Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2019, Vol. 45 ›› Issue (11): 1672-1681.doi: 10.3724/SP.J.1006.2019.94008

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Core collection screening of a germplasm population in jute (Corchorus spp.)

XU Yi1,2,3,ZHANG Lie-Mei1,2,GUO Yan-Chun1,2,3,QI Jian-Min1,2,ZHANG Li-Lan1,2,3,FANG Ping-Ping1,2,ZHANG Li-Wu1,2,3,*()   

  1. 1 Key Laboratory for Genetics, Breeding and Multiple Utilization of Crops of Ministry of Education / Fujian Key Laboratory for Crop Breeding by Design / College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
    2 Experiment Station of Jute and Kenaf in Southeast China of Ministry of Agriculture and Rural Affairs / Fujian Public Platform for Germplasm Resources of Bast Fiber Crops / Fujian International Science and Technology Cooperation Base for Genetics, Breeding and Multiple Utilization Development of Southern Economic Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
    3 Center for Genomics and Biotechnology of Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
  • Received:2019-01-11 Accepted:2019-05-12 Online:2019-11-12 Published:2019-09-28
  • Contact: Li-Wu ZHANG E-mail:lwzhang@fafu.edu.cn;zhang_liwu@hotmail.com
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(31771369);the China Agriculture Research System(CARS-19-E06)

Abstract:

Innovation of jute germplasm and breeding new varieties are based on core collection. In this study, 300 jute accessions were systematically identified. The core collections were constructed by SSR molecular markers, agronomic traits and geographical sources. The variation coefficient of 11 agronomic traits ranged from 13.06% to 84.87%, indicating an abundant genetic diversity. These jute germplasm was divided into eight groups based on agronomic traits while ten groups based on the clustering analysis of molecular markers. Combining the two cluster analyses, and geographic location of these jute accessions, a preselected core collection including 108 accessions was established. Furthermore, 44 pairs of SSR primers were used to analyze the genetic differences. The 108 varieties were divided into white jute and dark jute at the genetic similarity coefficient of 0.65. According to the analysis of genetic differences, genetic redundancy with genetic similarity greater than or equal to 0.85 was excluded and 84 core collections, including 60 white jute accessions and 24 dark jute ones, were obtained. By comparison in the coefficient of variation and Shannon-Wiener index of agronomic traits between 84 core collections and 300 germplasm, it was found that there was no significant difference between them, indicating that the 84 jute core collections could represent the genetic diversity of 300 jute germplasm resources to the maximum extent.

Key words: jute (Corchorus spp.), agronomic traits, molecular marker, core collections

Table 1

Information of SSR primers in this study"

编号
Number
标记名称
Marker name
正向引物
Forward primer (5°-3°)
反向引物
Reverse primer (5°-3°)
1 CcSSR001 TGAAAGGAGCCGCCATAGATCTCC GGATCTTTCGAGCTCTGGAGTCTGC
2 CcSSR007 TCCGCAGCAACCCCACCAAC ACACAAGGGAGCAAGAGCTAACAACA
3 CcSSR008 CCACACCCATGAGCAACTCCCC CCCACACAATATTTTACCAGGGGGCA
4 CcSSR011 CCGCCGGTTTCTTACCATCCTCC TCCCGGCGGAGGAAACCTGA
5 CcSSR014 TGGCACCGGTGATCCTCTTTGGA CCCCTGGGGATCTCTTCTTCCTTCC
6 CcSSR019 CCACCACCACCACCACCAGC GGCCTGCTTCTGAGCCCTGC
7 CcSSR020 GGGTTCAGTCCGTTCTGGACTCTT CGTCGGAAATGGTTTTTGATTGACGG
8 CcSSR024 GGGGATTACCGATGCCGCGA CACCACCCACCACCGCACAA
9 CcSSR027 ACAGCCGTGCATGGCGAAGT TGAGGCTTGCAAACAGGAGGGT
编号
Number
标记名称
Marker name
正向引物
Forward primer (5°-3°)
反向引物
Reverse primer (5°-3°)
10 CcSSR029 CCAGAGCAACTGCTTCTGAAAGCG CCGATTGTATAAAGTGCAAGGCCGA
11 CcSSR031 GCCACACCCATGAGCAACTCCC CCAGGGGGCATGCAAATTTTTCAATCA
12 CcSSR036 CCGCCCGGGCAGGTACTACT TCCTCCTCTCCTTCCTCCCCTT
13 CcSSR038 GGCCCACTGATTCTCCCGACG TGCTGATTTCGCCAGGGTCG
14 CcSSR039 TGCTAAGCCTCTCTTCTGTTCTGCT ACAAAGCAGCAAGCTGGGCACT
15 CcSSR045 AGCTCGCATACCCGACCCGT GCATCGGTTTGGGGCGGACA
16 CoSSR049 GGCACGAGGGAACATCAACCA AAAGGAGCCGCCATAGATCTCCA
17 CoSSR068 AGGTTTATCGGTTTCTGCAGGGGT TGCGGTGGGATTTGGGTGCC
18 CoSSR072 TGCCGCACCAAACAATGAGCA TCCGCAGGTGTCCTTCTCCCA
19 CoSSR083 TGCAGGGCTGTTGTGGCTGC TGGTGGTGGTGGGTTGAAATGTCC
20 CoSSR086 ACCATGATGCAAAGAATGGATGCCT TGTCCTCCAGCCTCTTGTTCCCT
21 CoSSR087 ACGACGCCATTTTGACCCAAGC TGGGATCATCGAAGGGTGAAGCGT
22 CoSSR090 TCGCGGAAACCACCTGCACA AGCCCCAATTCTTGATGGAAGGGA
23 CoSSR092 GGCGAGGGGAGATGAATGGGGA TGCCGAGTGTGTGTATGTGGGGA
24 CoSSR094 ACGCCTCCTAAGAGGGATGCCA TGTGGCCTTTTGAGGAGGTGC
25 CoSSR099 GCAGCCTGCGGTCGACTCTG CTTGCGCGTTGGGCCATGCT
26 CoSSR100 AAGCAACCAATATAGTCGCACTTGTCA TGAAATGGGCCCAAGCCCAAG
27 CoSSR119 ACCAAATCGGAAGCATCAAACAAACAG TCTTGACAACACTGGTCCTCTGCAT
28 CoSSR121 TGACAATGATTACGCCAAGCTTCTGA AGGTTCAGTTGTGGTTGGTGTGGT
29 CoSSR122 ACAGCCATTACCACCACACCAACA GGTGGTGGGACACCTGGTGGA
30 CoSSR133 GCCATTGCCTTCCCCTCCTCC TGGATCCAAATCGTAGCATTCCCCT
31 CoSSR136 GGCGCGGACAATGGCAGGAT ACGCACGGCCTGTAAGAGCG
32 CoSSR146 CCACCAAGCAAGGTGAATGCCC ACACTCTAGATACCTTGATGGGGCTC
33 CoSSR164 CCCCCATATCTCCCATTGTACCTGC AGGGTCGGCCAAACCCACCA
34 CoSSR244 GCGCCGTCGATCTCTCTGGC AAGGATTGGCCCCACCCCCA
35 CoSSR254 CTGCCAGCTCCCCACAAGCC TGCCTCATAGGAGCCAATGGGAAGT
36 CcID066 AAGTCTTGCTATTAATGCCC TTCAACAGTATGGTGCTCAA
37 CcID071 CTCTCAACCCAAAGCAAAAG CTGAAATGAAAAAAGCAACA
38 CcID109 TGAGTGTATAGAGGCGCAGC CATTTCATCATCAAAGGCAT
39 CcID167 AGAACTCGTCGGATTTTATC ACTCTTTGTCTCCCACACTG
40 CoEMS217 TTCGCCTCCAACCCTAACCCT TGCTGCTGCAACCGTGGCTT
41 CoEMS250 CCCCCAAAGTTGGCCATCCCA GGAACCAAAGGGAAAAGCCAAAGCA
42 CoEMS333 TGCCGCGGCTTCATCTAGACC GGGAACGCCTTACGCTCCCT
43 CoEMS474 TGGTGGTGGTGGTGGAGGGT AGCTTGCATTTGTCCAAACGGCG
44 CoEMS523 AGTGGCGGCAGAGGCACAAG CAGCAGCGGCTCCTCCATGA

Fig. 1

Cluster analysis of 108 pre-selected jute core germplasm resources"

Fig. 2

Cluster analysis of 84 jute core germplasms"

Supplementary table 1

Type and origin of 84 core germplasms in jute"

编号
Number
品种
Accession
类型
Type
来源地
Origin
1 梅峰1号Meifeng 1 圆果种黄麻C. capsularis 中国福建Fujian, China
2 梅峰2号Meifeng 2 圆果种黄麻C. capsularis 中国福建Fujian, China
3 梅峰5号Meifeng 5 圆果种黄麻C. capsularis 中国福建Fujian, China
4 日本3号Japan 3 圆果种黄麻C. capsularis 日本Japan
5 日本5号Japan 5 圆果种黄麻C. capsularis 日本Japan
6 日本7号Japan 7 圆果种黄麻C. capsularis 日本Japan
7 闽黄9号Minhuang 9 圆果种黄麻C. capsularis 中国福建Fujian, China
8 粤圆2号Yueyuan 2 圆果种黄麻C. capsularis 中国广东Guangdong, China
9 粤圆3号Yueyuan 3 圆果种黄麻C. capsularis 中国广东Guangdong, China
10 粤圆5号Yueyuan 5 圆果种黄麻C. capsularis 中国广东Guangdong, China
11 闽23 Min 23 圆果种黄麻C. capsularis 中国福建Fujian, China
12 琼粤青Qiongyueqing 圆果种黄麻C. capsularis 中国湖南Hunan, China
13 揭阳8号Jieyang 8 圆果种黄麻C. capsularis 中国广东Guangdong, China
14 广东独尾麻Guangdongduweima 圆果种黄麻C. capsularis 中国广东Guangdong, China
15 新选1号Xinxuan 1 圆果种黄麻C. capsularis 中国湖南Hunan, China
16 D-154 圆果种黄麻C. capsularis 中国湖南Hunan, China
17 C46 圆果种黄麻C. capsularis 孟加拉国Bangladesh
18 浦城黄麻Puchenghuangma 圆果种黄麻C. capsularis 中国福建Fujian, China
19 云霄红皮Yunxiaohongpi 圆果种黄麻C. capsularis 中国福建Fujian, China
20 云霄淡红皮Yunxiaodanhongpi 圆果种黄麻C. capsularis 中国福建Fujian, China
21 古农红皮Gunonghongpi 圆果种黄麻C. capsularis 中国福建Fujian, China
22 卢滨圆果Lubinyuanguo 圆果种黄麻C. capsularis 中国福建Fujian, China
23 南靖青皮Nanjingqingpi 圆果种黄麻C. capsularis 中国福建Fujian, China
24 南靖红皮Nanjinghongpi 圆果种黄麻C. capsularis 中国福建Fujian, China
25 越南圆果Yuenanyuanguo 圆果种黄麻C. capsularis 越南Vietnam
26 牛刷条Niushuatiao 圆果种黄麻C. capsularis 中国四川Sichuan, China
27 海南琼山Hainanqiongshan 圆果种黄麻C. capsularis 中国海南Hainan, China
28 圆子麻Yuanzima 圆果种黄麻C. capsularis 中国四川Sichuan, China
29 粤引1号Yueyin 1 圆果种黄麻C. capsularis 中国广东Guangdong, China
30 台湾加利麻 Taiwanjialima 圆果种黄麻C. capsularis 中国台湾Taiwan, China
31 台湾8号Taiwan 8 圆果种黄麻C. capsularis 中国台湾Taiwan, China
32 台湾9号Taiwan 9 圆果种黄麻C. capsularis 中国台湾Taiwan, China
33 台中胭脂红Taizhongyanzhihong 圆果种黄麻C. capsularis 中国台湾Taiwan, China
34 新隆黄麻Xinlonghuangma 圆果种黄麻C. capsularis 中国台湾Taiwan, China
35 淡红皮10号Danhongpi 10 圆果种黄麻C. capsularis 中国湖南Hunan, China
36 早生赤Zaoshengchi 圆果种黄麻C. capsularis 中国台湾Taiwan, China
37 梅峰4号Meifeng 4 圆果种黄麻C. capsularis 中国福建Fujian, China
38 爱店野生种Aidianyeshengzhong 圆果种黄麻C. capsularis 中国广西Guangxi, China
39 台湾绿果Taiwanlyuguo 圆果种黄麻C. capsularis 中国台湾Taiwan, China
编号
Number
品种
Accession
类型
Type
来源地
Origin
40 黄麻179 Huangma 179 圆果种黄麻C. capsularis 中国福建Fujian, China
41 紫金黄麻Zijinhuangma 圆果种黄麻C. capsularis 中国广东Guangdong, China
42 紫苏黄麻Zisuhuangma 圆果种黄麻C. capsularis 中国广东Guangdong, China
43 板八黄麻Banbahuangma 圆果种黄麻C. capsularis 中国广西Guangxi, China
44 洋锯齿圆果Yangjuchiyuanguo 圆果种黄麻C. capsularis 中国广西Guangxi, China
45 807元引马里807 yuanyinmali 长果种黄麻C. olitorius 马里Mali
46 甜麻Tianma 长果种黄麻C. olitorius 中国贵州Guizhou, China
47 宽叶长果Kuanyechangguo 长果种黄麻C. olitorius 中国湖南Hunan, China
48 马里野生Maliyesheng 长果种黄麻C. olitorius 马里Mali
49 巴长4号Bachang 4 长果种黄麻C. olitorius 巴基斯坦Pakistan
50 巴麻71 Bama 71 长果种黄麻C. olitorius 巴基斯坦Pakistan
51 奠边青麻Dianbianqingma 长果种黄麻C. olitorius 越南Vietnam
52 SM/034 长果种黄麻C. olitorius 肯尼亚Kenya
53 O-1 长果种黄麻C. olitorius 孟加拉国Bangladesh
54 巴麻72-1 Bama 72-1 长果种黄麻C. olitorius 巴基斯坦Pakistan
55 广丰长果Guangfengchangguo 长果种黄麻C. olitorius 中国湖南Hunan, China
56 翠绿Cuilyu 长果种黄麻C. olitorius 印度India
57 闽麻273 Minma 273 圆果种黄麻C. capsularis 中国福建Fujian, China
58 尤溪长果Youxichangguo 长果种黄麻C. olitorius 中国福建Fujian, China
59 快早红Kuaizaohong 圆果种黄麻C. capsularis 中国福建Fujian, China
60 三元吉口Sanyuanjikou 圆果种黄麻C. capsularis 中国福建Fujian, China
61 福黄麻3号Fuhuangma 3 圆果种黄麻C. capsularis 中国福建Fujian, China
62 福农5号Funong 5 长果种黄麻C. olitorius 中国福建Fujian, China
63 中长黄1号Zhongchanghuang 1 长果种黄麻C. olitorius 中国湖南Hunan, China
64 福农3号Funong 3 长果种黄麻C. olitorius 中国福建Fujian, China
65 福农4号Funong 4 长果种黄麻C. olitorius 中国福建Fujian, China
66 中长麻2号Zhongchangma 2 长果种黄麻C. olitorius 中国湖南Hunan, China
67 广巴矮Guangba’ai 长果种黄麻C. olitorius 中国湖南Hunan, China
68 闽49 Min 49 圆果种黄麻C. capsularis 中国福建Fujian, China
69 闽麻737 Minma 737 圆果种黄麻C. capsularis 中国福建Fujian, China
70 55台露55 Tailu 圆果种黄麻C. capsularis 中国台湾Taiwan, China
71 1613 圆果种黄麻C. capsularis 中国广东Guangdong, China
72 犁型光果Lixingguangguo 圆果种黄麻C. capsularis 中国湖南Hunan, China
73 海南黄麻Hainanhuangma 圆果种黄麻C. capsularis 中国海南Hainan, China
74 河南野生圆果Henanyeshengyuanguo 圆果种黄麻C. capsularis 中国河南Henan, China
75 巴麻73-1 Bama 73-1 长果种黄麻C. olitorius 巴基斯坦Pakistan
76 JRO-632 长果种黄麻C. olitorius 印度India
77 印度TTP Yindu TTP 长果种黄麻C. olitorius 印度India
78 永安红皮Yonganhongpi 圆果种黄麻C. capsularis 中国福建Fujian, China
79 闽麻429 Minma 429 圆果种黄麻C. capsularis 中国福建Fujian, China
80 缅甸圆果Miandianyuanguo 圆果种黄麻C. capsularis 缅甸Myanmar
81 中黄麻1号Zhonghuangma 1 圆果种黄麻C. capsularis 中国湖南Hunan, China
82 福黄麻2号Fuhuangma 2 圆果种黄麻C. capsularis 中国福建Fujian, China
83 摩维1号Mowei 1 长果种黄麻C. olitorius 中国China
84 湘黄麻3号Xianghuangma 3 长果种黄麻C. olitorius 中国湖南Hunan, China

Table 2

Statistical analysis of main agronomic traits in jute"

性状
Trait
平均值±标准差 Mean±SD 范围 Range 变异系数CV (%)
288份
288 accessions
84份
84 accessions
288份
288 accessions
84份
84 accessions
288份
288 accessions
84份
84 accessions
始花期DF (d) 114.78±15.00 119±15.78 91-158 91-158 13.06 13.27
种子成熟期DM (d) 175.05±24.43 179.7±26.7 137-218 138-218 13.96 14.89
单株干皮重 DBW (g) 38.22±19.20 43.5±23.1 2-110 8-110 50.24 53.04
株高 PH (cm) 334.69±51.50 364.30±60.66 168-482 174.8-482.9 15.38 17.52
分枝高 BH (cm) 106.62±67.50 107.00±81.24 4.1-391.4 9.2-391.4 63.28 75.91
鲜皮厚 FBT (mm) 1.34±0.82 1.136±0.214 0.635-2.023 0.877-1.847 19.27 15.76
单株鲜茎重 FSW (g) 610.03±209.80 656.3±221.66 64-1266 312-1212 33.85 33.77
单株鲜皮重 FBW (g) 130.86±66.60 145.2±76.288 7.5-394.0 30-394 50.41 52.55
节数 NMS 19.00±14.40 19.5±17.619 1.0-78.7 1.3-78.7 75.74 90.42
分枝数 NB 20.50±17.40 22.9±18.984 1.5-74.0 2.6-65.5 84.87 83.06
出麻率 BR (%) 6.21±2.31 6.66±2.81 1.23-16.11 1.74-15.25 37.13 42.32
茎粗 SD (mm) 20.435±3.308 20.791±3.847 10.751-28.965 12.866-28.956 16.19 18.50
[1] 熊和平 . 麻类作物育种学. 北京: 中国农业科学技术出版社, 2008. pp 156-207.
Xiong H P. Breeding Sciences of Bast and Leaf Fiber Crops. Beijing: China Agricultural Science and Technology Press, 2008. pp 156-207(in Chinese).
[2] Tao A F, Huang L, Wu G F, Reza K A, Qi J M, Fang P P, Lin L H, Zhang L W, Lin P Q . High-density genetic map construction and QTLs identification for plant height in white jute (Corchorus capsularis L.) using specific locus amplified fragment (SLAF) sequencing. BMC Genomics, 2017,18:355.
[3] 任丽平, 倪西源, 黄吉祥, 雷伟侠, 曹明富, 赵坚义 . 甘蓝型油菜一个代表性核心种质的遴选. 中国农业科学, 2008,41:3521-3531.
Ren L P, Li X Y, Huang J X, Lei W X, Cao M F, Zhao J Y . Core collection of a representative germplasm population in Brassica napus. Sci Agric Sin, 2008,41:3521-3531 (in Chinese with English abstract).
[4] 贾继增, 张启发 . 为第二次“绿色革命”发掘基因资源——国家重点基础研究发展规划项目“农作物核心种质构建、重要新基因发掘与有效利用研究”总体设计及研究进展. 中国基础科学, 2001, ( 7):4-8.
Jia J Z, Zhang Q F . Exploring gene resources for “the Second Green Revolution”— the overall design and research progress of “crop core germplasm construction, new important genes discovery and effective utilization researches” in the national key basic research and development planning project. China Basic Sci, 2001, ( 7):4-8 (in Chinese with English abstract).
[5] 陈学军, 雷刚, 周坤华, 方荣 . 蔬菜核心种质研究进展. 江西农业大学学报, 2015, ( 1):60-66.
Chen X J, Lei G, Zhou K H, Fang R . Review of the studies on core collection for vegetables. Acta Agric Univ Jiangxiensis, 2015, ( 1):60-66 (in Chinese with English abstract).
[6] Frankel O H. Genetic Perspectives of Germplasm Conservation. Cambridge: Cambridge University Press, 1984. pp 161-170.
[7] Coimbra R R, Miranda G V, Cruz C D, Silvad J H, Vilelar A . Development of a Brazilian maize core collection. Genet Mol Biol, 2009,32:538-545.
[8] 邱丽娟, 李英慧, 关荣霞, 刘章雄, 王丽侠, 常汝镇 . 大豆核心种质和微核心种质的构建、验证与研究进展. 作物学报, 2009,35:571-579.
Qiu L J, Li Y H, Guan R X, Liu Z X, Wang L X, Chang R Z . Establishment, representative testing and research progress of soybean core collection and mini core collection. Acta Agron Sin, 2009,35:571-579 (in Chinese with English abstract).
[9] 陶爱芬, 祁建民, 粟建光, 方平平, 林荔辉, 徐建堂, 吴建梅, 林培清 . 黄麻种质资源遗传多样性的SRAP 分析. 植物科学学报, 2012,30(2):178-187.
Tao A F, Qi J M, Li J G, Fang P P, Lin L H, Xu J T, Wu J M, Lin P Q . Analysis of genetic diversity of jute (Corchorus L.) germplasm revealed by SRAP. Plant Sci J, 2012,30(2):178-187 (in Chinese with English abstract).
[10] 张加强, 陈常理, 骆霞虹, 金关荣 . 中国育成黄麻主要品种间的亲缘关系分析. 中国农业科学, 2015,48:4008-4020.
Zhang J Q, Chen C L, Luo X H, Jin G R . Analysis of the coefficient of parentage among major jute cultivars in China. Sci Agric Sin, 2015,48:4008-4020 (in Chinese with English abstract).
[11] 张力岚 . 黄麻InDel标记开发与纤维品质相关性状的关联分析. 福建农林大学硕士学位论文, 福建福州, 2018.
Zhang L L . Development of InDel Markers and Association Analysis of Fiber Quality Related Traits in Jute (Corchorus spp.). MS Thesis of Fujian Agriculture and Forestry University, Fuzhou, Fujian, China, 2018 (in Chinese with English abstract).
[12] 张立武, 袁民航, 何雄威, 刘星, 方平平, 林荔辉, 陶爱芬, 徐建堂, 祁建民 . GenBank数据库中黄麻EST-SSR标记的开发及其通用性评价. 作物学报, 2014,40:1213-1219.
Zhang L W, Yuan M H, He X W, Liu X, Fang P P, Lin L H, Tao A F, Xu J T, Qi J M . Development and universality evaluation of EST-SSR markers from GenBank in jute. Acta Agron Sin, 2014,40:1213-1219 (in Chinese with English abstract).
[13] 粟建光, 龚有才 . 黄麻种质资源描述和数据标准. 北京: 中国农业出版社, 2015. pp 7-27.
Su J G, Gong Y C. Descriptors and Data Standard for Jute (Corchorus olitorius L. & Corchorus capsularis L.). Beijing: China Agriculture Press, 2005. pp 7-27(in Chinese).
[14] 马冰, 代帅帅, 程亚增, 蒋彩虹, 任民, 程立锐, 杨爱国 . 烤烟种质资SSR 核心引物的筛选及验证. 中国烟草科学, 2016,37(5):1-5.
Ma B, Dai S S, Cheng Y Z, Jiang C H, Ren M, Cheng L R, Yang A G . Screen and identification of SSR core primers for flue-cured tobacco germplasm. Chin Tob Sci, 2016,37(5):1-5 (in Chinese with English abstract).
[15] 杨美, 付杰, 向巧彦, 刘艳玲 . 利用AFLP分子标记技术构建花莲核心种质资源. 中国农业科学, 2011,44:3193-3205.
Yang M, Fu J, Xiang Q Y, Liu Y L . The core-collection construction of flower lotus based on AFLP molecular markers. Sci Agric Sin, 2011,44:3193-3205 (in Chinese with English abstract).
[16] Basu A, Ghosh M, Meyer R, Powell W, Basak S L, Sen S K . Analysis of genetic diversity in cultivated jute determined by means of SSR markers and AFLP profiling. Crop Sci, 2004,44:678-685.
[17] Huq S, Islam M S, Sajib A, Ashraf N, Haque S, Khan H . Genetic diversity and relationships in jute (Corchorus spp.) revealed by SSR markers. Bangladesh J Bot, 2009,38:153-161.
[18] 李自超, 张洪亮, 曾亚文, 杨忠义, 申时全, 孙伟清, 王象坤 . 云南地方稻种质资源核心种质取样方案研究. 中国农业科学, 2000,33(5):1-7.
Li Z C, Zhang H L, Zeng Y W, Yang Z Y, Sheng S Q, Sun W Q, Wang X K . Study on sampling schemes of core collection of local varieties of rice in Yunnan, China. Sci Agric Sin, 2000,33(5):1-7 (in Chinese with English abstract).
[19] 刘艳阳, 梅鸿献, 杜振伟, 武轲, 郑永战, 崔向华, 郑磊 . 基于表型和SSR分子标记构建芝麻核心种质. 中国农业科学, 2017,50:2433-2441.
Liu Y Y, Mei H X, Du Z W, Wu K, Zheng Y Z, Cui X H, Zheng L . Construction of core collection of sesame based on phenotype and molecular markers. Sci Agric Sin, 2017,50:2433-2441 (in Chinese with English abstract).
[20] Hu J B, Wang P Q, Su Y, Wang R J, Li Q, Sun K L . Microsatellite diversity, population structure, and core collection formation in melon germplasm. Plant Mol Biol Rep, 2015,33:439-447.
[21] Xu Q J, Zeng X Q, Lin B, Li Z Q, Yuan H J, Wang Y L, Sang Z, Nyima T . A microsatellite diversity analysis and the development of core-set germplasm in a large hulless barley (Hordeum vulgare L.) collection. BMC Genet, 2017,18:102.
[22] 栾明宝, 陈建华, 许英, 王晓飞, 孙志明 . 苎麻核心种质构建方法. 作物学报, 2010,36:2099-2106.
Luan M B, Chen J H, Xu Y, Wang X F, Sun Z M . Method of establishing ramie core collection. Acta Agron Sin, 2010,36:2099-2106 (in Chinese with English abstract).
[23] 郎彬彬, 黄春辉, 朱博, 谢敏, 张文标, 钟敏, 曲雪艳, 陶俊杰, 徐小彪 . 基于果实相关性状的江西野生毛花猕猴桃初级核心种质的构建方法研究. 果树学报, 2016,33:794-803.
Lang B B, Huang C H, Zhu B, Xie M, Zhang W B, Zhong M, Qu X Y, Tao J J, Xu X B . Study on the method of constructing a primary core collection of Jiangxi wild Actinidia eriantha based on fruit traits. J Fruit Sci, 2016,33:794-803 (in Chinese with English abstract).
[24] Zhang L, Cai R, Yuan M, Tao A, Xu J, Lin L, Fang P, Qi J . Genetic diversity and DNA fingerprinting in jute (Corchorus spp.) based on SSR markers. Crop J, 2015,3:416-422.
[1] FU Mei-Yu, XIONG Hong-Chun, ZHOU Chun-Yun, GUO Hui-Jun, XIE Yong-Dun, ZHAO Lin-Shu, GU Jia-Yu, ZHAO Shi-Rong, DING Yu-Ping, XU Yan-Hao, LIU Lu-Xiang. Genetic analysis of wheat dwarf mutant je0098 and molecular mapping of dwarfing gene [J]. Acta Agronomica Sinica, 2022, 48(3): 580-589.
[2] MA Hong-Bo, LIU Dong-Tao, FENG Guo-Hua, WANG Jing, ZHU Xue-Cheng, ZHANG Hui-Yun, LIU Jing, LIU Li-Wei, YI Yuan. Application of Fhb1 gene in wheat breeding programs for the Yellow-Huai Rivers valley winter wheat zone of China [J]. Acta Agronomica Sinica, 2022, 48(3): 747-758.
[3] ZHAO Jing, MENG Fan-Gang, YU De-Bin, QIU Qiang, ZHANG Ming-Hao, RAO De-Min, CONG Bo-Tao, ZHANG Wei, YAN Xiao-Yan. Response of agronomic traits and P/Fe utilization efficiency to P application with different P efficiency in soybean [J]. Acta Agronomica Sinica, 2021, 47(9): 1824-1833.
[4] WANG Yin, FENG Zhi-Wei, GE Chuan, ZHAO Jia-Jia, QIAO Ling, WU Bang-Bang, YAN Su-Xian, ZHENG Jun, ZHENG Xing-Wei. Identification of seedling resistance to stripe rust in wheat-Thinopyrum intermedium translocation line and its potential application in breeding [J]. Acta Agronomica Sinica, 2021, 47(8): 1511-1521.
[5] HE Jun-Yu, YIN Shun-Qiong, CHEN Yun-Qiong, XIONG Jing-Lei, WANG Wei-Bin, ZHOU Hong-Bin, CHEN Mei, WANG Meng-Yue, CHEN Sheng-Wei. Identification of wheat dwarf mutants and analysis on association between the mutant traits of the dwarf plants [J]. Acta Agronomica Sinica, 2021, 47(5): 974-982.
[6] WANG Heng-Bo, CHEN Shu-Qi, GUO Jin-Long, QUE You-Xiong. Molecular detection of G1 marker for orange rust resistance and analysis of candidate resistance WAK gene in sugarcane [J]. Acta Agronomica Sinica, 2021, 47(4): 577-586.
[7] ZHANG Xue-Cui, SUN Su-Li, LU Wei-Guo, LI Hai-Chao, JIA Yan-Yan, DUAN Can-Xing, ZHU Zhen-Dong. Identification of resistance gene against phytophthora root rot in new soybean lines breeded in Henan province [J]. Acta Agronomica Sinica, 2021, 47(2): 275-284.
[8] GUO Qing-Qing, ZHOU Rong, CHEN Xue, CHEN Lei, LI Jia-Na, WANG Rui. Location and InDel markers for candidate interval of the orange petal gene in Brassica napus L. by next generation sequencing [J]. Acta Agronomica Sinica, 2021, 47(11): 2163-2172.
[9] HUANG Yi-Wen, DAI Xu-Ran, LIU Hong-Wei, YANG Li, MAI Chun-Yan, YU Li-Qiang, YU Guang-Jun, ZHANG Hong-Jun, LI Hong-Jie, ZHOU Yang. Relationship between the allelic variations at the Ppo-A1 and Ppo-D1 loci and pre-harvest sprouting resistance in wheat [J]. Acta Agronomica Sinica, 2021, 47(11): 2080-2090.
[10] GUO Yan-Chun, ZHANG Li-Lan, CHEN Si-Yuan, QI Jian-Min, FANG Ping-Ping, TAO Ai-Fen, ZHANG Lie-Mei, ZHANG Li-Wu. Establishment of DNA molecular fingerprint of applied core germplasm in jute (Corchorus spp.) [J]. Acta Agronomica Sinica, 2021, 47(1): 80-93.
[11] Li-Lan ZHANG, Lie-Mei ZHANG, Huan-Ying NIU, Yi XU, Yu LI, Jian-Min QI, Ai-Fen TAO, Ping-Ping FANG, Li-Wu ZHANG. Correlation between SSR markers and fiber yield related traits in jute (Corchorus spp.) [J]. Acta Agronomica Sinica, 2020, 46(12): 1905-1913.
[12] JIA Xiao-Ping,QUAN Jian-Zhang,WANG Yong-Fang,DONG Zhi-Ping,YUAN Xi-Lei,ZHANG Bo,LI Jian-Feng. Effects of different photoperiod conditions on agronomic traits of foxtail millet [J]. Acta Agronomica Sinica, 2019, 45(7): 1119-1127.
[13] Ping ZHANG,Yi-Mei JIANG,Peng-Hui CAO,Fu-Lin ZHANG,Hong-Ming WU,Meng-Ying CAI,Shi-Jia LIU,Yun-Lu TIAN,Ling JIANG,Jian-Min WAN. Introducing qSS-9 Kas into Ningjing 4 by molecular marker-assisted selection to improve its seed storage ability [J]. Acta Agronomica Sinica, 2019, 45(3): 335-343.
[14] YANG Yong,LU Yan,GUO Shu-Qing,SHI Zhong-Hui,ZHAO Jie,FAN Xiao-Lei,LI Qian-Feng,LIU Qiao-Quan,ZHANG Chang-Quan. Improvement of rice eating quality and physicochemical properties by introgression of Wx in allele in indica varieties [J]. Acta Agronomica Sinica, 2019, 45(11): 1628-1637.
[15] Jun-Hua YE,Qi-Tai YANG,Zhang-Xiong LIU,Yong GUO,Ying-Hui LI,Rong-Xia GUAN,Li-Juan QIU. Genotyping of SCN, SMV Resistance, Salinity Tolerance and Screening of Pyramiding Favorable Alleles in Introduced Soybean Accessions [J]. Acta Agronomica Sinica, 2018, 44(9): 1263-1273.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!