欢迎访问作物学报,今天是

作物学报 ›› 2018, Vol. 44 ›› Issue (10): 1477-1484.doi: 10.3724/SP.J.1006.2018.01477

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

水稻高秆染色体片段代换系Z1377的鉴定及重要农艺性状QTL定位

崔国庆1,王世明1,马福盈1,汪会1,向朝中2,李云峰1,何光华1,张长伟1,杨正林1,凌英华1,赵芳明1,*()   

  1. 1 西南大学水稻研究所/西南大学农业科学研究院, 重庆 400715
    2 重庆市丰都县龙孔镇农业服务中心, 重庆408200
  • 收稿日期:2018-01-05 接受日期:2018-06-12 出版日期:2018-10-10 网络出版日期:2018-06-20
  • 通讯作者: 赵芳明
  • 基金资助:
    本研究由国家重点研发计划项目(2017YFD0100202);重庆市科委主题专项(CSTC, 2016shms-ztzx0017);西南大学基本业务费专项创新团队项目(XDJK2017A004)

Identification of Rice Chromosome Segment Substitution Line Z1377 with Increased Plant Height and QTL Mapping for Agronomic Important Traits

Guo-Qing CUI1,Shi-Ming WANG1,Fu-Ying MA1,Hui WANG1,Chao-Zhong XIANG2,Yun-Feng LI1,Guang-Hua HE1,Chang-Wei ZHANG1,Zheng-Lin YANG1,Ying-Hua LING1,Fang-Ming ZHAO1,*()   

  1. 1 Rice Research Institute, Southwest University / Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
    2 Center of Agricultural Serve at Longkong Town, Fengdu County, Chongqing 408200, China
  • Received:2018-01-05 Accepted:2018-06-12 Published:2018-10-10 Published online:2018-06-20
  • Contact: Fang-Ming ZHAO
  • Supported by:
    This study was supported by the National Key Research and Development Program of China(2017YFD0100202);the Project of Chongqing Science & Technology Commission(CSTC, 2016shms-ztzx0017);the Fundamental Research Funds for the Central Universities(XDJK2017A004)

摘要:

株高是水稻重要的农艺性状, 往往与产量相关性状密切关联, 在水稻育种中有重要利用价值。本研究以日本晴为受体、缙恢35为供体亲本, 经表型和分子标记双重选择, 鉴定了一个水稻高秆染色体片段代换系Z1377。Z1377共含有18个代换片段, 平均代换长度为2.95 Mb。与日本晴相比, Z1377的株高、倒一节间至倒四节间长、穗长、一次枝梗数、二次枝梗数、粒长、每穗实粒数、总粒数显著增加; 粒宽显著变细, 有效穗数、结实率显著减少, 但仍达86.75%。用日本晴与Z1377杂交构建的次级F2群体共检测到16个相关QTL, 分布于第2、第3、第4、第5、第6、第7和第9染色体。其中有8个可能与已克隆基因等位, 如GW2EUI1ZFP185等, 另8个如qPH3等尚未见报道。Z1377的株高由一个主效QTL (qPH3)和一个微效QTL (qPH5)控制, 其中qPH3的贡献率达28.59%。而且, 在F2群体中, 高秆和矮秆基本呈现双峰分布, 经卡平方测验, 符合3∶1分离比, 表明高秆对矮秆显性, 并主要由qPH3负责。这将为该主效基因的精细定位和克隆奠定基础, 同时为进一步选育含2~3个代换片段的中高优良染色体片段代换系并应用于育种奠定基础。

关键词: 水稻, 染色体片段代换系, 株高, 产量相关性状, QTL定位

Abstract:

Plant height is an important agronomic trait in rice, usually relating to yield-related traits. Here, a novel rice chromosome segment substitution line Z1377 with increased plant height was identified from recipient Nipponbare and donor Jinhui 35 through selection of both phenotype and molecular marker. Z1377 carried 18 substitution segments with average substitution length of 2.95 Mb. Compared with Nipponbare, Z1377 had significantly increased plant height, length of the 1st, 2nd, 3rd, and 4th internode, panicle length, number of primary and secondary branches and grain length, and decreased grain width, number of panicles per plant and seed setting ratio. However, the seed setting ratio was still 86.75%. Furthermore, F2 population from crosses between Nipponbare and Z1377 was used to map QTLs for plant height and other important agronomic traits. A total of 16 QTLs were detected, of which eight had been reported with the cloned genes such as GW2, EUI1, ZFP185, and the other eight were still not reported, such as qPH3. The plant height of Z1377 was mainly controlled by a major QTL (qPH3) with the explained phenotypic variance of 28.59% and a minor QTL (qPH5). Moreover, the high and dwarf plants basically displayed a bimodal distribution in the F2 population, and fitted to 3:1 segregation ratio by Chi-square test, indicating that high plant is dominant to dwarf plants and mainly conferred by qPH3. These results lay a foundation for fine mapping and cloning qPH3, meanwhile, also provide good bases for developing excellent chromosome segment substitution lines with moderate height plant carrying 2-3 substitution segments to be used in breeding.

Key words: rice, chromosome segment substitution lines, plant height, yield-related traits, QTL mapping

图1

Z1377的代换片段 每条染色体左侧为物理距离(Mb)和定位的QTL; 右侧为标记名称、代换区间(框内标记)和代换长度(黑箭头指向)。"

表1

成熟期的日本晴和Z1377及F2群体各性状统计参数"

性状
Trait
平均值±标准差(亲本)
Mean±SD (parents)
F2 群体
F2 population
日本晴
Nipponbare
Z1377 平均值±标准差
Mean±SD
范围
Range
偏度
Skewness
峰度
Kurtosis
株高Plant height (cm) 89.68±2.65** 171.39±3.87** 130.07±21.39 81.60-169.50 -0.62 -0.58
有效穗数Panicle number 13.65±3.30** 5.20±1.17** 8.70±4.17 1.00-27.00 1.24 3.97
倒一节Length of the first internode (cm) 39.02±2.16** 56.02±1.81** 45.69±6.23 32.00-59.80 -0.17 -0.65
倒二节Length of the second internode (cm) 18.32±1.37** 26.58±1.27** 22.45±4.71 10.50-32.30 -0.36 -0.03
倒三节Length of the third internode (cm) 10.19±1.67** 22.45±1.64** 15.96±4.60 3.80-26.20 -0.21 -0.12
倒四节Length of the fourth internode (cm) 1.84±0.75** 17.46±1.05** 11.96±3.54 1.80-19.50 -0.89 1.05
倒五节Length of the fifth internode (cm) 11.08±2.78 7.03±3.20 1.70-13.70 0.20 -0.88
倒六节Length of the sixth internode (cm) 4.00±1.29 5.21±3.00 1.30-10.10 0.15 -1.52
穗长Panicle length (cm) 20.09±2.17** 33.49±3.17** 27.86±5.39 18.00-42.77 0.22 -0.32
一次枝梗数Number of primary branch 8.43±1.73** 15.33±1.91** 12.12±2.63 7.21-18.10 -0.03 -0.56
二次枝梗数Number of secondary branch 26.47±7.51** 71.69±22.46** 49.85±17.90 21.13-98.90 0.32 -0.29
粒长Grain length (mm) 7.01±0.10** 10.02±0.16** 8.45±0.75 7.00-9.87 -0.35 -0.85
粒宽Grain width (mm) 3.42±0.07** 2.92±0.08** 3.14±0.25 2.50-3.60 -0.41 -0.62
实粒数Grains per panicle 96.99±8.62** 233.06±55.96** 91.69±53.23 2.00-224.00 0.28 -0.44
总粒数Spikelets per panicle 103.04±8.82** 272.65±69.96** 187.18±71.76 42.00-370.00 0.39 -0.25
结实率Seed setting ratio (%) 94.13±0.01** 86.75±2.97** 0.54±0.31 0.02-0.95 -0.29 -1.42
千粒重1000-grain weight (g) 25.60±0.56 25.37±0.66 24.61±3.21 16.60-31.40 -0.26 -0.44
单株产量Yield per plant (g) 33.82±7.15 30.77±7.43 22.42±17.71 0.27-82.4 1.16 1.62

图2

日本晴和Z1377的表型"

图3

日本晴与Z1377杂交的F2群体株高分布"

表2

水稻重要农艺性状QTL"

性状
Trait
QTL 染色体
Chr.
连锁标记
Linked marker
估计效应
Estimated effect
贡献率
Var. (%)
P
P-value
株高Plant height (cm) qPH3 3 RM14412 7.52 28.59 0.0008
株高Plant height (cm) qPH5 5 RM3321 4.65 10.96 0.0305
倒一节Length of the first internode (cm) qLFI2 2 RM6378 1.15 3.65 0.0474
倒三节Length of the third internode (cm) qLTI4 4 RM7187 1.19 8.50 0.0367
倒三节长Length of the third internode (cm) qLTI6-1 6 RM3183 1.80 19.41 0.0031
倒三节长Length of the third internode (cm) qLTI6-2 6 RM103 1.13 7.59 0.0484
倒四节长Length of the fourth internode (cm) qLFOI3 3 RM14412 1.31 16.44 0.0043
穗长Panicle length (cm) qPL2 2 RM6378 1.30 11.00 0.0124
一次枝梗数Number of primary branch qNPB2 2 RM6378 0.54 8.09 0.0188
二次枝梗数Number of secondary branch qNSB2 2 RM6378 4.57 11.09 0.0082
粒长Grain length (mm) qGL3 3 RM14412 0.18 12.38 0.0220
粒长Grain width (mm) qGW2 2 RM6378 -0.06 7.43 0.0210
实粒数Grains per panicle qGPP6 6 RM3183 38.86 0.50 0.0062
实粒数Grains per panicle qGPP9 9 RM7048 90.26 2.71 0.0025
总粒数Spikelets per panicle qSPP2 2 RM6378 14.68 5.82 0.0433
有效穗数Panicle number qPN7 7 RM5481 -2.53 3.90 0.0293
[1] Wang Y H, Li J Y . The plant architecture of rice (Oryza sativa L.). Plant Mol Biol, 2005,59:75-84
[2] Monna L, Kitazawa N, Yoshino R, Suzuki J, Masuda H, Maehara Y, Tanji M, Sato M, Nasu S, Minobe Y . Positional cloning of rice semidwarfing gene, sd-1: rice “green revolution gene” encodes a mutant enzyme involved in gibberellin synthesis. DNA Res, 2002,9:11-17
[3] Tong H N, Xiao Y H, Liu D P, Gao S P, Liu L C, Yin Y H, Jin Y, Qian Q, Chu C C . Brassinosteroid regulates cell elongation by modulating gibberellin metabolism in rice. Plant Cell, 2014,26:4376-4393
doi: 10.1105/tpc.114.132092 pmid: 25371548
[4] Wu J H, Zhu C F, Pang J H, Zhang X R, Yang C L, Xia G X, Tian Y C, He C Z . OsLOL1, a C2C2-type zinc finger protein, interacts with OsbZIP58 to promote seed germination through the modulation of gibberellin biosynthesis in Oryza sativa. Plant J, 2014,80:1118-1130
[5] Hong Z, Ueguchi-Tanaka M, Shimizu-Sato S, Inukai Y, Fujioka S, Shimada Y, Takatsuto S, Agetsuma M, Yoshida S, Watanabe Y, Uozu S, Kitano H, Ashikari M, Matsuoka M . Loss-of-function of a rice brassinosteroid biosynthetic enzyme, C-6 oxidase, prevents the organized arrangement and polar elongation of cells in the leaves and stem. Plant J, 2002,32:495-508
doi: 10.1046/j.1365-313X.2002.01438.x
[6] Tanabe S, Ashikari M, Fujioka S, Takatsuto S, Yoshida S, Yano M, Yoshimura A, Kitano H, Matsuoka M, Fujisawa Y, Kato H, Iwasaki Y . A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf nutant, dwarf11, with reduced seed length. Plant Cell, 2005,17:776-790
[7] Tong H N, Jin Y, Liu W B, Li F, Fang J, Yin Y H, Qian Q, Zhu L H, Chu C C . DWARF AND LOW-TILLERING, a new member of the GRAS family, plays positive roles inbrassinosteroid singaling in rice. Plant J, 2009,58:803-816
[8] Ito S, Kitahata N, Umehara M, Hanada A, Kato A, Ueno K, Mashiguchi K, Kyozuka J, Yoneyama K, Yamaguchi S, Asami T . A new lead chemical for strigolactone biosynthesis inhibitors. Plant Cell Physiol, 2010,51:1143-1150
doi: 10.1093/pcp/pcq077 pmid: 20522488
[9] 赵芳明, 郭超, 魏霞, 杨正林, 凌英华, 桑贤春, 王楠, 张长伟, 李云峰, 何光华 . 日本晴与5个优良恢复系的多态性标记筛选及遗传差异分析. 西南大学学报(自然科学版), 2016,38(11):1-7
Zhao F M, Guo C, Wei X, Yang Z L, Ling Y H, Sang X C, Wang N, Zhang C W, Li Y F, He G H . Polymorphic SSR markers screening and genetic difference analysis between Nipponbare and five excellent restorer line. J Southwest Univ (Nat Sci Edn), 2016,38(11):1-7 (in Chinese with English abstract)
[10] 向佳, 李燕, 樊亚伟, 许军红, 郑丽媛, 何光华, 杨正林, 王楠, 赵芳明 . 一个具有主效晚抽穗基因的水稻染色体片段代换系的鉴定、形态分析及Ehd4-2定位. 作物学报, 2015,41:683-691
Xiang J, Li Y, Fan Y W, Xu J H, Zheng L Y, He G H, Yang Z L, Wang N, Zhao F M . Identification and morphological analysis of a rice chromosome segment substitution line carrying a major effect gene for late heading date and mapping of Ehd4-2. Acta Agron Sin, 2015,41:683-691 (in Chinese with English abstract)
[11] Paterson A H, Damon S, Hewitt J D, Zamir D, Rabinowitch H D, Lincoln S E, Lander E S, Tanksley S D . Mendelian factors underlying quantitative traits in tomato: comparison across species, generations, and environments. Genetics, 1991,127:181-197
[12] Zhao F M, Tan Y, Zheng L Y, Zhou K, He G H, Ling Y H, Zhang L H, Xu S Z . Identification of rice chromosome segment substitution line Z322-1-10 and mapping QTL for agronomic traits from the F3 population. Cereal Res Commun, 2016,44:370-380
doi: 10.1556/0806.44.2016.022
[13] Furuta T, Uehara K , Angeles-Shim R B, Shim J, Ashikari M, Takashi T. Development and evaluation of chromosome segment substitution lines (CSSLs) carrying chromosome segments derived from Oryza rufipogon in the genetic background of Oryza sativa L. Breed Sci, 2014,63:468-475
[14] 王坚, 赵开军, 乔枫, 杨生龙 . OsGA20ox2不同长度RNAi片段对水稻株高等农艺性状的遗传效应. 作物学报, 2012,38:632-638
Wang J, Zhao K J, Qiao F, Yang S L . Genetic effects of different RNA interference fragments from OsGA20ox2 on plant height and other agronomic traits in rice. Acta Agron Sin, 2012,38:632-638 (in Chinese with English abstract)
[15] Zhu Y Y, Nomura T, Xu Y H, Zhang Y Y, Peng Y, Mao B Z, Hanada A, Zhou H C, Wang R X, Li P J, Zhu X D, Mander L N, Kamiya Y, Yamaguchi S, He Z H . ELONGATED UPPERMOST INTERNODE encodes a cytochrome P450 monooxygenase that epoxidizes gibberellins in a novel deactivation reaction in rice. Plant Cell, 2006,18:442-456
[16] Zhang Y, Lan H X, Shao Q L, Wang R Q, Chen H, Tang H J, Zhang H S, Huang J . An A20/AN1-type zinc finger protein modulates gibberellins and abscisic acid contents and increases sensitivity to abiotic stress in rice (Oryza sativa). J Exp Bot, 2016,67:315-326
[17] Chen J, Gao H, Zheng X M, Jin M N, Weng J F, Ma J, Ren Y L, Zhou K N, Wang Q, Wang J, Wang J L, Zhang X, Cheng Z J, Wu C Y, Wang H Y, Wan J M . An evolutionarily conserved gene, FUWA, plays a role in determining panicle architecture, grain shape and grain weight in rice. Plant J, 2015,83:427-438
[18] Li M, Tang D, Wang K J, Wu X R, Lu L L, Yu H X, Gu M H, Yan C J, Cheng Z K . Mutations in the F-box gene LARGER PANICLE improve the panicle architecture and enhance the grain yield in rice. Plant Biotechnol J, 2011,9:1002-1013
[19] Song X J, Huang W, Shi M, Zhu M Z, Lin H X . A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet, 2007,39:623-630
doi: 10.1038/ng2014
[20] Heang D, Sassa H . Antagonistic actions of HLH/bHLH proteins are involved in grain length and weight in rice. PLoS One, 2012,7(2):e31325
doi: 10.1371/journal.pone.0031325 pmid: 3283642
[21] Taguchi-Shiobara F, Kawagoe Y, Kato H, Onodera H, Tagiri A, Hara N, Miyao A, Hirochika H, Kitano H, Yano M, Toki S . A loss-of-function mutation of rice DENSE PANICLE 1 causes semi-dwarfness and slightly increased number of spikelets. Breed Sci, 2011,61:17-25
[22] Huang X Z, Qian Q, Liu Z B, Sun H Y, He S Y, Luo D, Xia G M, Chu C C, Li J Y, Fu X D . Natural variation at the DEP1 locus enhances grain yield in rice. Nat Genet, 2009,41:494-497
[23] 刘胜男, 张华, 柳絮, 李广贤, 杨永义, 姚方印 . 水稻株高和产量相关性状的QTL定位. 山东农业科学, 2015,47(4):8-12
Liu S N, Zhang H, Liu X, Li G X, Yang Y Y, Yao F Y . QTL mapping of plant height and yield-related traits of rice. Shandong Agric Sci, 2015,47(4):8-12
[24] Xue W, Xing Y, Weng X, Zhao Y, Tang W, Wang L, Zhou H, Yu S, Xu C, Li X, Zhang Q . Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet, 2008,40:761-767
doi: 10.1038/ng.143
[25] Jones D F . Dominance of linked factors as a means of accounting for heterosis. Genetics, 1997,2:466-479
[26] Cai W, Morishima H . QTL clusters reflect character associations in wild and cultivated rice. Theor Appl Genet, 2002,104:1217-1228
doi: 10.1007/s00122-001-0819-7 pmid: 12582574
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[7] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[8] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[9] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[10] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[11] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[12] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[13] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[14] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[15] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!