Please wait a minute...
欢迎访问作物学报,今天是
图/表 详细信息
运用广义线性混合模型分析随机区组重复测量的试验资料
张久权, 闫慧峰, 褚继登, 李彩斌
作物学报    2021, 47 (2): 294-304.   DOI: 10.3724/SP.J.1006.2021.04085
摘要   (818 HTML24 PDF(pc) (340KB)(583)  

重复测量试验对同一受试对象进行多次测量, 各时间点数据间存在自相关性, 进行方差分析和均值比较时需要进行特殊处理。虽然此方法在农业等研究领域运用十分广泛, 但目前有效地相关统计方法鲜见。为了建立操作简单、实用性强、结果可靠的统计分析方法, 本研究采用SAS的广义线性混合模型(Generalized Linear Mixed Models, GLIMMIX), 以随机区组重复测量试验资料为例, 说明了协方差结构筛选、方差分析和均值比较的具体方法。结果表明, 用传统的裂区设计、多变量统计等方法会造成资料信息浪费, 统计功效降低, 缺区无法处理等问题, 甚至会导致错误的结论。GLIMMIX能很好地处理自相关问题, 功能强大, 结果可靠, 使用简单, 允许缺区, 是进行重复测量试验资料方差分析和均值比较的理想方法。目前在国内将其运用到农学类试验数据的统计分析的相关报道鲜见, 该文在本领域具有很强的实用性和创新性。



View image in article
图1 3种施肥处理总氮淋失量随淋洗次数的变化
误差线为标准误。
正文中引用本图/表的段落
图1显示了土柱试验3种不同施肥方式下总N淋失量随淋次数的变化, 淋洗次数为重复测量的时间因素。我们可能需要确定如下处理组合间的差异是否显著: (1)特定时间两处理水平间的差异, 如第6次淋洗时, 全氮淋失量N1与N2处理的差异; (2)特定处理随时间的变化, 如N2处理, 全氮淋失量第6次与第8次淋洗的差异; (3)两处理水平在各特定时间点的差异, 以便确定最优处理组合, 如N1第7次淋洗与N2第9次淋洗全氮淋失量的差异显著性; (4)随时间的变化(所有处理平均), 如3种氮处理平均, 全氮淋失量第8次与第10次淋洗的差异; (5)处理间差异(所有时间点平均), 如N1与N2处理在所有时间点平均, 全氮淋失量的差异; (6)其他差异比较。
语句(9)以淋洗次数times为横坐标, 总氮淋失量为纵坐标, 输出类似图1的折线图。“sliceby=N”表示按N水平进行分类。Join将各点连成线。cl表示输出95%的置信区间(confident interval)。图1中误差线为标准误, 该语句输出的误差线为95%置信区间。NLOPTIONS语句是为了将 PROC GLIMMIX 的优化技术设置为与mixed 程序(Newton-Raphson算法)相同的技术[5]。
从表2可以看出, 第6次淋洗时, N2比N1的总氮淋失量低8.05 g (图1), 接近5%差异显著水准(P = 0.078), 此为特定时间(第6次淋洗)两处理水平(N1 vs. N2)间的比较; 语句(5)输出的结果表明, N2处理总N淋失量第6次比第8次淋洗高10.94 g, 差异达1%极显著水平(P = 0.0025), 我们还可以检验第6次与第8、9、10、11、12次淋洗的差异显著性, 也可以对其他时间进行差异显著性比较, 确定总N淋失量随时间的变化规律。语句(6)输出的结果表明, N1第7次淋洗比N2处理第9次淋洗全氮淋失量多6.38 g氮(表5和图1), 差异极显著(P = 0.0008)。可以继续进行两处理水平在各特定时间点的差异比较, 找出最优处理组合。
除了用GLIMMIX进行重复测量的数据分析外, 也可以用mixed程序进行。前者是SAS公司后来开发的程序, 比mixed功能更强大, 例如, 能直接输出类似图1的图; 进行均值比较时, 编写代码更简单[5]。
本文的其它图/表