欢迎访问作物学报,今天是

作物学报 ›› 2019, Vol. 45 ›› Issue (2): 248-255.doi: 10.3724/SP.J.1006.2019.83042

• 耕作栽培·生理生化 • 上一篇    下一篇

田间密植诱导抽穗期玉米叶片衰老时的光合作用机制

吴含玉1,2,张雅君2,张旺锋1,3,*(),王克如4,李少昆4,姜闯道2,*()   

  1. 1石河子大学生命科学学院, 新疆石河子 832003
    2中国科学院植物研究所 / 北方资源植物重点实验室, 北京100093
    3石河子大学农学院 / 新疆生产建设兵团绿洲生态农业重点实验室, 新疆石河子832003
    4中国农业科学院作物科学研究所 / 农业部作物生理生态重点实验室, 北京100081
  • 收稿日期:2018-05-03 接受日期:2018-10-08 出版日期:2019-02-12 网络出版日期:2019-01-07
  • 通讯作者: 张旺锋,姜闯道
  • 基金资助:
    本研究由国家自然科学基金项目(31571576);国家重点基础研究发展计划(973计划)项目资助(2015CB150401)

Photosynthetic characteristics of senescent leaf induced by high planting density of maize at heading stage in the field

Han-Yu WU1,2,Ya-Jun ZHANG2,Wang-Feng ZHANG1,3,*(),Ke-Ru WANG4,Shao-Kun LI4,Chuang-Dao JIANG2,*()   

  1. 1 College of Life Science, Shihezi University, Shihezi 832003, Xinjiang, China
    2 Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
    3 College of Agriculture, Shihezi University / Key Laboratory of Oasis Ecology Agriculture of Xinjiang Production and Construction Corps, Shihezi 832003, Xinjiang, China
    4 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture, Beijing 100081, China
  • Received:2018-05-03 Accepted:2018-10-08 Published:2019-02-12 Published online:2019-01-07
  • Contact: Wang-Feng ZHANG,Chuang-Dao JIANG
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(31571576);and the National Basic Research Program of China(2015CB150401)

摘要:

为理解田间密植是否诱导抽穗期玉米叶片衰老以及衰老叶片的光合作用规律和机制, 本研究以玉米“先玉335”为材料研究了抽穗期栽培密度对穗位叶和穗下第4叶的光环境、比叶重、氮素含量、叶绿素含量、气体交换以及叶绿素荧光诱导动力学的影响。结果表明, 随着密度的增加玉米冠层内的光强大幅降低, 尤其穗下第4叶; 穗位叶和穗下第4叶的比叶重降低。同时, 穗位叶和穗下第4叶的氮素含量和叶绿素含量均随栽培密度增加而下降。不同栽培密度下穗位叶荧光诱导动力学曲线(OJIP)未发生明显改变, 而高密度下穗下第4叶OJIP的J和I相的相对荧光产量较低密度有提高趋势。高密度下, 穗位叶和穗下第4叶叶片的光合速率、气孔导度和蒸腾速率均降低; 不过, 穗位叶胞间CO2浓度降低, 穗下第4叶胞间CO2浓度增加。我们认为, 田间密植条件下异质性光环境可以迅速诱导抽穗期玉米冠层下部叶片(如穗下第4叶)衰老; 该过程中, 光合作用的限制因素不是光能吸收和电子传递, 而可能是碳同化。

关键词: 光合作用, 叶绿素荧光诱导动力学, 密植, 弱光, 衰老

Abstract:

A field experiment was conducted using maize variety “Xianyu 335” at heading stage to study the influences of planting density (15,000 plants ha -1, 75,000 plants ha -1, and 135,000 plants ha -1) on canopy light intensity, specific leaf weight, nitrogen content, chlorophyll content, gas exchange, and chlorophyll a fluorescence induction kinetics of the ear leaf and the fourth leaf below ear. With increasing the density, the light intensity within the canopy significantly reduced, especially around the fourth leaf below ear, and the specific leaf weight and content of nitrogen and chlorophyll in the ear leaf and the fourth leaf below ear reduced. The fluorescence induction kinetics of the ear leaf revealed little changes under different planting densities. Compared with low density, the J and I phases of the fluorescence induction kinetics curves increased slightly in the fourth leaf below ear under high density. In addition, at high planting density, the photosynthetic rate, stomatal conductance and transpiration rate of the both leaves decreased. The intercellular CO2 concentration decreased in the ear leaf, while increased in the fourth leaf below ear. Therefore, we believe that the heterogeneity of light environment can rapidly induce senescence in the lower leaves of the canopy (such as the fourth leaf below ear) at heading stage under high planting density in the field. In the process of leaf senescence within canopy, the limiting factor of photosynthesis is not light energy capture and electron transport, while may be the decrease of carbon assimilation.

Key words: photosynthesis, chlorophyll a fluorescence induction kinetics curves, planting density, low light, senescence

图1

栽培密度对抽穗期玉米穗位叶和穗下第4叶光强(A)和比叶重(B)的影响 LD: 低密度; MD: 中密度; HD: 高密度。柱上不同字母表示不同处理差异在0.05水平显著。"

图2

栽培密度对抽穗期玉米穗位叶和穗下第4叶氮素含量(A)和氮/碳比值(B)的影响 LD: 低密度; MD: 中密度; HD: 高密度。柱上不同字母表示不同处理差异在0.05水平显著。"

图3

栽培密度对抽穗期玉米穗位叶和穗下第4叶的叶绿素a (A)、叶绿素b (B)、类胡萝卜素含量(C)和叶绿素总量(D)的影响 LD: 低密度; MD: 中密度; HD: 高密度。柱上不同字母表示不同处理差异在0.05水平显著。"

图4

栽培密度对抽穗期玉米穗位叶(A)和穗下第4叶(B)叶绿素荧光诱导动力学的影响 LD: 低密度; MD: 中密度; HD: 高密度。"

图5

栽培密度对抽穗期玉米穗位叶和穗下第4叶荧光参数的影响 LD: 低密度; MD: 中密度; HD: 高密度。柱上不同字母表示不同处理差异在0.05水平显著。"

图6

栽培密度对抽穗期玉米穗位叶和穗下第4叶气体交换参数的影响 (A)净光合速率; (B)气孔导度; (C)蒸腾速率; (D)细胞间隙二氧化碳浓度。LD: 低密度; MD: 中密度; HD: 高密度。柱上不同字母表示不同处理差异在 0.05 水平显著。"

[1] 李涛, 刘玉军, 白红彤, 石雷, 姜闯道 . 栽培密度对薄荷生长策略和光合特性的影响. 植物生理学报, 2012,48:895-900.
Li T, Liu Y J, Bai H T, Shi L, Jiang C D . Effects of planting density on growth strategies and photosynthetic characteristics of Mentha haplocalyx Briq. Plant Physiol J, 2012,48:895-900 (in Chinese with English abstract).
[2] Li T, Liu Y J, Shi L, Jiang C D . Systemic regulation of photosynthetic function in field-grown sorghum. Plant Physiol Biochem, 2015,94:86-94.
doi: 10.1016/j.plaphy.2015.05.008 pmid: 26057699
[3] Bi H G, Liu P P, Jiang Z G, Ai X Z . Overexpression of the rubisco activase gene improves growth and low temperature and weak light tolerance in Cucumis sativus. Physiol Plant, 2017,161:224-234.
doi: 10.1111/ppl.12587 pmid: 28543370
[4] Wingler A, Purdy S, Maclean J A, Pourtau N . The role of sugars in integrating environmental signals during the regulation of leaf senescence. J Exp Bot, 2006,57:391-399.
doi: 10.1093/jxb/eri279 pmid: 16157653
[5] Brouwer B, Gardeström P, Keech O . In response to partial plant shading, the lack of phytochrome A does not directly induce leaf senescence but alters the fine-tuning of chlorophyll biosynthesis. J Exp Bot, 2014: 4037-4049.
doi: 10.1093/jxb/eru060 pmid: 4106438
[6] Kang K, Kim Y S, Park S, Back K . Evaluation of light-harvesting complex proteins as senescence-related protein markers in detached rice leaves. Photosynthetica, 2009,47:638-640.
doi: 10.1007/s11099-009-0093-5
[7] 张柳, 王铮, 张亚婕, 林春, 陈严平, 李军营, 毛自朝 . 烟草叶片衰老期过程中的蛋白质组学分析. 植物生理学报, 2014,50:488-500.
Zhang L, Wang Z, Zhang Y J, Lin C, Chen Y P, Li J Y, Mao Z Z . Proteomic analysis of senescing leaf of tobacco. Plant Physiol J, 2014,50:488-500 (in Chinese with English abstract).
[8] Zhou Y F, Wang D, Wang N, Yu J L, Wang Y T, Wu Q, Xu W J, Huang R D . Involvement of endogenous abscisic acid and cytokinin in photosynthetic performance of different stay green inbred lines of maize under drought. Int J Agric Biol, 2016,18:1067-1074.
doi: 10.17957/IJAB
[9] Brouwer B, Ziolkowska A, Bagard M, Keech O, Gardestrom P . The impact of light intensity on shade-induced leaf senescence. Plant Cell Environ, 2012,35:1084-1098.
doi: 10.1111/j.1365-3040.2011.02474.x pmid: 22171633
[10] Panda D, Sarkar R K . Natural leaf senescence: probed by chlorophyll fluorescence, CO2 photosynthetic rate and antioxidant enzyme activities during grain filling in different rice cultivars. Physiol Mol Biol Plants, 2013,19:43-51.
doi: 10.1007/s12298-012-0142-6 pmid: 24381436
[11] Weng X Y, Xu H X, Jiang D A , . Characteristics of gas exchange, chlorophyll fluorescence and expression of key enzymes in photosynthesis during leaf senescence in rice plants. J Integr Plant Biol, 2005, 47:560-566.
doi: 10.1111/j.1744-7909.2005.00098.x
[12] Yamori W, Noguchi K O, Hikosaka K, Terashima I . Phenotypic plasticity in photosynthetic temperature acclimation among crop species with different cold tolerances. Plant Physiol, 2010,152:388-399.
doi: 10.1104/pp.109.145862 pmid: 19880611
[13] Sun J L, Sui X L, Huang H Y, Wang S H, Wei Y X, Zhang Z X . Low light stress down-regulated Rubisco gene expression and photosynthetic capacity during cucumber (Cucumis sativus L.) leaf development. J Integr Agric, 2014,13:997-1007.
doi: 10.1016/S2095-3119(13)60670-X
[14] 孙建磊, 王崇启, 肖守华, 高超, 李利斌, 曹齐卫, 王晓, 董玉梅, 焦自高 . 弱光对黄瓜幼苗光合特性及Rubisco酶的影响. 核农学报, 2017,31:1200-1209.
doi: 10.11869/j.issn.100-8551.2017.06.1200
Sun J L, Wang C Q, Xiao S H, Gao C, Li L B, Cao Q W, Wang X, Dong Y M, Jiao Z G . Effect of low light on photosynthesis and rubisco of cucumber seedlings. J Nuclear Agric Sci, 2017,31:1200-1209.
doi: 10.11869/j.issn.100-8551.2017.06.1200
[15] Tholen D, Pons T L, Voesenek L A C J, Poorter H . Ethylene insensitivity results in down-regulation of Rubisco expression and photosynthetic capacity in tobacco. Plant Physiol, 2007,144:1305-1315.
doi: 10.1104/pp.107.099762 pmid: 17535822
[16] Wang Y W, Yu J, Jiang X H, Sun L G, Li K, Wang P Y, Wu M, Chen G X, Lyu C G . Analysis of thylakoid membrane protein and photosynthesis related key enzymes in super high-yield hybrid rice LYPJ grown in field condition during senescence stage. Acta Physiol Plant, 2015,37:1.
doi: 10.1007/s11738-014-1746-y
[17] Keech O, Pesquet E, Ahad A, Askne A, Nordvall D, Vodnala S M, Tuominen H, Hurry V, Dizengremel P, Gardeström P . The different fates of mitochondria and chloroplasts during dark-induced senescence in Arabidopsis leaves. Plant Cell Environ, 2007,30:1523-1534.
doi: 10.1111/j.1365-3040.2007.01724.x pmid: 17986154
[18] Weaver L M, Amasino R M . Senescence is induced in individually darkened Arabidopsis leaves, but inhibited in whole darkened plants. Plant Physiol, 2001,127:876-886.
doi: 10.1104/pp.010312 pmid: 11706170
[19] Moschen S, Luoni S B, Julio A D R, Caro M D P, Tohge T, Watanabe M, Hollmann J, Gonzalez S, Rivarola M, Dopazo J, Hopp H E, Hoefgen R, Fernie A R, Paniego N, Heinz R A . Integrating transcriptomic and metabolomic analysis to understand natural leaf senescence in sunflower. Plant Biotechnol J, 2016, 14, pp:719-734.
doi: 10.1111/pbi.12422 pmid: 26132509
[20] Arnon D I . Copper enzymes in isolated chloroplasts: polyphenoloxidase in Beta vulgaris. Plant Physiol, 1949,24:1-5.
doi: 10.1104/pp.24.1.1 pmid: 16654194
[21] 李鹏民, 高辉远, Strasser R J. 快速叶绿素荧光诱导动力学分析在光合作用研究中的应用. 植物生理与分子生物学学报, 2005,31:559-566.
doi: 10.3321/j.issn:1671-3877.2005.06.001
Li P M, Gao H Y, Strasser R J . Application of the fast chlorophyll fluorescence induction dynamics analysis in photosynthesis study. J Plant Physiol Mol Biol, 2005,31:559-566 (in Chinese with English abstract).
doi: 10.3321/j.issn:1671-3877.2005.06.001
[22] 陈传永, 侯海鹏, 李强, 朱平, 张振勇, 董志强, 赵明 . 种植密度对不同玉米品种叶片光合特性与碳、氮变化的影响. 作物学报, 2010,36:871-878.
doi: 10.3724/SP.J.1006.2010.00871
Chen C Y, Hou H P, Li Q, Zhu P, Zhang Z Y, Dong Z Q, Zhao M . Effects of panting density on photosynthetic characteristics and changes of carbon and nitrogen in leaf of different corn hybrids. Acta Agron Sin, 2010,36:871-878.
doi: 10.3724/SP.J.1006.2010.00871
[1] 周练, 刘朝显, 熊雨涵, 周京, 蔡一林. 质膜内在蛋白ZmPIP1;1参与玉米耐旱性和光合作用的功能分析[J]. 作物学报, 2021, 47(3): 472-480.
[2] 侯慧芝, 张绪成, 方彦杰, 于显枫, 王红丽, 马一凡, 张国平, 雷康宁. 全膜微垄沟播对寒旱区春小麦苗期土壤水热环境及光合作用的影响[J]. 作物学报, 2020, 46(9): 1398-1407.
[3] 马正波, 董学瑞, 唐会会, 闫鹏, 卢霖, 王庆燕, 房孟颖, 王琦, 董志强. 四甲基戊二酸对夏玉米光合生产特征的调控效应[J]. 作物学报, 2020, 46(10): 1617-1627.
[4] 赵伟,甄天悦,张子山,徐铮,高大鹏,丁聪,刘鹏,李耕,宁堂原. 增施磷肥提高弱光环境中夏大豆叶片光合能力及产量[J]. 作物学报, 2020, 46(02): 249-258.
[5] 王素芳,薛惠云,张志勇,汤菊香. 棉花根系生长与叶片衰老的协调性[J]. 作物学报, 2020, 46(01): 93-101.
[6] 张诚信,郭保卫,唐健,许方甫,许轲,胡雅杰,邢志鹏,张洪程,戴其根,霍中洋,魏海燕,黄丽芬,陆阳,唐闯,戴琪星,周苗,孙君仪. 灌浆结实期低温弱光复合胁迫对稻米品质的影响[J]. 作物学报, 2019, 45(8): 1208-1220.
[7] 于奇,冯乃杰,王诗雅,左官强,郑殿峰. S3307对始花期和始粒期淹水绿豆光合作用及产量的影响[J]. 作物学报, 2019, 45(7): 1080-1089.
[8] 任永福,陈国鹏,蒲甜,陈诚,曾瑾汐,彭霄,马艳玮,杨文钰,王小春. 玉米-大豆带状种植中套作高光效玉米窄行穂位叶光合特性对弱光胁迫的响应[J]. 作物学报, 2019, 45(5): 728-739.
[9] 吴含玉,肖飞,张亚黎,姜闯道,张旺锋. 强闪光抑制棉花叶片光系统II活性和热耗散[J]. 作物学报, 2019, 45(5): 792-797.
[10] 刘妍,刘兆新,何美娟,刘婷如,杨坚群,甄晓宇,栗鑫鑫,李向东,杨东清. 冬闲期耕作方式对连作花生叶片衰老和产量的影响[J]. 作物学报, 2019, 45(1): 131-143.
[11] 吕国锋,范金平,张伯桥,高德荣,王慧,刘业宇,吴素兰,程凯,王秀娥. 小麦旗叶衰老过程不同数学模型拟合比较及衰老特征分析[J]. 作物学报, 2019, 45(1): 144-152.
[12] 李倩,齐凌云,殷俐娜,王仕稳,邓西平. 低氮诱导小麦灌浆期旗叶衰老与膜脂的关系[J]. 作物学报, 2018, 44(8): 1221-1228.
[13] 李荣发,刘鹏,杨清龙,任昊,董树亭,张吉旺,赵斌. 玉米密植群体下部叶片衰老对植株碳氮分配与产量形成的影响[J]. 作物学报, 2018, 44(7): 1032-1042.
[14] 邹应斌,黄敏. 转型期作物生产发展的机遇与挑战[J]. 作物学报, 2018, 44(6): 791-795.
[15] 胡旦旦,张吉旺,刘鹏,赵斌,董树亭. 密植条件下玉米品种混播对夏玉米光合性能及产量的影响[J]. 作物学报, 2018, 44(6): 920-930.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!