欢迎访问作物学报,今天是

作物学报 ›› 2020, Vol. 46 ›› Issue (3): 341-353.doi: 10.3724/SP.J.1006.2020.94076

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

净作和套作下大豆贮藏蛋白11S、7S组分相对含量的QTL分析

刘代铃,谢俊锋,何乾瑞,陈四维,胡跃,周佳,佘跃辉,刘卫国,杨文钰(),武晓玲()   

  1. 四川农业大学农学院 / 四川省作物带状复合种植工程技术研究中心, 四川成都 611130
  • 收稿日期:2019-05-20 接受日期:2019-09-26 出版日期:2020-03-12 网络出版日期:2019-10-09
  • 通讯作者: 杨文钰,武晓玲
  • 作者简介:E-mail: icyfish00@163.com
  • 基金资助:
    本研究由国家重点研发计划项目(2017YFD0101500);四川省科技厅育种攻关项目资助(2016NYZ0031)

QTL analysis for relative contents of glycinin and β-conglycinin fractions from storage protein in soybean seeds under monoculture and relay intercropping

Dai-Ling LIU,Jun-Feng XIE,Qian-Rui HE,Si-Wei CHEN,Yue HU,Jia ZHOU,Yue-Hui SHE,Wei-Guo LIU,Wen-Yu YANG(),Xiao-Ling WU()   

  1. College of Agronomy, Sichuan Agricultural University / Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu 611130, Sichuan, China
  • Received:2019-05-20 Accepted:2019-09-26 Published:2020-03-12 Published online:2019-10-09
  • Contact: Wen-Yu YANG,Xiao-Ling WU
  • Supported by:
    the Crops Breeding Project in Sichuan Province(2017YFD0101500);the Crops Breeding Project in Sichuan Province(2016NYZ0031)

摘要:

大豆贮藏蛋白的7S组分和11S组分占蛋白质总量的70%左右, 其含量直接与大豆种子的加工品质、营养品质及功能特性密切相关。目前, 在玉米-大豆带状套作模式下11S和7S组分的相对含量会如何变化尚不明确。本研究以南豆12和九月黄为亲本所构建的重组自交系(RILs)群体为材料, 结合已构建的SNP高密度遗传图谱, 在不同环境(E1: 2017年仁寿; E2: 2017年雅安; E3: 2016年仁寿)的净作及套作下, 对控制贮藏蛋白组分含量的相关性状进行QTL分析。结果表明, 在不同的环境和种植方式下, 亲本和RIL群体的大部分贮藏蛋白11S、7S组分相对含量差异显著或极显著; 检测到10个相关QTL, 分布于9条染色体, 表型贡献率为5.63%~9.68%。通过注释信息, 在定位到的QTL区段中初步筛选出65个与贮藏蛋白质含量相关的候选基因。上述结果为大豆品质育种提供了理论参考。

关键词: 大豆, 贮藏蛋白, 荫蔽, QTL定位

Abstract:

The relative contents of glycinin and β-conglycinin from storage protein are closely related to the quality and function of soybean seeds. However, it is not clear whether or how glycinin and β-conglycinin contents change in maize-soybean strip intercropping system. The glycinin and β-conglycinin relative contents of the recombinant inbred lines (RILs) derived from the cross of ‘Nandou 12’ and ‘Jiuyuehuang’ were measured under different environments (E1: 2017, Renshou; E2: 2017, Ya’an; E3: 2016, Renshou) and planting patterns (M: monoculture; RI: relay intercropping), among which the differences were significant or extremely significant in parents and RILs. Based on a genetic linkage map with 6366 SNP markers, we detected ten QTLs for glycinin and β-conglycinin relative contents which were distributed in nine linkage groups with the phenotypic variation of 5.63%-9.68%. According to the soybean genomic information, 65 candidate genes were screened in the region of above-mentioned QTLs. These results lay a theoretical foundation for soybean quality breeding.

Key words: Soybean (Glycine max L.), storage protein, shade, QTL mapping

表1

不同环境及种植方式下亲本的贮藏蛋白11S、7S组分相对含量"

性状
Trait
种植方式
Planting pattern
E1 E2 E3
南豆12
ND12
九月黄
JYH
Sig. 南豆12
ND12
九月黄
JYH
Sig. 南豆12
ND12
九月黄
JYH
Sig.
7S (%) M 20.18±0.22 b 24.47±0.30 a ** 21.77±1.28 a 21.55±0.63 a NS 22.84±0.20 a 22.96±0.47 a NS
RI 23.42±1.40 a 25.25±2.05 a NS 23.36±1.64 a 21.25±1.16 a NS 22.43±2.21 a 22.21±1.45 a NS
11S (%) M 33.74±0.29 a 42.47±0.31 A ** 36.80±2.06 a 38.05±0.97 a NS 37.99±0.69 a 36.08±0.76 a *
RI 35.57±1.64 a 36.63±0.30 B NS 38.09±1.37 a 35.35±1.02 b * 33.30±3.60 a 38.12±2.03 a NS
11S+7S (%) M 53.92±0.51 b 66.94±0.27 a ** 58.58±3.33 a 59.60±1.59 a NS 60.84±0.88 a 59.04±1.18 a NS
RI 58.99±3.04 a 61.88±2.16 b NS 61.45±1.01 a 56.60±2.15 a * 55.73±5.80 a 60.33±3.48 a NS
11S/7S M 1.67±0.00 a 1.74±0.03 A * 1.69±0.01 a 1.77±0.01 a ** 1.66±0.02 A 1.57±0.02 B **
RI 1.52±0.02 b 1.46±0.11 B NS 1.64±0.16 a 1.67±0.05 b NS 1.48±0.02 B 1.72±0.02 A **
α' (%) M 6.67±0.03 B 8.35±0.06 a ** 7.06±0.22 a 7.12±0.17 a NS 7.08±0.54 a 8.01±0.16 A *
RI 7.66±0.26 A 8.84±0.96 a NS 7.29±0.83 a 6.74±0.83 a NS 7.68±0.94 a 6.90±0.36 B NS
Α (%) M 6.84±0.18 a 9.49±0.28 a ** 7.92±0.75 a 7.63±0.69 a NS 8.38±0.50 a 8.14±0.81 a NS
RI 8.29±0.93 a 9.89±0.89 a NS 8.50±0.92 a 7.25±0.15 a NS 8.45±0.92 a 7.72±0.72 a NS
Β (%) M 6.67±0.20 B 6.63±0.42 a NS 6.80±0.38 b 6.81±0.12 b NS 7.39±0.91 a 6.81±0.30 b NS
RI 7.47±0.23 A 6.52±0.66 a NS 7.57±0.27 a 7.26±0.19 a NS 6.30±0.60 a 7.59±0.37 a *
A3 (%) M 5.27±0.15 a 7.43±0.76 a ** 5.04±0.71 a 4.79±0.11 a NS 5.61±0.23 a 5.28±1.24 a NS
RI 4.71±0.61 a 6.52±1.07 a NS 5.47±0.21 a 4.65±0.31 a * 5.37±0.15 a 6.00±0.46 a NS
Acid (%) M 13.01±0.88 a 17.17±0.78 a ** 15.79±2.58 a 14.68±1.07 a NS 17.46±1.65 a 15.77±1.65 a NS
RI 14.14±0.65 a 16.35±2.29 a NS 16.98±1.68 a 14.56±1.20 a NS 13.72±1.33 b 17.39±0.44 a **
Basic (%) M 8.65±0.44 a 12.48±1.28 a ** 8.93±0.08 B 9.82±0.57 a NS 8.27±0.47 a 8.66±0.11 a NS
RI 9.36±1.42 a 9.45±2.24 a NS 9.90±0.15 A 9.24±0.96 a NS 8.95±0.71 a 9.13±0.45 a NS
A5 (%) M 6.81±0.34 a 5.39±0.66 a * 7.04±0.91 a 8.75±1.31 a NS 6.71±2.71 a 6.37±1.59 a NS
RI 7.36±0.92 a 4.42±1.10 a * 5.74±0.58 a 6.9±0.94 a NS 5.27±2.86 a 5.60±1.65 a NS

图 1

大豆贮藏蛋白亚基的SDS-PAGE图谱 1: 南豆12; 2: 九月黄; 3: 158号家系材料; 4: 104号家系材料。缩写同表1。"

图2

RIL群体贮藏蛋白亚基含量频数分布图 缩写同表1。"

表2

RIL群体贮藏蛋白11S、7S组分相对含量基本统计量分析"

性状
Trait
环境
E
种植方式
Planting
pattern
平均数±标准差
Mean±SD
最大值
Max.
最小值
Min.
极差
Range
变异系数
CV (%)
偏度
Skew.
峰度
Kurt.
P (S-W)
7S (%) E1 M 22.34±1.81 30.03 19.73 10.30 8.11 1.73 4.07 0.00
RI 24.30±2.67 29.35 19.17 10.18 10.99 -0.10 -1.30 0.00
E2 M 21.74±1.63 26.88 17.49 9.39 7.52 0.49 0.33 0.01
RI 22.44±1.45 26.24 18.16 8.08 6.45 0.03 0.06 0.74
E3 M 24.67±1.92 29.92 19.60 10.32 7.78 0.23 -0.37 0.21
RI 25.22±1.92 30.18 19.89 10.29 7.60 0.14 -0.04 0.35
11S (%) E1 M 36.16±2.68 42.62 30.03 12.59 7.42 0.14 -0.79 0.01
RI 35.65±2.27 41.83 29.24 12.59 6.37 0.15 -0.17 0.75
E2 M 37.73±2.05 42.69 32.39 10.30 5.43 0.26 -0.35 0.05
RI 36.57±2.30 44.09 29.91 14.18 6.28 0.25 0.52 0.20
E3 M 37.47±2.62 46.31 30.46 15.85 6.99 0.14 0.01 0.34
RI 36.22±2.74 44.36 30.87 13.49 7.56 0.81 0.48 0.00
11S+7S (%) E1 M 58.50±2.81 65.08 52.05 13.03 4.80 -0.03 -0.79 0.00
RI 59.95±2.85 67.16 53.25 13.91 4.76 -0.01 -0.30 0.59
E2 M 59.46±2.23 65.27 54.60 10.67 3.75 0.05 -0.74 0.04
RI 59.01±2.59 65.31 51.99 13.32 4.39 -0.04 0.01 0.30
E3 M 62.15±2.65 72.35 55.68 16.67 4.27 0.21 0.28 0.10
RI 61.45±2.76 69.69 55.35 14.34 4.49 0.66 0.08 0.00
11S/7S E1 M 1.63±0.19 2.10 1.10 1.00 11.67 -0.17 0.01 0.11
RI 1.49±0.22 2.03 1.06 0.97 14.67 0.29 -0.99 0.00
E2 M 1.75±0.18 2.37 1.32 1.05 10.36 0.26 0.35 0.06
RI 1.64±0.16 2.08 1.26 0.82 9.46 0.31 -0.13 0.22
E3 M 1.53±0.18 2.17 1.10 1.07 12.07 0.22 0.19 0.47
RI 1.45±0.18 1.93 1.09 0.84 12.32 0.30 -0.42 0.03
α' (%) E1 M 7.45±0.79 9.99 6.10 3.89 10.59 1.19 1.71 0.00
RI 8.35±1.22 11.12 6.02 5.10 14.61 -0.07 -1.06 0.00
E2 M 7.10±0.65 10.01 5.61 4.40 9.09 0.57 1.79 0.00
RI 7.43±0.61 9.87 5.81 4.06 8.18 0.24 1.72 0.00
E3 M 8.39±0.77 10.46 6.66 3.80 9.21 0.42 -0.32 0.00
RI 8.53±0.85 11.05 5.98 5.07 9.95 0.01 0.41 0.14
α (%) E1 M 8.12±0.73 11.71 6.81 4.90 9.00 1.91 5.37 0.00
RI 9.03±1.17 11.33 6.73 4.60 12.94 -0.17 -1.10 0.00
E2 M 7.92±0.72 10.24 6.20 4.04 9.09 0.60 0.36 0.00
RI 8.04±0.63 9.81 6.32 3.49 7.87 -0.03 -0.02 0.61
E3 M 9.28±0.89 11.93 6.81 5.12 9.59 0.22 -0.27 0.13
RI 9.43±0.94 12.60 6.97 5.63 9.98 0.29 0.47 0.14
β (%) E1 M 6.77±0.58 9.48 5.31 4.17 8.54 1.72 5.30 0.00
RI 6.92±0.61 8.33 4.97 3.36 8.78 0.07 0.08 0.02
E2 M 6.72±0.61 8.73 5.46 3.27 9.13 0.30 0.02 0.11
RI 6.97±0.60 8.95 5.49 3.46 8.63 0.46 0.80 0.01
E3 M 7.01±0.76 9.37 5.23 4.14 10.85 0.11 -0.05 0.75
RI 7.26±0.59 8.71 5.54 3.17 8.15 0.03 0.09 0.64
A3 (%) E1 M 5.50±0.38 6.48 4.25 2.23 6.92 -0.28 0.39 0.21
RI 5.06±0.55 6.25 3.71 2.54 10.89 -0.41 -0.24 0.00
E2 M 5.64±0.61 8.20 4.30 3.90 10.86 0.77 1.84 0.00
RI 5.35±0.54 7.02 3.16 3.86 10.11 -0.37 1.65 0.00
E3 M 5.42±0.62 7.15 3.45 3.70 11.35 -0.36 0.34 0.04
RI 5.60±0.72 7.56 3.94 3.62 12.85 0.33 -0.14 0.10

表2

RIL群体贮藏蛋白11S、7S组分相对含量基本统计量分析"

性状
Trait
环境
E
种植方式
Planting
pattern
平均数±标准差
Mean±SD
最大值
Max
最小值
Min
极差
Range
变异系数
CV (%)
偏度
Skew.
峰度
Kurt.
P (S-W)
Acid (%) E1 M 15.64±1.54 20.78 12.51 8.27 9.83 0.69 0.11 0.00
RI 14.38±1.52 17.99 8.70 9.29 10.57 -0.60 0.90 0.00
E2 M 15.86±1.92 21.60 11.33 10.27 12.10 0.50 0.26 0.01
RI 15.16±1.68 19.19 9.57 9.62 11.08 -0.07 0.07 0.43
E3 M 15.38±1.25 18.93 10.92 8.01 8.15 -0.29 0.98 0.04
RI 14.90±1.38 19.04 11.33 7.71 9.26 -0.19 -0.19 0.22
Basic (%) E1 M 10.36±1.95 16.15 6.46 9.69 18.79 0.56 -0.26 0.00
RI 10.18±2.83 20.32 5.35 14.97 27.78 0.84 1.50 0.00
E2 M 10.77±2.21 16.66 6.33 10.33 20.52 0.16 -0.62 0.03
RI 9.89±2.25 20.84 5.37 15.47 22.75 1.78 4.17 0.00
E3 M 8.82±2.31 23.59 4.81 18.78 26.24 1.90 7.63 0.00
RI 8.09±1.79 15.48 4.50 10.98 22.09 0.96 2.47 0.00
A5 (%) E1 M 4.66±1.53 11.43 2.88 8.55 32.86 1.95 4.15 0.00
RI 6.02±2.32 15.45 0.88 14.57 38.44 1.21 1.57 0.00
E2 M 5.45±1.63 11.61 3.01 8.60 29.84 1.22 1.56 0.00
RI 6.17±1.76 11.42 2.83 8.59 28.56 0.30 -0.21 0.00
E3 M 7.85±3.36 17.74 1.09 16.65 42.85 0.65 -0.13 0.00
RI 7.64±3.94 18.83 1.75 17.08 51.52 1.03 0.31 0.00

表3

大豆贮藏蛋白11S、7S组分相对含量的方差分析"

性状
Trait
变异来源 Variability source
E P G E×P E×G P×G E×P×G
7S (%) 2719.17** 1130.16** 16.35** 198.05** 12.31** 15.24** 9.05**
11S (%) 232.79** 390.23** 9.34** 22.11** 9.01** 8.57** 6.90**
11S+7S (%) 577.47** 1.81 5.13** 90.72** 4.71** 4.39** 4.42**
11S/7S 3509.46** 3081.43** 34.63** 68.89** 29.83** 35.37** 20.09**
α' (%) 1534.95** 670.80** 10.08** 169.27** 6.65** 8.86** 6.62**
α (%) 1726.56** 423.291** 8.68** 181.27** 6.97** 7.90** 5.07**
β (%) 131.30** 162.88** 6.03** 4.20* 4.76** 4.04** 3.80**
A3 (%) 60.23** 91.30** 3.89** 93.41** 3.23** 2.47** 2.70**
Acid (%) 43.73** 324.46** 5.05** 26.16** 3.87** 3.09** 4.02**
Basic (%) 490.46** 116.33** 7.57** 14.65** 5.40** 5.82** 4.28**
A5 (%) 541.06** 97.84** 5.93** 52.02** 6.24** 5.73** 4.71**

表5

贮藏蛋白11S、7S组分相对含量相关QTL"

环境
Environ.
种植方式
Planting pattern
QTL 标记区间
Marker interval
LOD 贡献率
PVE(%)
加性效应
Add. effect
置信区间
Confidence
interval
E1 M qAcid-6-131 Marker359561-Marker361355 5.63 8.06 0.53 130.5-131.5
qAcid-10-80 Marker584033-Marker584037 4.03 5.63 -0.46 79.5-80.5
qAcid-14-155 Marker713356-Marker710168 4.06 5.81 -0.47 153.5-158.0
RI qGpC-18-85 Marker1158309-Marker1157431 5.61 6.62 1.06 84.5-85.5
qBeta-19-5 Marker1175558-Marker1175562 4.03 9.01 -0.18 4.5-5.5
E2 M qBeta-1-135 Marker69562-Marker69768 3.21 7.49 -0.18 134.5-135.5
RI qAlpha-8-27 Marker460291-Marker460320 4.40 9.68 0.20 26.5-27.5
qBeta-1-13 Marker2130-Marker2656 3.22 7.14 -0.17 11.5-15.5
E3 M qAcid-4-67 Marker270606-Marker271196 3.68 8.20 -0.40 66.5-70.5
RI qGpC-20-110 Marker1242459-Marker1242433 3.65 8.60 0.82 109.5-110.5

表6

贮藏蛋白含量相关的候选基因分类"

分组
Group
生物过程
Biological process
基因ID (净作/套作)
Gene ID (Monoculture/Relay intercropping)
注释信息
Annotation description
I 激素调节
Regulation of
hormone
Glyma.01G179900; Glyma.14G193800, 060300, 195200, 195300, 196000, 196600, 197100, 197200, 197500, 197600, 198000, 198100, 198300, 198600, 199200, 200200, 202000, 202600, 202700, 203000 / Glyma.01G025300, 025400, 025500, 025600, 027400; Glyma.18G251800, 252200, 252300, 252400 脱落酸激活的信号通路、激素介导的信号通路、乙烯激活的信号通路、生长素反应、脱落酸反应
Abscisic acid-activated signaling pathway, hormone-mediated signaling pathway, ethylene-activated signaling pathway, response to auxin, response to abscisic acid
II 氨基酸合成
Amino acid
synthesis
Glyma.01G180100; Glyma.04G211400; Glyma.06G243800; Glyma.14G195300, 196600, 197100, 198700, 202000, 202700, 203000, 203700 / Glyma.01G025600, 027100, 027400, 028100, 028700; Glyma.08G210500; Glyma.18G250600, 251800 蛋白丝氨酸/苏氨酸激酶活性、丝氨酸家族氨基酸代谢过程
Protein serine/threonine kinase activity, serine family amino acid metabolic process
III 蛋白质磷酸化
Protein
phosphorylation
Glyma.06G243800; Glyma.14G195200, 196600, 202700, 203000 / Glyma.01G027100, 028000, 028700; Glyma.18G249400, 249700, 249900, 250500, 250600, 251800 蛋白质磷酸化、蛋白质丝氨酸/苏氨酸磷酸酶活性、蛋白质脱磷酸
Protein phosphorylation, protein serine/threonine phosphatase activity, protein dephosphorylation
IV 细胞器生物过程
Organelle
biological process
Glyma.04G212200, 212400; Glyma.14G194300, 194500, 196600, 197600, 198000, 198100, 198600, 199000, 202000, 202400, 203000 / Glyma.01G025200, 026000, 026200, 026700, 028100; Glyma.18G248400, 251300, 251800, 253200 内质网、液泡、内质网膜
E ndoplasmic reticulum, vacuole, endoplasmic reticulum membrane
V 种子发育
Seed development
Glyma.01G179800; Glyma.14G197100, 197500, 199000, 202100 / Glyma.01G025200, 025300, 025400, 026200, 027400; Glyma.18G249400, 249700, 249800, 250000, 250100, 250600, 250700, 251200, 251800 子叶发育、以种子休眠结束的胚胎发育
Cotyledon development, embryo development ending in seed dormancy

表7

3个环境6月至10月气象资料"


Month

Ten-day periods
日平均温度
Daily mean temperature
日最高温度
Daily maximum temperature
日最低温度
Daily minimum temperature
E1 E2 E3 E1 E2 E3 E1 E2 E3
6月
June
上旬 The first ten days 25.40 23.13 25.80 30.47 28.02 31.86 21.59 19.87 20.99
中旬 The middle ten days 23.94 22.68 27.40 28.07 26.92 32.54 21.12 19.82 22.43
下旬 The last ten days 25.77 24.24 25.90 30.39 29.45 30.41 22.08 20.61 22.53
7月
July
上旬 The first ten days 27.83 26.09 27.20 33.93 31.38 31.26 23.67 22.73 23.57
中旬 The middle ten days 29.23 27.78 27.80 35.00 34.31 32.80 24.45 23.50 23.20
下旬 The last ten days 30.41 28.08 27.90 36.13 35.23 32.84 25.88 24.15 24.23
8月
August
上旬 The first ten days 29.41 28.11 27.00 35.17 34.20 31.98 25.55 24.43 23.79
中旬 The middle ten days 27.71 26.10 30.40 32.25 31.20 35.66 24.23 23.24 26.33
下旬 The last ten days 26.16 24.36 28.20 29.99 28.63 33.05 23.40 21.88 24.72
9月
September
上旬 The first ten days 23.95 22.54 23.10 27.66 27.38 27.12 21.31 19.81 20.43
中旬 The middle ten days 23.68 22.29 22.00 27.40 26.03 25.40 21.22 20.30 19.82
下旬 The last ten days 23.04 21.55 22.30 26.43 25.89 25.95 20.94 19.24 19.88
10月
October
上旬 The first ten days 19.97 18.77 22.00 23.73 23.03 25.59 17.70 16.85 19.47
中旬 The middle ten days 17.07 15.75 18.30 19.41 18.36 20.94 15.65 14.28 16.55
下旬 The last ten days 16.02 14.97 17.70 18.60 17.70 20.75 14.33 13.58 15.76
[1] Li C, He X, Zhu S, Zhou H, Wang Y, Li Y, Yang J, Fan J, Yang J, Wang G, Long Y, Xu J, Tang Y, Zhao G, Yang J, Liu L, Sun Y, Xie Y, Wang H, Zhu Y . Crop diversity for yield increase. PLoS One, 2009,4:e8049.
[2] 鲍韵, 吴昌南 . 我国大豆产业安全预警系统构建. 江西社会科学, 2013, ( 4):48-53.
Bao Y, Wu C N . Construction of soybean industry safety early warning system in China. Jiangxi Social Sci, 2013, ( 4):48-53 (in Chinese).
[3] 刘丽君, 赵贵兴, 高明杰, 吴俊江, 陈霞 . 大豆加工品质的资源筛选和遗传改良的研究: II. 豆腐、酱油、毛豆、大豆加工原料的筛选. 大豆科学, 2004,23:184-187.
Liu L J, Zhao G X, Gao M J, Wu J J, Chen X . Study on resource screen and inheritance improvement for processing quality of soybean: II. Screening of soybean varieties for Tofu, sauce processing and fresh soybean. Soybean Sci, 2004,23:184-187 (in Chinese with English abstract).
[4] 李冬冬 . 大豆营养与人体健康分析. 中国卫生标准管理, 2015,6(5):5-6.
Li D D . The analysis of soybean nutrition and physical health. China Health Standard Manage, 2015,6(5):5-6 (in Chinese with English abstract).
[5] Fukushima D . Structures of plant storage proteins and their functions. Food Rev Int, 1991,3:353-379.
[6] Panthee D R, Kwanyuen P, Sams C E, West D R, Saxton A, Pantalone V R . Quantitative trait loci for β-conglycinin (7S) and glycinin (11S) fractions of soybean storage protein. J Am Oil Chem Soc, 2004,81:1005-1012.
[7] Ma Y, Kan G, Zhang X, Wang Y, Zhang W, Du H, Yu D . Quantitative trait loci (QTL) mapping for glycinin and β-conglycinin contents in soybean (Glycine max L. Merr.). J Agric Food Chem, 2016,64:3473-3483.
[8] 刘顺湖, 周瑞宝, 喻德跃, 陈受宜, 盖钧镒 . 大豆蛋白质有关性状的QTL定位. 作物学报, 2009,35:2139-2149.
Liu S H, Zhou R B, Yu D Y, Chen S Y, Gai J Y . QTL mapping of protein related traits in soybean [Glycine max(L.) Merr.]. Acta Agron Sin, 2009,35:2139-2149 (in Chinese with English abstract).
[9] 简爽, 文自翔, 李海朝, 袁道华, 李金英, 张辉, 叶永忠, 卢为国 . 运用关联分析定位栽培大豆蛋白11S、7S组分的相关基因位点. 作物学报, 2012,38:820-828.
Jian S, Wen Z X, Li H C, Yuan D H, Li J Y, Zhang H, Ye Y Z, Lu W G . Identification of QTLs for glycinin (11S) and β-conglycinin (7S) fractions of seed storage protein in soybean by association mapping. Acta Agron Sin, 2012,38:820-828 (in Chinese with English abstract).
[10] 罗庆明 . 不同生态区域套作大豆生长势、产量和品质的比较研究. 四川农业大学硕士学位论文, 四川成都, 2010.
Luo Q M . The Comparative Study on Growth Potential, Yield and Quality of Relay Cropping Soybean in Different Ecological Regions. MS Thesis of Sichuan Agricultural University, Chengdu, China, 2010 (in Chinese with English abstract).
[11] 蒋涛, 杨文钰, 刘卫国, 王凤 . 套作大豆贮藏蛋白、氨基酸组成分析及营养评价. 食品科学, 2012,33(21):275-279.
Jiang T, Yang W Y, Liu W G, Wang F . Storage protein and amino acid composition analysis and nutrition evaluation of relay- cropped soybean. Food Sci, 2012,33(21):275-279 (in Chinese with English abstract)
[12] 蔡凌, 刘卫国, 李奇, 吴雨珊, 方萍, 刘春燕, 杨文钰 . 玉米-大豆带状套作对大豆蛋白特性的影响. 中国油料作物学报, 2016,38:328-335.
Cai L, Liu W G, Li Q, Wu Y S, Fang P, Liu C Y, Yang W Y . Effect of maize-soybean relay strip intercropping on protein characteristics of soybean. Chin J Oil Crop Sci, 2016,38:328-335 (in Chinese with English abstract).
[13] 王显生, 麻浩, 向世鹏, 张国正, 崔国贤 . 不同SDS-PAGE分离胶浓度条件下大豆贮藏蛋白亚基的分辨效果. 中国油料作物学报, 2004,26:75-80.
Wang X S, Ma H, Xiang S P, Zhang G Z, Cui G X . The resolving effect of soybean storage protein subunits under different separation gel concentrations of SDS-PAGE. Chin J Oil Crop Sci, 2004,26:75-80 (in Chinese with English abstract).
[14] Bradford M . A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 1976,72:248-254.
[15] Liu D L, Chen S W, Liu X C, Yang F, Liu W G, She Y H, Du J B, Liu C Y, Yang W Y, Wu X L . Genetic map construction and QTL analysis of leaf-related traits in soybean under monoculture and relay intercropping. Sci Rep, 2019,9:2716.
[16] McCouch S R, Cho Y G, Yano P E, Blinstrub M, Morishima H, Kinoshita T . Report on QTL nomenclature. Rice Genet Newsl, 1997,14:11-13.
[17] 卢为国, 王树峰, 李卫东, 梁慧珍, 耿臻, 范彦英, 刘亚非, 王庭峰, 张辉, 李金英 . 大豆籽粒贮藏蛋白11S/7S比值与生态因子相关关系的研究. 中国农业科学, 2005,38:1059-1064.
Lu W G, Wang S F, Li W D, Liang H Z, Geng Z, Fan Y Y, Liu Y F, Wang T F, Zhang H, Li J Y . Effects of eco-physiological factors on storage protein 11S/7S ratio in soybean seeds. Sci Agric Sin, 2005,38:1059-1064 (in Chinese with English abstract).
[18] 刘香英, 康立宁, 田志刚, 张井勇, 杨春明, 王景会, 姜媛媛, 张莉 . 东北大豆品种贮藏蛋白7S和11S组分及其亚基相对含量分析. 大豆科学, 2009,28:985-989.
Liu X Y, Kang L N, Tian Z G, Zhang J Y, Yang C M, Wang J H, Jiang Y Y, Zhang L . Analysis of 7S and 11S globulin and subunit content of soybean in northeast China. Soybean Sci, 2009,28:985-989 (in Chinese with English abstract).
[19] Ogawa T, Tayama E, Kitamura K, Kaizuma N . Genetic improvement of seed storage proteins using three variant alleles of 7S globulin subunits in soybean (Glycine max L.). Jpn J Breed, 1989,39:137-147.
[20] Krishnan H B . Engineering soybean for enhanced sulfur amino acid content. Crop Sci, 2005,45:454-461.
[21] Salleh M R B, Maruyama N, Takahashi K, Yagasaki K, Higasa T, Matsumura Y, Utsumi S . Gelling properties of soybean beta-conglycinin having different subunits compositions. Biosci Biotechnol Biochem, 2004,68:1091-1096.
[22] Thanos G, Gerard B, Gilles C, Yvette H, Emile M, Bruno S, Emmanuelle J . Protein tyrosine kinases and protein tyrosine phosphatases are involved in abscisic acid-dependent processes in Arabidopsis seeds and suspension cells1. Plant Physiol, 2008,148:1668-1680.
[23] Palmer C E . The effect of abscisic acid on amino nitrogen and protein content of potato plants in relation to the inhibition of nitrate reductase activity. Plant Cell Physiol, 1985,26:1083-1091.
[24] Zhao X Q, Nie X L, Xiao X G . Over-expression of a tobacco nitrate reductase gene in wheat (Triticum aestivum L.) increases seed protein content and weight without augmenting nitrogen supplying. PLoS One, 2013,8:e74678.
[25] Ohkama-Ohtsu N, Radwan S, Peterson A G, Zhao P, Badr A F, Xiang C B, Oliver D J . Characterization of the extracellular γ-glutamyl transpeptidases, GGT1 and GGT2, in Arabidopsis. Plant J, 2007,49:865-877.
[26] Awazuhara M, Kim H, Hayashi H, Chino M, Kim S G, Fujiwara T . Composition of seed storage proteins changed by glutathione treatment of soybeans. Biosci Biotechnol Biochem, 2002,66:1751-1754.
[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[3] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[4] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[5] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[6] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[7] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[8] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[9] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[10] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[11] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643.
[12] 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366.
[13] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[14] 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537.
[15] 禹桃兵, 石琪晗, 年海, 连腾祥. 涝害对不同大豆品种根际微生物群落结构特征的影响[J]. 作物学报, 2021, 47(9): 1690-1702.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!