欢迎访问作物学报,今天是

作物学报 ›› 2019, Vol. 45 ›› Issue (4): 508-521.doi: 10.3724/SP.J.1006.2019.83060

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

用3种方法定位玉米萌发期和苗期的耐盐和耐碱相关性状QTL

张春宵1,李淑芳1,金峰学1,刘文平1,李万军2,刘杰1,3,李晓辉1,*()   

  1. 1 吉林省农业科学院作物资源研究所, 吉林公主岭136100
    2 吉林省农业科学院洮南综合试验站, 吉林洮南137100
    3 延边大学农学院, 吉林延吉133400
  • 收稿日期:2018-08-17 接受日期:2019-01-12 出版日期:2019-04-12 网络出版日期:2019-02-01
  • 通讯作者: 李晓辉
  • 作者简介:chunxiao1000@126.com
  • 基金资助:
    本研究由国家重点研发计划项目(2016YFD0100103);吉林省农业科技创新工程(CXGC2017JC001, CXGC2017TD001)资助

QTL mapping of salt and alkaline tolerance-related traits at the germination and seedling stage in maize (Zea mays L.) using three analytical methods

ZHANG Chun-Xiao1,LI Shu-Fang1,JIN Feng-Xue1,LIU Wen-Ping1,LI Wan-Jun2,LIU Jie1,3,LI Xiao-Hui1,*()   

  1. 1 Crop Germplasm Resources Institute, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, Jilin, China
    2 Taonan Research Center, Jilin Academy of Agricultural Sciences, Taonan 137100, Jilin, China
    3 College of Agronomy, Yanbian University, Yanji 133400, Jilin, China
  • Received:2018-08-17 Accepted:2019-01-12 Published:2019-04-12 Published online:2019-02-01
  • Contact: Xiao-Hui LI
  • Supported by:
    This study was supported by the National Key R&D Program of China(2016YFD0100103);Agricultural Science and Technology Innovation Program of Jilin Academy of Agricultural Sciences (CXGC2017JC001, CXGC2017TD001).

摘要:

以耐盐碱郑58和盐碱敏感昌7-2为亲本, 构建包含151份F2:5重组自交系(RILs)群体。基于3K芯片对郑58、昌7-2及其F2:5家系进行基因型分析, 构建了包含1407个SNP分子标记的高密度遗传连锁图谱。该图谱的各染色体标记数在84~191之间, 标记间的平均距离为0.81 cM。胁迫液为200 mmol L -1 NaCl和100 mmol L -1 Na2CO3, 对照液为蒸馏水或霍格兰营养液, 对盐、碱胁迫和自然条件下玉米的发芽率(GP)、株高(PH)、植株干、鲜重(FW、DW)、幼苗组织含水量(TWS)、植株地上部分钠含量(SNC)、钾含量(SKC)、钠/钾含量比(NKR)、苗期耐盐率(STR)、耐碱率(ATR) 10项指标, 采用3种不同的作图方法同时定位研究, 对加性QTL定位采用复合区间作图法(CIM)和完备区间作图法(ICIM), 对加性QTL与环境互作联合分析采用混合线性模型的复合区间作图法(MCIM)。结果表明, (1)与对照条件下各性状表型值相比, 耐碱相关性状的降低较耐盐相关性状明显, 说明玉米对碱胁迫更加敏感和碱胁迫对玉米的伤害更严重。碱与盐胁迫下SKC相当而SNC差异较大, 表明Na +、K +的吸收和运输是相互独立的两个过程, 玉米盐、碱胁迫可能是两种性质不同的胁迫。(2)在自然、盐和碱胁迫条件下, 运用CIM分别检测到27、28、40个加性QTL; 运用ICIM分别检测到28、23、17个加性QTL; 运用MCIM共检测到11个耐盐加性QTL、4个环境互作QTL以及11个耐碱加性QTL、3个环境互作QTL。(3)盐胁迫条件下的qPH-9qSTR-8qNKR-6qNKR-7和碱胁迫条件下的qPH-9qATR-3能被3种作图方法重复检测到。与前人结果比较, qPH-9qSTR-8qNKR-6q-ATR-3定位在相同或邻近区域, qNKR-7尚未见报道。本研究结果为精细定位玉米耐盐碱主效基因、挖掘候选基因和开发用于标记辅助选择的实用功能标记奠定基础。

关键词: 玉米, 萌发期, 苗期, 盐/碱胁迫, QTL定位

Abstract:

The recombinant inbred line (RIL) F2:5 population was derived from a cross between Zheng 58 tolerant to alkaline stress and Chang 7-2 sensitive to alkaline stress. By using the 3K chips, the high-density genetic map with 1407 SNP markers was constructed. The number of markers on 10 chromosomes ranged from 84 to 191, and the average physical distance between two markers was 0.81 cM. The germination percentage (GP), plant height (PH), fresh weight (FW), dry weight (DW), tissue water content (TWC), shoot Na + concentration (SNC), shoot K + concentration (SKC), shoot K +/Na + ratio (NKR), salt tolerance rating (STR), or alkaline tolerance rating (ATR) were measured under 200 mmol L -1 NaCl solution of salt stress, 100 mmol L -1 Na2CO3 solution of alkaline stress and the normal water or full-strength Hoagland’s nutrient solutions irrigation as control conditions. The additive quantitative trait loci (QTLs) analysis was conducted by using the composite interval mapping (CIM) and the complete interval mapping method (ICIM), the additive and epistatic QTL × environment interaction effects were analyzed by using the mixed composite interval mapping method (MCIM). Compared with the normal condition, the alkaline stress decreased the tolerance more significantly than the salt stress. Maize was more sensitive to the alkaline stress. The harm of alkaline stress on maize was more serious. The SKC was comparable, but the SNC had great difference for alkaline and salt stresses indicating that the uptake and transport of Na + and K + were independent and salt and alkali were two different kinds of stresses. Under normal condition, salt stress and alkaline stress, 27, 28, and 40 additive QTLs were respectively detected by CIM, and 28, 13, and 17 additive QTLs were respectively detected by ICIM. By using MCIM, a total of 11 additive QTLs and 4 QTL × environment interaction QTLs for salt tolerance-related traits, as well as a total of 11 additive QTLs and 3 QTL × environment interaction QTLs for alkaline tolerance-related traits were detected. The QTLs qPH-9, qSTR-8, qNKR-6, qNKR-7 for salt tolerance and qPH-9, q-ATR-3 for alkaline tolerance were repeatedly detected by three mapping methods. After comparing the physical positions of these QTLs with those previously reported, we found qPH-9, qSTR-8, qNKR-6, and q-ATR-3 were located in the same or adjacent position, but qNKR-7 was newly reported. The present study provides a good basis for mapping major genes, mining candidate genes and developing practically functional markers applied in the improvement of salt and alkaline tolerance-related traits in maize.

Key words: maize (Zea mays L.), germination stage, seedling stage, salt/alkaline tolerance, QTL mapping

表1

苗期151个家系以及亲本在对照、盐及碱处理条件下各性状的表型值"

性状
Trait
处理
Treatment
亲本Parents 重组自交系群体 RIL populations
郑58
Zheng 58
昌7-2
Chang 7-2
均值
Mean
最小值
Min.
最大值
Max.
变异系数
CV (%)
偏度
Kurtosis
峰度
Skewness
发芽率 对照N 1.00 1.00 0.83 0.13 1.00 25.62 -1.36 1.06
GP (%) 盐胁迫S 0.40 0.33* 0.50 0.00 1.00 54.30 -0.10 -1.07
碱胁迫A 0.60 0.33** 0.26 0.00 0.73 65.21 0.61 0.03
株高 对照N 30.50 32.20 35.34 22.90 50.30 13.64 -0.03 0.20
PH (cm) 盐胁迫S 34.10 26.65** 34.03 21.35 49.40 15.10 0.17 -0.11
碱胁迫A 29.95 20.50** 27.53 18.00 40.50 16.46 0.54 0.12
地上鲜重 对照N 1.18 1.38 1.41 0.64 2.51 25.93 0.25 -0.14
FW (g) 盐胁迫S 0.91 0.64** 1.20 0.48 2.74 30.80 0.67 1.41
碱胁迫A 0.99 0.75* 0.99 0.46 2.09 31.23 1.03 1.16
地上干重 对照N 0.09 0.09 0.09 0.04 0.18 27.37 0.72 1.29
DW (g) 盐胁迫S 0.07 0.07 0.10 0.04 0.23 27.50 0.93 2.32
碱胁迫A 0.08 0.06* 0.07 0.03 0.16 27.24 0.94 1.04
组织含水量 对照N 0.92 0.93 0.94 0.92 0.95 0.57 -0.44 0.95
TWC (%) 盐胁迫S 0.91 0.88 0.91 0.85 0.94 1.30 -1.38 4.47
碱胁迫A 0.90 0.93 0.92 0.89 0.96 1.04 -0.42 0.61
耐盐率STR 盐胁迫S 2.80 4.00** 2.86 1.56 4.30 19.10 0.30 -0.30
耐碱率ATR 盐胁迫A 1.67 3.22** 2.17 1.00 4.78 41.52 0.35 -0.67
钾含量 对照N 82.45 81.40 81.43 66.32 112.52 48.91 0.66 -0.05
SKC (mg g-1) 盐胁迫S 9.13 8.42 9.18 6.64 11.88 10.60 0.04 0.12
碱胁迫A 9.25 7.91 9.04 6.83 11.71 10.89 0.27 -0.55
钠含量 对照N 2.02 3.16* 2.23 0.88 4.97 39.18 0.63 -0.64
SNC (mg g-1) 盐胁迫S 59.70 71.02** 69.14 42.18 105.13 18.40 0.28 -0.32
碱胁迫A 23.91 39.38** 37.99 24.38 79.70 28.24 -0.08 -0.28
钠钾比 对照N 0.02 0.04** 0.03 0.01 0.06 37.18 0.45 -0.59
NKR (%) 盐胁迫S 0.15 0.12* 7.62 4.50 13.45 59.90 -0.53 -1.02
碱胁迫A 2.59 4.98** 4.36 1.34 9.24 29.40 -0.15 -0.48

图1

F2:5群体对照条件下相关性状的相关性分析与频数分布 *和**分别表示在5%和1%; NS: 不显著; 缩写同表1。"

图2

F2:5群体盐胁迫条件下耐盐相关性状的相关性分析与频数分布 *和**分别表示在 5%和1%水平显著性; NS: 不显著; 缩写同表1。"

图3

F2:5群体碱胁迫条件下耐碱相关性状的相关性分析与频数分布 *和**分别表示在5%和1%水平显著性; NS: 不显著; 缩写同表1。"

图4

基于SNP标记的玉米遗传连锁图谱"

附表1

基于CIM模型的耐盐、耐碱 QTL定位"

QTL 性状
Trait
处理
Treatment
染色体
Chr.
位置
Position (cM)
左标记
Left marker
右标记
Right marker
置信区间
LOD
加性效应
Additive
贡献率
R2
qGP-1-2 GP N 1 118.1 SYN15309 SYN25375 3.26 0.54 2.40
qGP-3-2 GP N 3 52.4 PZE-103034323 SYN31233 8.01 -0.50 3.00
qGP-4-4 GP N 4 34.1 PZE-104022472 PZE-104023120 4.28 0.90 9.30
qGP-5-4 GP N 5 118.5 PZE-105156153 PZE-105116507 7.85 -0.85 4.13
qGP-7-3 GP N 7 78.5 PZE-107136612 SYN18602 2.64 -0.46 6.55
qGP-2-3 GP S 2 64.8 PZE-102076037 SYN36641 4.44 1.04 9.07
qGP-5-1 GP S 5 12.3 SYN3124 SYN29224 3.67 -0.29 4.57
qGP-5-2 GP S 5 67.0 PUT-163a-148940529-435 PZE-105164922 2.58 0.02 2.05
qGP-8-1 GP S 8 33.8 PZE-108018114 PZE-108020824 2.81 -0.36 5.06
qGP-1-3 GP A 1 121.5 SYN36600 PZE-101199598 5.12 0.50 3.60
qGP-2-1 GP A 2 37.8 SYN8349 PZE-102179936 3.83 0.53 9.56
qGP-4-1 GP A 4 0.0 PZE-104000045 PUT-163a-50332311-2217 2.63 -0.47 5.59
qGP-7-2 GP A 7 21.9 PZE-107017584 PZE-107020326 6.53 0.73 16.02
qPH-1-2 PH N 1 81.4 PZE-101060842 SYN29464 2.61 -0.82 5.47
qPH-2-3 PH N 2 81.2 SYN30561 SYN11378 4.08 -0.72 5.95
qPH-3-4 PH N 3 55.3 PZE-103139096 PZE-103044762 3.08 -0.71 2.70
qPH-6-1 PH N 6 1.0 SYN11566 PUT-163a-74244759-3691 2.73 4.12 8.19
qPH-9-4 PH N 9 37.1 PZE-109061069 PZE-109066188 3.53 1.66 9.59
qPH-1-1 PH S 1 23.0 PZE-101117015 SYN11490 2.61 -1.76 5.58
qPH-6-3 PH S 6 104.0 SYN27121 PZE-106115356 3.33 1.43 7.16
qPH-8-3 PH S 8 33.8 PZE-108018114 PZE-108020824 4.64 1.55 11.43
qPH-9-5 PH S 9 37.1 PZE-109061069 PZE-109066188 3.68 1.70 6.26
qPH-2-2 PH A 2 66.7 PZE-102050753 PZB02035.2 2.68 -0.80 4.75
qPH-3-1 PH A 3 7.2 SYN39155 SYN15340 3.58 -0.29 2.65
qPH-5-1 PH A 5 33.6 SYN1390 SYN34468 3.05 1.48 7.17
qPH-8-2 PH A 8 30.2 SYN20702 PZE-108016333 5.47 1.50 5.27
qPH-10-1 PH A 10 59.5 PZE-110075434 PZE-110111417 6.64 3.08 8.10
qFW-1-3 FW N 1 130.3 SYN13476 SYN30022 2.96 0.98 3.43
qFW-3-6 FW N 3 59.3 PZE-103139096 PZE-103044762 2.69 -1.90 26.16
qFW-6-1 FW N 6 77.2 PZE-106074560 PZE-106075137 2.94 -0.70 5.16
qFW-7-2 FW N 7 39.9 SYN29953 SYN18186 4.49 -1.02 10.65
qFW-9-2 FW N 9 36.1 PZE-109038570 SYN30924 3.90 1.21 5.83
qFW-3-1 FW S 3 4.2 SYN772 SYN39155 2.73 1.05 4.06
qFW-9-7 FW S 9 37.1 PZE-109061069 PZE-109066188 4.03 1.33 11.16
qFW-10-1 FW S 10 57.6 PZE-110002524 PZE-110075434 4.74 -1.86 2.49
qFW-1-1 FW A 1 5.0 PZE-101117015 SYN11490 3.06 3.45 25.45
qFW-2-2 FW A 2 68.1 PZB02035.2 PZE-102046959 6.61 -0.57 8.51
qFW-3-2 FW A 3 8.2 SYN39155 SYN15340 2.83 -0.34 3.37
qFW-3-5 FW A 3 57.3 PZE-103139096 PZE-103044762 2.71 -0.38 2.89
qFW-3-7 FW A 3 107.0 SYN31043 SYN30138 2.95 0.89 5.16
qFW-5-1 FW A 5 117.5 PZE-105156153 PZE-105116507 3.46 -0.99 3.40
qFW-10-2 FW A 10 59.5 PZE-110075434 PZE-110111417 8.75 2.85 18.78
qDW-1-1 DW N 1 79.5 PZE-101058154 SYN11245 2.81 -0.61 4.60
qDW-1-5 DW N 1 130.9 PUT-163a-71766009-3502 SYN13025 4.01 0.81 8.07
qDW-3-5 DW N 3 58.3 PZE-103139096 PZE-103044762 2.58 -1.33 16.57
qDW-6-2 DW N 6 77.2 PZE-106074560 PZE-106075137 3.37 -0.40 4.61
qDW-7-1 DW N 7 32.4 PZE-107065747 PZE-107068965 4.55 -0.71 11.44
qDW-2-1 DW S 2 1.4 SYN30559 SYN17595 2.81 2.93 7.34
qDW-8-1 DW S 8 33.8 PZE-108018114 PZE-108020824 2.53 0.68 6.95
qDW-2-3 DW A 2 68.1 PZB02035.2 PZE-102046959 2.69 -0.34 5.05
qDW-3-1 DW A 3 7.2 SYN39155 SYN15340 3.68 -0.30 5.70
qDW-3-2 DW A 3 12.3 SYN10329 SYN31006 3.19 -0.39 5.80
qDW-6-1 DW A 6 22.6 PZE-106010873 PZE-106021096 3.22 -0.17 2.97
qDW-8-5 DW A 8 59.5 PZE-108103951 PZE-108073114 3.88 2.21 24.44
qDW-10-1 DW A 10 58.5 PZE-110002524 PZE-110111417 9.31 1.46 2.51
qTWC-5-1 TWC N 5 53.4 PZE-105134931 PZE-105146550 3.01 -1.20 7.84
qTWC-5-5 TWC N 5 119.5 PZE-105156153 PZE-105116507 3.96 -4.43 9.93
qTWC-7-1 TWC N 7 17.7 SYN9669 PZE-107016614 3.64 -1.14 4.88
qTWC-3-2 TWC S 3 38.4 PZE-103034323 SYN31233 7.32 0.21 2.03
qTWC-7-2 TWC S 7 17.7 SYN9669 PZE-107016614 6.41 0.17 2.74
qTWC-9-2 TWC S 9 40.3 PZE-109070385 PZE-109072991 3.20 0.35 10.31
qTWC-2-1 TWC A 2 66.7 PZE-102050753 PZB02035.2 2.74 -1.23 4.26
qTWC-3-4 TWC A 3 88.7 PUT-163a-60351350-2652 PZE-103149597 4.45 3.11 12.83
qTWC-5-2 TWC A 5 75.3 PZE-105166634 PZE-105180267 3.30 -2.57 8.93
qSNC-2-4 SNC S 2 42.6 PZE-102176758 PZE-102175663 3.48 -3.85 2.34
qSNC-3-2 SNC S 3 25.8 PZE-103028604 PZE-103029988 2.71 -4.30 7.78
qSNC-3-4 SNC S 3 34.0 PZE-103049728 PZE-103050226 2.70 -3.85 6.59
qSNC-1-3 SNC A 1 146.6 SYN11155 SYN3285 3.12 3.84 4.33
qSNC-2-2 SNC A 2 8.3 SYN30559 SYN17595 4.70 6.38 13.78
qSNC-3-5 SNC A 3 98.2 SYN25148 PZE-103161091 3.28 -4.48 6.99
qSNC-4-1 SNC A 4 109.1 SYN1804 SYN21539 3.63 -1.95 8.23
qSNC-10-1 SNC A 10 11.6 PZE-110052763 PZE-110037004 2.75 3.35 2.07
qSKC-1-1 SKC N 1 60.0 SYN35792 PZE-101032517 2.93 12.79 8.04
qSKC-4-3 SKC N 4 52.8 PZE-104102175 SYN1845 2.86 -12.01 7.64
qSKC-4-4 SKC S 4 54.9 PZE-104108744 SYN14363 2.74 -7.15 3.07
qSKC-5-1 SKC A 5 14.2 SYN37537 PZE-105022648 2.58 -1.45 4.46
qSKC-5-2 SKC A 5 67.0 PUT-163a-148940529-435 PZE-105164922 3.64 -4.49 9.48
qSKC-5-3 SKC A 5 79.8 PZE-105180266 SYN31311 3.29 3.42 10.38
qSKC-9-1 SKC A 9 31.9 PZE-109019058 PZE-109016576 2.69 -1.13 4.47
qSKC-10-1 SKC A 10 35.7 PZE-110001452 PZE-110002524 2.73 -0.73 2.10
qNKR-4-1 NKR N 4 27.9 SYN33243 PZE-104018854 10.86 -0.10 3.30
qNKR-5-2 NKR N 5 100.4 PZE-105163718 PZE-105156153 17.94 0.14 2.33
qNKR-1-1 NKR S 1 77.1 SYN24238 SYN36556 2.67 0.88 4.75
qNKR-6-2 NKR S 6 90.6 PZB00942.1 PZE-106088503 3.19 0.68 5.86
qNKR-6-3 NKR S 6 112.1 SYN31997 SYN10686 2.57 0.97 7.05
qNKR-7-2 NKR S 7 72.2 PZE-107127296 PUT-163a-94475607-4877 4.54 1.27 11.02
qNKR-4-2 NKR A 4 71.3 SYN19936 PZE-104152590 2.65 0.21 3.84
qSTR-1-1 STR S 1 42.2 SYN6209 PZE-101027182 2.84 -1.59 5.56
qSTR-1-3 STR S 1 90.7 PZE-101090700 SYN21374 2.73 1.63 5.97
qSTR-2-1 STR S 2 69.0 PZE-102047695 PZE-102047388 3.11 1.22 7.32
qSTR-8-3 STR S 8 39.8 PZE-108028788 PZE-108060116 3.35 -1.57 2.73
qATR-2-1 ATR A 2 72.4 SYN26838 SYN9944 2.66 0.93 3.12
qATR-3-3 ATR A 3 107.0 SYN31043 SYN30138 6.34 -3.46 4.61
qATR-5-1 ATR A 5 32.1 SYN35104 PZE-105105471 3.34 -2.83 7.23
qATR-5-2 ATR A 5 39.9 PZA00300.16 PZE-105110447 2.74 -2.74 6.72

附表2

附基于ICIM模型的耐盐、耐碱QTL定位"

QTL 性状
Trait
处理
Treatment
染色体
Chr.
位置
Position (cM)
左标记
Left marker
右标记
Right marker
置信区间
LOD
加性效应
Additive
贡献率
PVE (%)
qGP-1-1 GP N 1 4.9 PZE-101117015 SYN11490 7.72 -0.27 1.63
qGP-3-1 GP N 3 50.8 PZE-103034323 SYN31233 4.93 -0.28 1.59
qGP-4-5 GP N 4 109 SYN1804 SYN21539 4.45 -0.25 1.72
qGP-5-3 GP N 5 115.9 PZE-105156153 PZE-105116507 6.46 -0.26 1.66
qGP-9-1 GP N 9 130.8 PUT-163a-37425582-2026 PZE-109106839 3.87 -0.27 1.53
qGP-10-1 GP N 10 53.8 PZE-110002524 PZE-110075434 6.3 -0.29 1.53
qGP-2-4 GP S 2 70.0 PZE-102045898 PZA00590.1 4.03 0.09 12.12
qGP-2-2 GP A 2 64.3 PZE-102092255 PZE-102076037 2.95 0.05 8.70
qPH-3-3 PH N 3 55.3 PZE-103139096 PZE-103044762 4.29 -3.71 8.71
qPH-8-1 PH N 8 9.5 PZE-108003557 SYN27442 5.47 1.66 11.02
qPH-8-7 PH N 8 99.9 PZE-108131283 PUT-163a-60347965-2588 2.73 -1.19 5.3
qPH-9-6 PH N 9 37.6 PZE-109061069 PZE-109066188 5.75 1.77 11.68
qPH-6-2 PH S 6 104.0 SYN4185 SYN27121 2.67 1.28 7.40
qPH-8-4 PH S 8 34.4 PZE-108018114 PZE-108020824 3.45 1.52 10.36
qPH-9-1 PH S 9 36.8 SYN30924 PZE-109061069 3.15 1.45 8.89
qPH-2-1 PH A 2 5.5 SYN30559 SYN17595 2.69 3.88 5.55
qPH-3-2 PH A 3 55.2 SYN31233 PZE-103139096 3.02 -3.25 6.33
qPH-5-2 PH A 5 36.3 PZE-105121226 PZE-105116521 2.54 1.18 1.26
qPH-8-5 PH A 8 54.1 PZE-108062218 PZE-108103951 4.43 3.51 7.41
qPH-8-6 PH A 8 60.6 PZE-108103951 PZE-108073114 3.52 3.59 6.74
qPH-9-7 PH A 9 37.7 PZE-109066188 PZE-109070385 3.74 1.49 1.89
qFW-1-2 FW N 1 129.7 SYN13476 SYN30022 2.8 0.1 5.93
qFW-3-4 FW N 3 56.3 PZE-103139096 PZE-103044762 3.62 -0.26 13.76
qFW-9-4 FW N 9 36.5 PZE-109038570 SYN30924 2.78 0.1 5.63
qFW-8-2 FW S 8 57.5 PZE-108103951 PZE-108073114 5.16 0.81 11.90
qFW-9-3 FW S 9 36.3 PZE-109038570 SYN30924 5.11 0.14 12.13
qFW-2-1 FW A 2 4.00 SYN30559 SYN17595 2.76 0.27 5.68
qFW-3-3 FW A 3 55.2 SYN31233 PZE-103139096 2.56 -0.21 6.93
qFW-8-1 FW A 8 56.0 PZE-108062218 PZE-108103951 5.06 0.30 7.73
qFW-8-3 FW A 8 58.9 PZE-108103951 PZE-108073114 4.78 0.31 7.11
qFW-9-1 FW A 9 16.9 PZE-109006381 PZE-109007075 3.38 0.09 1.91
qFW-9-8 FW A 9 133.7 PUT-163a-37425582-2026 PZE-109106839 2.59 0.33 3.63
qDW-1-2 DW N 1 129.6 SYN13476 SYN30022 4.04 0.01 7.79
qDW-3-4 DW N 3 55.8 PZE-103139096 PZE-103044762 5.21 -0.02 14.37
qDW-2-2 DW S 2 1.5 SYN30559 SYN17595 4.05 0.04 5.96
qDW-3-3 DW S 3 54.3 PZE-103034323 SYN31233 3.08 0.04 4.66
qDW-8-2 DW S 8 57.1 PZE-108062218 PZE-108103951 7.04 0.05 9.02
qDW-8-4 DW S 8 57.9 PZE-108103951 PZE-108073114 7.09 0.05 9.00
qDW-9-1 DW S 9 36.2 PZE-109038570 SYN30924 3.23 0.01 2.65
qDW-8-3 DW A 8 57.5 PZE-108103951 PZE-108073114 5.15 0.04 16.26
qDW-9-4 DW A 9 134.8 PUT-163a-37425582-2026 PZE-109106839 3.37 0.02 10.46
qTWC-5-4 TWC N 5 119.0 PZE-105156153 PZE-105116507 3.06 -0.01 7
qTWC-7-3 TWC N 7 25.1 PZE-107020326 PZE-107024238 3.93 0 3.89
qTWC-8-2 TWC N 8 57.1 PZE-108062218 PZE-108103951 2.66 -0.01 6.72
qTWC-3-1 TWC S 3 0.0 SYN5839 PZE-103001968 3.10 0.00 1.02
qTWC-5-3 TWC S 5 118.6 PZE-105156153 PZE-105116507 4.55 -0.02 3.70
qTWC-8-1 TWC S 8 55.9 PZE-108062218 PZE-108103951 3.17 -0.01 4.31
qTWC-8-3 TWC S 8 58.9 PZE-108103951 PZE-108073114 3.87 -0.02 4.32
qTWC-9-1 TWC S 9 37.6 PZE-109061069 PZE-109066188 3.97 0.00 1.34
qTWC-9-3 TWC S 9 132.0 PUT-163a-37425582-2026 PZE-109106839 3.58 -0.01 3.91
qTWC-3-3 TWC A 3 88.4 PZE-103133167 PUT-163a-60351350-2652 2.92 0.00 8.38
qSTR-1-2 STR S 1 42.3 SYN6209 PZE-101027182 3.09 -0.16 9.32
qSTR-8-1 STR S 8 39.3 PZE-108028788 PZE-108060116 3.58 -0.17 10.80
qATR-3-1 ATR A 3 107.0 SYN31043 SYN30138 3.52 -0.29 10.46
qSNC-2-1 SNC N 2 5.3 SYN30559 SYN17595 4.85 5.23 1.87
qSNC-6-1 SNC N 6 3.8 SYN11566 PUT-163a-74244759-3691 4.83 5.17 3.87
qSNC-8-1 SNC N 8 55.4 PZE-108062218 PZE-108103951 4.95 5.17 1.87
qSNC-10-2 SNC N 10 56.9 PZE-110002524 PZE-110075434 9.63 5.23 2.87
qSNC-1-1 SNC S 1 0.30 PZE-101117015 SYN11490 2.84 -32.41 5.70
qSNC-3-3 SNC S 3 27.1 PZE-103032109 PZE-103031701 3.30 -4.28 3.77
qSKC-3-1 SKC N 3 55.1 SYN31233 PZE-103139096 6.26 37.93 2.04
qNKR-5-3 NKR N 5 116.4 PZE-105156153 PZE-105116507 3.55 0.17 2.94
qNKR-6-1 NKR N 6 3.1 SYN11566 PUT-163a-74244759-3691 3.79 0.18 3.93
qNKR-8-1 NKR N 8 54.4 PZE-108062218 PZE-108103951 6.57 0.16 2.95
qNKR-9-1 NKR N 9 130.7 PUT-163a-37425582-2026 PZE-109106839 3.48 0.18 1.93
qNKR-10-1 NKR N 10 62.3 PZE-110075434 PZE-110111417 3.58 0.18 2.92
qNKR-6-4 NKR S 6 112.5 SYN31997 SYN10686 2.95 0.99 8.14
qNKR-7-3 NKR S 7 73.4 PZE-107127296 PUT-163a-94475607-4877 4.18 1.19 10.36

附表3

附基于MCIM模型的耐盐、耐碱QTL定位"

QTL 性状
Trait
处理
Treatment
染色体
Chr.
位置
Position (cM)
左标记
Left marker
右标记
Right marker
A 贡献率
H2(A)
AE1 AE2 贡献率
H2(AE)
qGP-2-6 GP S 2 70.0 PZE-102045898 PZA00590.1 0.07*** 7.74
qGP-4-2 GP S 4 30.6 PZE-104018854 PZE-104019423 0.07*** 7.15
qGP-2-5 GP A 2 70.0 PZE-102045898 PZA00590.1 0.04** 5.02
qGP-4-3 GP A 4 34.1 PZE-104022472 PZE-104023120 0.05*** 5.06
qGP-7-1 GP A 7 21.9 PZE-107020326 PZE-107024238 0.04*** 6.37
qPH-9-3 PH S 9 37.1 PZE-109061069 PZE-109066188 2.17*** 13.79
qPH-9-2 PH A 9 37.1 PZE-109061069 PZE-109066188 1.86*** 11.53
qFW-9-6 FW S 9 37.1 PZE-109061069 PZE-109066188 0.15*** 11.39
qFW-7-1 FW A 7 36.2 PZE-107068965 SYN28758 -0.07** 2.53
qFW-8-4 FW A 8 89.7 SYN29240 PZE-108125717 -0.07*** 1.08
qFW-9-5 FW A 9 37.1 PZE-109061069 PZE-109066188 0.141** 10.02
qDW-1-4 DW S 1 130.8 PUT-163a-71766009-3502 SYN13025 0.01*** 6.23
qDW-9-3 DW S 9 37.1 PZE-109061069 PZE-109066188 0.01*** 7.7
qDW-1-3 DW A 1 130.8 PUT-163a-71766009-3502 SYN13025 0.00** 3.68
qDW-9-2 DW A 9 37.1 PZE-109061069 PZE-109066188 0.01*** 6.34
qSTR-8-2 STR S 8 39.3 PZE-108028788 PZE-108060116 -0.20*** 11.09 - - -
qATR-3-2 ATR A 3 107.0 SYN31043 SYN30138 -0.325*** 10.31 - - -
qSNC-2-3 SNC S 2 41.1 SYN7712 PZE-102176758 -1.50** 4.11
qSNC-3-1 SNC S 3 25.8 PZE-103028604 PZE-103029988 -1.69** 5.3 1.54* -1.53* 4.79
qSNC-3-6 SNC S 3 99.1 PZE-103161091 PZE-103164358 -1.53** 3.83
qTNC-7-1 SNC S 7 31.6 SYN32778 PZE-107065747 -1.84** 3.11
qSNC-1-2 SNC A 1 106.6 SYN38769 SYN31544 2.29*** 4.23 -1.98* 2.01* 0.04
qSKC-4-2 SKC S 4 52.8 SYN15397 SYN1845 -9.41*** 6.44
qSKC-4-1 SKC A 4 52.8 SYN15397 SYN1845 -6.71*** 3.93 -6.37** 6.36** 0.04
qSKC-8-1 SKC A 8 4.0 SYN5929 PZE-108002532 5.50** 1.75 4.57* -4.77* 0.02
qNKR-5-1 NKR S 5 25.6 PZE-105039652 SYN29076 0.41** 3.25 -0.36* 0.36* 3.13
qNKR-6-5 NKR S 6 113.1 SYN31997 SYN10686 0.64*** 4.52 -0.58** 0.60** 4.37
qNKR-7-1 NKR S 7 71.2 PZE-107127296 PUT-163a-94475607-4877 0.53*** 5.54 -0.53** 0.54** 5.81
qNKR-2-1 NKR A 2 91.9 PZA00396.9 PZE-102006385 -0.21** 2.61

表4

前人耐盐碱研究结果"

性状
Trait
QTL 染色体
Chr.
左标记
Left marker
右标记
Right marker
位置
Position (cM)
LOD 加性效应
Additive effect
贡献率
R2 (%)
参考文献
References
SRLP qSRLP-1 1 umc1568 umc1403 55.30 2.49 -0.07 7.50 管飞翔[3]
SRLR qSRLR-7 7 umc2160 phi034 6.80 3.47 -0.06 6.05 Guan [3]
ARLP qARLP-1 1 phi120 umc1744 34.22 2.58 -0.09 4.75
SRLR qARLR-3-1 3 umc1052 umc2050 29.01 3.82 0.11 10.20
SRLR qARLR-3-2 3 dupssr17 bnlg197 48.01 2.25 -0.06 3.96
LP qLP-10 10 umc1196 umc2043 18.25 2.34 -0.40 4.15
LR qLR-1 1 umc1306 phi120 12.01 2.06 0.97 6.06
LR qLR-2 2 umc2129 umc2110 2.01 2.15 0.81 4.15
LR qLR-6 6 umc1490 umc1762 21.46 2.29 0.94 5.74
LR qLR-8 8 umc1777 umc2075 135.33 2.31 0.84 4.48
FW qFW-1 1 phi064 phi26545 28.83 3.58 -0.5678 7 王士磊等[4]
DW qDW-1 1 phi064 phi26545 28.83 3.13 -0.5219 8 Wang et al.[4]
PH qPH-1 1 phi064 phi26545 29.00 2.79 -0.2478 7
DW qDW-5 5 phi024 umc1692 25.60 2.68 -0.0683 8
ST qST-5 5 phi087 phi048 88.09 4.34 1.3376 10
ST qST-6 6 phi126 phi42379 6.57 2.65 1.1471 6
FGR QFgr1 1 PZE101140869 PZE101138116 77.1 -12.220 30.43 吴丹丹[6]
FSTR QFstr1 1 PZE101140869 PZE101138116 77.1 0.783 58.33 Wu [6]
STR QStr1 1 PZE101130082 PZE101119342 85.9 0.222 14.25
STR QStr3 3 PZE103072593 PZE103072415 44.1 0.318 24.98
STR QStr7 7 PZE07012564 PZB02215.4 92.9 -0.142 3.37
TWC QTwc1 1 PZE101130082 PZE101119342 85.9 -0.489 1.65
TWC QTwc3 3 PZE103083718 SYN16519 47.1 -0.682 11.65
TWC QTwc7 7 PZE107020363 SYN24186 82.1 0.364 2.41
TWC QTwc9 9 PZA03596.1 PZE109061997 48.3 -0.384 4.19
SNC QSnc3 3 PZE103052343 PZE103072593 43.7 -0.948 4.33
SNC QSnc5 5 SYN22663 PZE105006095 119.7 -0.881 4.37
SKC QSkc3 3 PZE103072593 PZE103072415 44.1 3.936 15.43
SKC QSkc5 5 SYN29254 PZE105137112 34.1 -2.328 8.22
SKC QSkc7 7 PZE107104709 PZE107103294 35.6 -1.660 4.36
SKC QSkc9 9 PZE109034705 PZE109037929 47.1 2.307 5.43
SKN QSkn3 3 PZE103072415 PZE103073770 44.1 17.358 2.32
SKN QSkn4.1 4 PZE104049567 PZE104052175 82.2 40.294 16.81
SKN QSkn4.2 4 PZE104033683 PZE104031374 84.4 32.667 16.85
SKN QSkn5 5 PZE105182641 PZE105177818 1.00 16.189 1.21
SKN QSkn6 6 SYN9304 SYN22989 73.80 -12.795 1.17
NPH(2014) qNPH4 4 PZE104023902 SYN4889 49.71 4.39 8.40 8.33 Luo等[8]
NPH(2014) qNPH8 8 PZE108041337- PZE108090114 56.01 3.67 8.12 6.90 Luo et al.[8]
NPH(2015) qNPH4 4 PZE104023902 PZE104081530 46.01 6.28 7.78 10.11
NPH(2015) qNPH5 5 PZE105045981 PZE105128581 73.51 3.19 5.55 4.98
NPH(2015) qNPH8 8 PZE108028588 PZE108103365 61.61 5.03 6.94 7.07
NPH(2015) qNPH9-2 9 PZE109064469 SYN27201 71.31 4.56 6.61 7.24
NPH(2016) qNPH8 8 PZE108041337 PZE108097446 57.31 4.29 8.11 7.75
NPH(2016) qNPH9-1 9 PZE109011840 PZE109040519 45.81 5.79 8.93 10.74
NPH(mean) qNPH4 4 PZE104023902 PZE104081530 49.71 6.97 8.13 11.90
NPH(mean) qNPH8 8 PZE108028588 PZE108090114 57.31 3.88 6.40 6.36
NPH(mean) qNPH9-2 9 PZE109064469 SYN27201 71.31 4.80 6.66 7.97
SPH(2014) qSPH1 1 SYN309 SYN25920 95.21 4.47 13.79 13.28
SPH(2015) qSPH1 1 PZE101094436 PZE101150513 88.51 11.46 16.86 16.99
SPH(2015) qSPH5-1 5 SYN16675 PZE105128581 77.31 3.50 8.82 5.01
SPH(2016) qSPH1 1 PZE101109084 SYN25920 90.21 19.47 24.69 35.03
SPH(2016) qSPH5-2 5 PZE105049283 PZE105117757 71.01 4.26 19.86 6.17
SPH(mean) qSPH1 1 PZE101094436 PZE101150513 88.51 22.40 19.14 31.24
SPH(mean) qSPH5-1 5 SYN1390 PZE105128581 77.31 3.32 6.55 3.96
PHI(2014) qPHI1 1 PZE101109084 SYN25920 94.81 8.94 0.10 28.10
PHI(2014) qPHI3 3 SYN28626 PZE103019163 23.51 4.63 0.67 13.64
PHI(2015) qPHI1 1 SYN5444 SYN25920 90.21 10.59 0.08 19.51
PHI(2016) qPHI1 1 PZE101109084 SYN25920 90.21 14.27 0.09 27.51
PHI(mean) qPHI1 1 PZE101109084 SYN25920 90.21 16.20 0.07 25.94
PHI(mean) qPHI4 4 SYN4889 SYN4250 56.91 4.14 0.03 5.63
PHI(mean) qPHI9 9 SYN24345 SYN5732 130.34 3.39 0.03 5.59
PHI(mean) qPHI10 10 PZE110100655 SYN19213 108.16 3.29 0.03 4.47
ATR qATR2 2 phi402893 umc2246 2.40 -0.29 6.0 马晓军等[5]
ATR qATR5.1 5 umc1894 phi024 2.10 -0.10 1.1 Ma et al.[5]
ATR qATR5.2 5 umc2306 phi087 2.40 -0.24 8.6
ATR qATR7 7 bnlg2132 phi057 3.70 -0.21 7.0
[1] 国家统计局. 中国统计年鉴. 北京: 中国统计出版社, 2017. pp 1-12.
National Bureau of Statistics of the People’s Republic of China. China Statistical Yearbook. Beijing: China Statistical Press, 2017. pp 1-12(in Chinese).
[2] 贾广和 . 盐碱地综合整治与开发研究. 西南林学院学报, 2008,28(4):23-24.
Jia G H . Study on integrated transformation and development of saline and alkaline and resources. J Southwest For Coll, 2008,28(4):23-24 (in Chinese with English abstract).
[3] 管飞翔 . 玉米RIL芽苗期耐盐碱QTL定位. 扬州大学硕士学位论文, 江苏扬州, 2012.
Guan F X . Mapping QTL Saline-alkali Tolerance during Bud and Seedling Stage Using RIL in Maize. MS Thesis of Yangzhou University, Jiangsu, Yangzhou,China, 2012 (in Chinese with English abstract).
[4] 王士磊, 高树仁, 王振华, 郎淑平, 王静红 . 玉米重组自交系苗期耐盐相关性状QTL的初步定位. 安徽农业科学, 2012,40:12363-12366.
Wang S L, Gao S R, Wang Z H, Lang S P, Wang J H . Mapping of QTL associated with salt tolerance in maize inbred line during seedling stage. J Anhui Agric Sci, 2012,40:12363-12366 (in Chinese with English abstract).
[5] 马晓军, 金峰学, 晁青, 张春宵, 杨德光, 李晓辉 . 玉米苗期耐碱性QTL定位. 玉米科学, 2014,22(5):13-19.
Ma X J, Jin F X, Chao Q, Zhang C X, Yang D G, Li X H . Identification of QTLs for alkaline tolerance at seedling stage in maize. J Maize Sci, 2014,22(5):13-19 (in Chinese with English abstract).
[6] 吴丹丹 . 玉米苗期耐盐性的QTL定位. 山东大学硕士学位论文, 山东济南, 2014.
Wu D D . QTL Mapping for Salt Tolerance at the Seedling Stage in Maize (Zea mays L.). MS Thesis of Shandong University, Shandong, Jinan,China, 2014 (in Chinese with English abstract).
[7] Mohammad M I H. 玉米耐盐性的鉴定及QTL分析. 中国农业科学院硕士学位论文, 北京, 2013.
Mohammad M I H . Evaluation and Mapping QTL of Maize Salinity Tolerance. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing,China, 2013 (in Chinese with English abstract).
[8] Luo M J, Zhao Y X, Zhang R Y, Xing J F, Duan M X, Li J N, Wang N S, Wang W G, Zhang S S, Chen Z H, Zhang H S, Shi Z, Song W, Zhao J R . Mapping of a major QTL for salt tolerance of mature field-grown maize plants based on SNP markers. BMC Plant Biol, 2017,17:140
doi: 10.1186/s12870-017-1090-7 pmid: 5556339
[9] 曲冰冰 . 混合盐碱胁迫对碱地肤生长的影响和统计学分析 . 东北师范大学硕士学位论文, 吉林长春, 2007.
Qu B B . Effects of Salt-Alkaline Mixed Stresses on Growth of Kochia siecersiana and Statistical Analysis. MS Thesis of Northeast Normal University, Changchun, Jilin, China, 2007 (in Chinese with English abstract).
[10] 河南工业大学. 粮油检验发芽试验: GB/T 5520-2011. 北京: 中国标准出版社, 2011. pp 2-4.
Henan University of Technology . Inspection of Grain and Oils-germination Test of Seeds: GB/T 5520-2011. Beijing: China Standard Press, 2011. pp 2-4(in Chinese).
[11] 付艳, 高树仁, 王振华 . 玉米种质苗期耐盐性的评价. 玉米科学, 2009,17(1):36-39.
Fu Y, Gao S R, Wang Z H . Evaluation of salt tolerance of maize germplasm in seedling stage. J Maize Sci, 2009,17(1):36-39 (in Chinese with English abstract).
[12] 王霞, 杨智超, 钱海霞, 高树仁, 孙丽芳 . 添加外源物质硅对NaCl胁迫下玉米幼苗的缓解作用. 安徽农业科学, 2013,41:7404-7405.
Wang Y, Yang Z C, Qian H X, Gao S R, Sun L F . Relief effect of added exogenous substances Si 4+ under NaCl stress on maize growth . J Anhui Agric Sci, 2013,41:7404-7405 (in Chinese with English abstract).
[13] 刘芳, 付艳, 高树仁, 王振华 . 玉米幼苗的盐胁迫反应及玉米耐盐性的鉴定. 黑龙江八一农垦大学学报, 2007,19(6):22-26.
Liu F, Fu Y, Gao S R, Wang Z H . Response under salt-stress of maize in seedling stage and appraisal of salt tolerance of maize. J Heilongjiang August First Land Reclamation Univ, 2007,19(6):22-26 (in Chinese with English abstract).
[14] 崔美燕, 高树仁, 付艳, 刘文研, 蔡鑫鑫, 李帅 . 玉米苗期耐碱性鉴定方法研究. 黑龙江八一农垦大学学报, 2008,20(5):12-16.
Cui M Y, Gao S R, Fu Y, Liu W Y, Cai X X, Li S . Study on appraised methods of alkali tolerance of maize at the stage of seedling. J Heilongjiang August First Land Reclamation Univ, 2008,20(5):12-16 (in Chinese with English abstract).
[15] Ganal M W, Durstewitz G, Polley A, Berard A, Buckler E S, Charcosset A, Clarke J D, Graner E M, Hansen M, Joets J , LePaslier M C, McMullen M D, Montalent P, Rose M, Schon C C, Sun Q, Walter H, Martin O C, Falque M . A large maize (Zea mays L.) SNP genotyping array: development and germplasm genotyping, and genetic mapping to compare with the B73 reference genome. PLoS One, 2011,6:e28334.
doi: 10.1371/journal.pone.0028334 pmid: 22174790
[16] Meng L, Li H H, Zhang L Y, Wang J K . QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in bi-parental populations. Crop J, 2015,3:169-173.
doi: 10.1016/j.cj.2015.01.001
[17] Kosambi D D . The estimation of map distances from recombination values. Ann Eugenics, 1943,12:172-175.
doi: 10.1111/j.1469-1809.1943.tb02321.x
[18] Wang S C, Basten C J, Zeng Z B. Windows QTL Cartographer 2.5. Raleigh, NC, USA: Department of Statistics, North Carolina State University, 2012, Windows QTL Cartographer 2.5. Raleigh, NC, USA: Department of Statistics, North Carolina State University, 2012, .
[19] Yang J, Zhu J, Williams R W . Mapping the genetic architecture of complex traits in experimental populations. Bioinformatics, 2007,23:1527-1536.
doi: 10.1093/bioinformatics/btm143 pmid: 17459962
[20] McCouch S R, Cho Y G, Yano M, Blinstrub M, Morishima H, Kinoshita T . Report on QTL no-menclature. Rice Genet Newsl, 1997,14:11-13.
[21] 斯琴巴特尔, 吴红英 . 盐胁迫对玉米种子萌发及幼苗生长的影响. 干旱区资源与环境, 2000,14(4):77-81.
Sechenbater, Wu H Y . Effect of salt stress on seed germination and seedling growth of Zea mays L. J Arid Land Resour Environ, 2000,14(4):77-81 (in Chinese with English abstract).
[22] 曲元刚, 赵可夫 . NaCl和Na2CO3对玉米生长和生理胁迫效应的比较研究. 作物学报, 2004,30:334-341.
Qu Y G, Zhao K F . Comparative studies on growth and physiological reaction of Zea mays under NaCl and Na2CO3 stresses. Acta Agron Sin, 2004,30:334-341 (in Chinese with English abstract).
[23] 白文波, 李品芳, 李保国 . NaCl和NaHCO3胁迫下马蔺生长与光合特性的反应. 土壤学报, 2008,45:328-335.
Bai W B, Li P F, Li B G . Response of Iris lactea var. chinensis to NaCl and NaHCO3 stress in growth and photosynthesis. Acta Pedol Sin, 2008,45:328-335 (in Chinese with English abstract).
[24] Yang C, Chong J, Li C, Kim C, Shi D, Wang D . Osmotic adjustment and ion balance traits of an alkali resistant halophyte Kochia sieversiana during adaptation to salt and alkali conditions. Plant Soil, 2007,294:263-276.
doi: 10.1007/s11104-007-9251-3
[25] 刘建新, 王鑫, 王瑞娟, 贾海燕 . 黑麦草对NaHCO3胁迫的光合生理响应. 草业学报, 2012,21(3):184-190.
Liu J X, Wang X, Wang R J, Jia H Y . Photosynthetic physiological response of Lolium prenne to NaHCO3 stress. Acta Pratac Sin, 2012,21(3):184-190 (in Chinese with English abstract).
[26] 邸宏, 刘学 . 13份玉米自交系的耐碱性评价. 贵州农业科学, 2016,44(2):15-19.
Di H, Liu X . Alkali tolerance of thirteen inbred lines in maize. Guizhou Agric Sci, 2016,44(2):15-19 (in Chinese with English abstract).
[27] Wang Z F, Chen Z W, Cheng J P, Lai Y Y, Wang J F, Bao Y M, Huang J, Zhang H S . QTL analysis of Na+ and K+ concentrations in roots and shoots under different levels of NaCl stress in rice ( Oryza sativa L.). PLoS One, 2012,7:e51202.
doi: 10.1371/journal.pone.0051202 pmid: 23236455
[28] Cheng L R, Wang Y, Meng L J, Hu X, Cui Y R, Sun Y, Zhu L H, Ali J, Xu J L, Li J K . Identification of salt-tolerant QTLs with strong genetic background effect using two sets of reciprocal introgression lines in rice. Genome, 2012,55:45-55.
doi: 10.1139/g11-075 pmid: 22181322
[29] Lee G J, Boerma H R, Villagarcia M R, Zhou X , Carter T E Jr, Li Z, Gibbs M O. A major QTL conditioning salt tolerance in S-100 soybean and descendent cultivars. Theor Appl Genet, 2004,109:1610-1619.
doi: 10.1007/s00122-004-1783-9 pmid: 15365627
[30] 梁银培, 孙健, 索艺宁, 刘化龙, 王敬国, 郑洪亮, 孙晓雪, 邹德堂 . 水稻耐盐性和耐碱性相关性状的QTL定位及环境互作分析. 中国农业科学, 2017,50:1747-1762.
Liang Y P, Sun J, Suo Y N, Liu H L, Wang J G, Zheng H, Sun X X, Zou D T . QTL mapping and QTL × environment interaction analysis of salt and alkali tolerance-related traits in rice ( Oryza sativa L.). Sci Agric Sin, 2017,50:1747-1762 (in Chinese with English abstract).
[31] 梁慧珍, 余永亮, 杨红旗, 张海洋, 董薇, 崔暐文, 杜华, 刘学义, 方宣钧 . 大豆小区产量及其相关性状QTL间的上位性和环境互作效应. 植物学报, 2014,49:273-281.
Liang H Z, Yu Q L, Yang H Q, Zhang H Y, Dong W, Cui W W, Du H, Liu Y, Fang X J . Epistatic effects and quantitative trait loci (QTL) × environment (QE) interaction effects for yield per plot and botanical traits in soybean. Chin Bull Bot, 2014,49:273-281 (in Chinese with English abstract).
[32] 苏成付, 赵团结, 盖钧镒 . 不同统计遗传模型QTL定位方法应用效果的模拟比较. 作物学报, 2010,36:1100-1107.
Su C F, Zhao T J, Gai J Y . Simulation comparisons of effectiveness among QTL mapping procedures of different statistical genetic models. Acta Agron Sin, 2010,36:1100-1107 (in Chinese with English abstract).
[33] Zhang W J, Niu Y, Bu S H, Li M, Feng J Y, Zhang J, Yang S X, Odinga M M, Wei S P, Liu X F, Zhang Y M . Epistatic association mapping for alkaline and salinity tolerance traits in the soybean germination stage. PLoS One, 2014,9:e84750.
[34] Cui D Z, Wu D D, Somarathna Y, Xu C Y, Li S, Li P, Zhang H, Chen H B, Zhao L . QTL mapping for salt tolerance based on SNP markers at the seedling stage in maize (Zea mays L.). Euphytica, 2015,203:273-283.
doi: 10.1007/s10681-014-1250-x
[35] Bizimana J B, Luzi-Kihupi A, Murori R W, Singh R K . Identification of quantitative trait loci for salinity tolerance in rice ( Oryza sativa L.) using IR29/Hasawi mapping population. J Genet, 2017,96:571-582.
[36] 赵振卿, 顾宏辉, 盛小光, 虞慧芳, 王建升, 曹家树 . 作物数量性状位点研究进展及其育种应用. 核农学报, 2014,28:1615-1624.
Zhao Z Q, Gu H H, Sheng X G, Yu H F, Wang J S, Cao J S . Advances and applications in crop quantitative trait locus. J Nucl Agric Sci, 2014,28:1615-1624 (in Chinese with English abstract).
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[7] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[8] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[9] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[10] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[11] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[12] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[13] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
[14] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[15] 胡亮亮, 王素华, 王丽侠, 程须珍, 陈红霖. 绿豆种质资源苗期耐盐性鉴定及耐盐种质筛选[J]. 作物学报, 2022, 48(2): 367-379.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!