chinese with English abstract)
doi: 10.7606/j.issn.1000-7601.2016.02.13
[35] 任小龙, 贾志宽, 陈小莉, 韩清芳, 李荣 . 模拟不同雨量下沟垄集雨种植对春玉米生产力的影响. 生态学报, 2008,28:1006-1015
doi: 10.3321/j.issn:1000-0933.2008.03.013
Ren X L, Jia Z K, Chen X L, Han Q F, Li R . Effects of rainwater-harvested furrow/ridge system on spring corn productivity under different simulated rainfalls. Acta Ecol Sin, 2008,28:1006-1015 (in Chinese with English abstract)
doi: 10.3321/j.issn:1000-0933.2008.03.013
[36] 奚振邦, 王寓群, 杨佩珍 . 中国现代农业发展中的有机肥问题. 中国农业科学, 2004,37:1874-1878
doi: 10.3321/j.issn:0578-1752.2004.12.014
Xi Z B, Wang Y Q, Yang P Z . The issue on organic manure in developing modern agriculture in China. Sci Agric Sin, 2004,37:1874-1878 (in Chinese with English abstract)
doi: 10.3321/j.issn:0578-1752.2004.12.014
[37] 李正鹏, 宋明丹, 冯浩 . 水氮耦合下冬小麦 LAI 与株高的动态特征及其与产量的关系. 农业工程学报, 2017,33(4):195-202
Li Z P, Song M D, Feng H . Dynamic characteristics of leaf area index and plant height of winter wheat influenced by irrigation and nitrogen coupling and their relationships with yield. Trans CSAE, 2017,33(4):195-202 (in Chinese with English abstract)
[38] 何继红, 李沣, 董孔军, 李耀辉, 王自忠, 杨天育 . 施肥对旱地地膜覆盖栽培谷子产量的影响. 河北农业科学, 2010,14(11):59-61
doi: 10.3969/j.issn.1088-1631.2010.11.021
He J H, Li P, Dong K J, Li Y H, Wang Z Z, Yang T Y . Study on the effects of fertilization on the yield of millet cultivated in plastic film on dry land. J Hebei Agric Sci, 2010,14(11):59-61 (in Chinese with English abstract)
doi: 10.3969/j.issn.1088-1631.2010.11.021
[1] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[2] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[3] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[7] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[8] 肖健, 陈思宇, 孙妍, 杨尚东, 谭宏伟. 不同施肥水平下甘蔗植株根系内生细菌群落结构特征[J]. 作物学报, 2022, 48(5): 1222-1234.
[9] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[10] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[11] 晋敏姗, 曲瑞芳, 李红英, 韩彦卿, 马芳芳, 韩渊怀, 邢国芳. 谷子糖转运蛋白基因SiSTPs的鉴定及其参与谷子抗逆胁迫响应的研究[J]. 作物学报, 2022, 48(4): 825-839.
[12] 杜晓芬, 王智兰, 韩康妮, 连世超, 李禹欣, 张林义, 王军. 谷子叶绿体基因RNA编辑位点的鉴定与分析[J]. 作物学报, 2022, 48(4): 873-885.
[13] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[14] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[15] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!