Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2020, Vol. 46 ›› Issue (8): 1238-1247.doi: 10.3724/SP.J.1006.2020.02001

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Tillering characteristics and its relationships with population productivity of japonica rice Nanjing 9108 under salinity stress

WEI Huan-He1,GE Jia-Lin1,ZHANG Xu-Bin1,MENG Tian-Yao2,LU Yu1,LI Xin-Yue1,TAO Yuan1,DING En-Hao1,CHEN Ying-Long1,DAI Qi-Gen1,*()   

  1. 1Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou 225009, Jiangsu, China
    2Joint International Research Laboratory of Agriculture and Agro-product Safety, Ministry of Education/Institute of Agricultural Science and Technological Development, Yangzhou University, Yangzhou 225009, Jiangsu, China
  • Received:2020-01-09 Accepted:2020-04-15 Online:2020-08-12 Published:2020-04-26
  • Contact: Qi-Gen DAI E-mail:qgdai@yzu.edu.cn
  • Supported by:
    National Key Technology Support Program of China(2015BAD01B03);Key Research and Development Program of Jiangsu Province(BE2015337);Key Research and Development Program of Jiangsu Province(BE2016370);National Natural Science Foundation of China(31901448);Natural Science Foundation of the Jiangsu Higher Education Institutions of China(19KJB210004);Priority Academic Program Development of Jiangsu Higher Education Institutions

Abstract:

This study was conducted to clarify the characteristics for occurrence of rice tillers, its dominant leaf positions, and panicle formation under salinity stress, and to provide a basis for the rational utilization and regulation of rice tillers for high-yield cultivation methods in tidal flat area. Conventional japonica rice Nanjing 9108 was used with three salinity treatments, namely, Control (CK, 0 salt concentration), Medium-salinity stress (MS, 0.15% salt concentration), and high-salinity stress (HS, 0.3% salt concentration) to compare the tillering and panicle formation characteristics and its contribution to population yield under salinity stress. As a result, the average yields (t hm-2) of CK, MS, and HS were 9.7, 7.4, and 4.2 across two years, respectively; the number of panicles, spikelets per panicle, percentage of filled grains, and 1000-grain weight in MS and HS treatments were significantly lower than those in CK. Compared with CK, the number of tillers at jointing, heading, and maturity and percentage of productive tillers in MS and HS treatments were decreased. For CK, the primary tillers emerged from the 3rd leaf to 7th leaf on the main stem, with higher tiller emerging rate and more panicles from the 4th leaf to 6th leaf among them, and secondary tillers mainly emerged and earbeared from 1/4 and 1/5 tiller position; as for MS and HS, tillers are mainly primary ones emerging from the 4th to 6th leaf as the dominant position for the tiller occurrence and earbearing. The mean value of panicle length, total grains, grain density, and number of grains and its total grains on the primary and secondary branches in MS and HS treatments were both lower than those in CK. Our results suggest that, salinity stress caused lower number of panicles per plant, inferior growth of individuals and populations, smaller panicle types, and finally lower grain yield.

Key words: salinity stress, rice, tillering characteristics, population productivity

Table 1

Effects of salinity stress on rice grain yield and its components"

年份
Year
处理
Treatment
穗数
Number of
panicles
(×104 hm-2)
每穗粒数
Spikelets per
panicle
颖花量
Number of spikelets
(×107 hm-2)
结实率
Percentage of filled grains (%)
千粒重
1000-
grain
weight (g)
实产
Actual yield
(t hm-2)
成熟期
干物重
Biomass
accumulation at maturity
(t hm-2)
收获
指数
Harvest index
2018 对照 CK 359.5 a 133.6 a 48.0 a 90.5 a 23.9 a 9.7 a 16.6 a 0.503 c
中盐 MS 335.1 b 112.4 b 37.7 b 88.7 ab 22.7 b 7.3 b 12.0 b 0.524 b
高盐 HS 293.7 c 87.2 c 25.6 c 82.6 b 21.2 c 4.3 c 6.7 c 0.549 a
2019 对照 CK 344.3 a 135.3 a 46.6 a 91.4 a 24.2 a 9.6 a 16.2 a 0.511 c
中盐 MS 323.1 b 115.7 b 37.4 b 88.2 b 23.1 b 7.4 b 11.9 b 0.533 b
高盐 HS 277.5 c 84.9 c 23.6 c 83.5 c 21.6 c 4.1 c 6.4 c 0.553 a

Table 2

Effects of salinity stress on tiller number at the main growth stages of rice population"

年份
Year
处理
Treatment
群体茎蘖数 Tiller number of rice population (×104 hm-2)
拔节期Jointing 抽穗期Heading 成熟期Maturity
2018 对照 CK 459.1 a 365.9 a 359.5 a
中盐 MS 443.3 b 351.5 b 335.1 b
高盐 HS 404.5 c 314.3 c 293.7 c
2019 对照 CK 450.1 a 350.4 a 344.3 a
中盐 MS 439.6 b 339.1 b 323.1 b
高盐 HS 388.7 c 296.5 c 277.5 c

Fig. 1

Effects of salinity stress on percentage of productive tillers of rice CK: control; MS: medium-salinity stress; HS: high-salinity stress. Bars superscripted by different lowercase are significantly different at the 5% probability level between treatments."

Table 3

Effects of salinity stress on tiller emerging rate and panicle rate of rice"

叶位
Leaf position
分蘖发生率 Emerging rate (%) 分蘖成穗率 Panicle rate (%)
对照 CK 中盐 MS 高盐 HS 对照 CK 中盐 MS 高盐 HS
3/0 27.78 16.67 40.00 33.33
4/0 94.44 83.33 66.67 70.59 73.33 75.00
5/0 100.00 100.00 100.00 88.89 88.89 83.33
6/0 100.00 100.00 100.00 100.00 100.00 94.44
7/0 77.78 61.11 38.89 28.57 18.18 14.29
1/4 66.67 55.56 44.44 50.00 30.00 25.00
2/4 38.89 16.67 11.11 14.29 33.33
3/4 22.22 5.56 25.00
1/5 66.67 22.22 11.11 33.33 25.00 50.00
2/5 22.22 11.11 5.56
1/6 11.11 11.11 50.00 50.00

Table 4

Panicles composition of stems and tillers of rice under salinity stress"

叶位
Leaf position
对照 CK 中盐 MS 高盐 HS
个数 Number 比例 Rate (%) 个数 Number 比例 Rate (%) 个数 Number 比例 Rate (%)
单株成穗数
No. of productive tillers per plant
4.61 a 4.00 b 3.50 c
主穗Main stem (0/0) 1.00 21.69 1.00 25.00 1.00 28.57
3/0 0.11 2.41 0.06 1.39
4/0 0.67 14.46 0.61 15.28 0.50 14.29
5/0 0.89 19.28 0.89 22.22 0.83 23.81
6/0 1.00 21.69 1.00 25.00 0.94 26.98
7/0 0.22 4.82 0.11 2.78 0.06 1.59
一次分蘖合计
Primary tillers in total
2.89 62.67 2.67 66.67 2.33 66.67
1/4 0.33 7.24 0.17 4.17 0.11 3.17
2/4 0.06 1.21 0.06 1.39
3/4 0.06 1.21
1/5 0.22 4.78 0.06 1.39 0.06 1.59
1/6 0.06 1.21 0.06 1.39
二次分蘖合计
Secondary tillers in total
0.72 15.64 0.33 8.33 0.17 4.76

Table 5

Contribution of stems and tillers in each leaf position of rice under salinity stress"

叶位
Leaf position
对照 CK 中盐 MS 高盐 HS
产量
Yield (t hm-2)
比例
Rate (%)
产量
Yield (t hm-2)
比例
Rate (%)
产量
Yield (t hm-2)
比例
Rate (%)
群体产量
Population productivity
9.65 a 7.35 b 4.20 c
主穗Main stem (0/0) 2.32 24.05 2.12 28.86 1.36 32.45
3/0 0.22 2.31 0.10 1.33
4/0 1.33 13.76 1.06 14.44 0.51 12.18
5/0 1.95 20.20 1.65 22.48 1.01 24.16
6/0 2.18 22.64 1.75 23.83 1.15 27.37
7/0 0.38 3.93 0.17 2.25 0.04 0.89
一次分蘖合计
Primary tillers in total
6.06 62.84 4.73 64.34 2.71 64.61
1/4 0.65 6.76 0.27 3.66 0.08 1.92
2/4 0.09 0.91 0.07 0.99
3/4 0.08 0.86
1/5 0.36 3.72 0.08 1.12 0.04 1.02
1/6 0.08 0.86 0.08 1.02
二次分蘖合计
Secondary tillers in total
1.27 13.11 0.50 6.80 0.12 2.94

Table 6

Effects of salinity stress on panicles traits of stems and tillers in each leaf position of rice"

处理
Treatment
叶位
Leaf position
穗长
PL (cm)
总粒数
TG
结实率
PFG (%)
着粒密度
GD
(grain cm-1)
一次枝梗
Primary branch
二次枝梗
Secondary branch
枝粳数
NB
枝梗粒数
TG
枝粳数
NB
枝梗粒数 TG
对照 CK 0/0 18.2 161.3 91.1 8.9 12.0 74.1 30.0 87.2
3/0 16.4 139.8 90.9 8.5 12.0 72.9 22.0 66.9
4/0 17.2 141.6 89.1 8.2 13.0 78.7 24.0 62.9
5/0 18.1 155.2 89.5 8.6 13.0 77.4 28.0 77.8
6/0 17.5 153.4 90.2 8.8 12.0 76.8 26.0 76.6
7/0 16.7 122.4 88.2 7.3 10.0 63.4 21.0 59.0
1/4 16.2 139.8 88.6 8.6 11.0 66.7 24.0 73.1
2/4 15.8 114.1 87.6 7.2 10.0 58.7 22.0 55.4
3/4 14.8 106.9 88.5 7.2 11.0 62.3 17.0 44.6
1/5 15.3 116.5 88.7 7.6 11.0 62.4 18.0 54.1
1/6 14.6 107.0 88.9 7.3 10.0 60.8 16.0 46.2
平均值 Mean 16.4 a 132.5 a 89.2 a 8.0 a 11.4 a 68.6 a 22.5 a 64.0 a
中盐 MS 0/0 16.8 145.8 90.4 8.7 12.0 74.1 25.0 71.7
3/0 15.8 122.6 89.4 7.8 10.0 59.4 19.0 63.2
4/0 15.7 121.2 89.0 7.7 10.0 61.3 21.0 59.9
5/0 16.2 128.9 89.6 8.0 12.0 71.5 22.0 57.4
6/0 15.8 122.4 88.9 7.7 13.0 66.7 21.0 55.7
7/0 15.6 104.8 88.4 6.7 11.0 65.6 15.0 39.2
1/4 15.8 114.5 87.6 7.2 10.0 56.6 22.0 57.9
2/4 14.1 93.3 87.5 6.6 9.0 53.4 16.0 39.9
1/5 15.6 106.7 86.6 6.8 12.0 68.7 14.0 38.0
1/6 14.1 98.5 85.2 7.0 10.0 58.6 14.0 39.9
平均值 Mean 15.6 ab 115.9 b 88.3 ab 7.4 ab 10.9 ab 63.6 b 18.9 b 52.3 b
高盐 HS 0/0 15.7 121.6 84.5 7.7 10.0 61.2 21.0 60.4
4/0 14.6 93.5 82.5 6.4 9.0 53.1 16.0 40.4
5/0 15.1 111.0 82.7 7.4 11.0 63.4 18.0 47.6
6/0 15.4 109.5 83.8 7.1 11.0 67.9 14.0 41.6
7/0 11.7 62.4 81.6 5.3 10.0 48.9 4.0 13.5
1/4 12.7 67.7 80.7 5.3 10.0 55.6 5.0 12.1
1/5 12.5 70.7 82.3 5.7 9.0 48.9 9.0 21.8
平均值 Mean 14.0 b 90.9 c 82.6 b 6.4 b 10.0 b 57.0 c 12.4 c 33.9 c
[1] Liu L L, Zhu Y, Tang L, Cao W X, Wang E L. Impacts of climate changes, soil nutrients, variety types and management practices on rice yield in East China: A case study in the Taihu region. Field Crops Res, 2013,149:40-48.
[2] 王才林, 张亚东, 赵凌, 路凯, 朱镇, 陈涛, 赵庆勇, 姚姝, 周丽慧, 赵春芳, 梁文化, 孙明法, 严国红. 耐盐碱水稻研究现状、问题与建议. 中国稻米, 2019,25(1):1-6.
Wang C L, Zhang Y D, Zhao L, Lu K, Zhu Z, Chen T, Zhao Q Y, Yao S, Zhou L H, Zhao C H, Liang W H, Sun M F, Yan G H. Research status, problems and suggestions on salt-alkali tolerant rice. Chin Rice, 2019,25(1):1-6 (in Chinese with English abstract).
[3] 周根友, 翟彩娇, 邓先亮, 张蛟, 张振良, 戴其根, 崔士友. 盐逆境对水稻产量、光合特性及品质的影响. 中国水稻科学, 2018,32:146-154.
Zhou G Y, Zhai C J, Deng X L, Zhao J, Zhang Z L, Dai Q G, Cui S Y. Performance of yield, photosynthesis and grain quality of japonica rice cultivars under salinity stress in micro- plots. Chin J Rice Sci, 2018,32:146-154 (in Chinese with English abstract).
[4] Ashraf M, Athar H R, Harris P J C, Kwon T R. Some prospective strategies for improving crop salt tolerance. Adv Agron, 2008,97:45-110.
[5] 孙现军, 姜奇彦, 胡正, 张惠媛, 徐长兵, 邸一恒, 韩龙植, 张辉. 水稻资源全生育期耐盐性鉴定筛选. 作物学报, 2019,45:1656-1663.
Sun X J, Jiang Q Y, Hu Z, Zhang H Y, Xu C B, Di Y H, Han L Z, Zhang H. Screening and identification of salt-tolerant rice germplasm in whole period. Acta Agron Sin, 2019,45:1656-1663 (in Chinese with English abstract).
[6] 沙汉景, 胡文成, 贾琰, 王新鹏, 田雪飞, 于美芳, 赵宏伟. 外源水杨酸、脯氨酸和γ-氨基丁酸对盐胁迫下水稻产量的影响. 作物学报, 2017,43:1677-1688.
Sha H J, Hu W C, Jia Y, Wang X P, Tian X F, Yu M F, Zhao H W. Effect of exogenous salicylic acid, proline, and γ-aminobutyric acid on yield of rice under salt stress. Acta Agron Sin, 2017,43:1677-1688 (in Chinese with English abstract).
[7] 凌启鸿. 盐碱地种稻有关问题的讨论. 中国稻米, 2018,24(4):1-2.
Ling Q H. Discussion on the related problems of rice planting in saline-alkali soil. Chin Rice, 2018,24(4):1-2 (in Chinese with English abstract).
[8] 徐晨, 凌风楼, 徐克章, 武志海, 刘晓龙, 安久海, 赵兰坡. 盐胁迫对不同水稻品种光合特性和生理生化特性的影响. 中国水稻科学, 2013,27:280-286.
Xu C, Ling F L, Xu K Z, Wu Z H, Liu X L, An J H, Zhao L P. Effects of salt stress on photosynthetic characteristics and physiological and biochemical traits of different rice varieties. Chin J Rice Sci, 2013,27:280-286 (in Chinese with English abstract).
[9] Zeng L H, Shannon M C. Effects of salinity on grain yield and yield components of rice at different seeding densities. Agron J, 2000,92:418-423.
[10] Gregorio G B, Senadhira D, Mendoza R D, Manigbas N L, Roxas J P, Guerta C Q. Progress in breeding for salinity tolerance and associated abiotic stresses in rice. Field Crops Res, 2002,76:91-101.
[11] 吕伟生, 曾勇军, 石庆华, 潘晓华, 黄山, 商庆银, 谭雪明, 李木英, 胡水秀. 机插早稻分蘖成穗特性及基本苗公式参数研究. 作物学报, 2016,42:427-436.
Lyu W S, Zeng Y J, Shi Q H, Pan X H, Huang S, Shang Q Y, Tan X M, Li M Y, Hu S X. Tillering and panicle formation characteristics of machine-transplanted early rice and its parameters of basic population formulae. Acta Agron Sin, 2016,42:427-436 (in Chinese with English abstract).
[12] 韦还和, 李超, 张洪程, 孙玉海, 孟天瑶, 杨筠文, 马荣荣, 王晓燕, 戴其根, 霍中洋, 许轲, 魏海燕. 水稻甬优12超高产群体分蘖特性及其与群体生产力的关系. 作物学报, 2014,40:1819-1829.
Wei H H, Li C, Zhang H C, Sun Y H, Meng T Y, Yang J W, Ma R R, Wang X Y, Dai Q G, Huo Z Y, Xu K, Wei H Y. Tillering characteristics and its relationship with population productivity of super-high yield rice population of Yongyou 12. Acta Agron Sin, 2014,40:1819-1829 (in Chinese with English abstract).
[13] 宋云生, 张洪程, 戴其根, 杨大柳, 郭保卫, 朱聪聪, 霍中洋, 许轲, 魏海燕, 胡加敏, 吴爱国, 蒋晓鸿. 水稻机栽钵苗单穴苗数对分蘖成穗及产量的影响. 农业工程学报, 2014,30(10):37-47.
Song Y S, Zhang H C, Dai Q G, Yang D L, Guo B W, Zhu C C, Huo Z Y, Xu K, Wei H Y, Hu J M, Wu A G, Jiang X H. Effect of rice potted-seedlings per hole by mechanical transplanting on tillers emergence, panicles formation and yield. Trans CSAE, 2014,30(10):37-47 (in Chinese with English abstract).
[14] 雷小龙, 刘利, 刘波, 黄光忠, 马荣朝, 任万军. 杂交籼稻机械化种植的分蘖特性. 作物学报, 2014,40:1044-1055.
Lei X L, Liu L, Liu B, Huang G Z, Ma R C, Ren W J. Tillering characteristics of indica hybrid rice under mechanized planting. Acta Agron Sin, 2014,40:1044-1055 (in Chinese with English abstract).
[15] 许轲, 唐磊, 张洪程, 郭保卫, 霍中洋, 戴其根, 魏海燕, 韦还和. 不同机械直播方式对水稻分蘖特性及产量的影响. 农业工程学报, 2014,30(13):43-52.
Xu K, Tang L, Zhang H C, Guo B W, Huo Z Y, Dai Q G, Wei H Y, Wei H H. Effect of different mechanical direct seeding methods on tiller characteristics and yield of rice. Trans CSAE, 2014,30(13):43-52 (in Chinese with English abstract).
[16] 熊瑞恒, 杭玉浩, 王强盛, 许国春, 刘欣, 武皞. 麦秸还田配施基蘖氮肥提高机插超级粳稻分蘖成穗及产量. 农业工程学报, 2015,31(18):136-146.
Xiong R H, Hang Y H, Wang Q S, Xu G C, Liu X, Wu H. Wheat straw returned combined with nitrogen as base fertilizers and topdressing at tiller stage improving the tiller emergency, earbearing traits and yield for machine-transplanted super japonica rice. Trans CSAE, 2015,31(18):136-146 (in Chinese with English abstract).
[17] 王萌萌, 杨沈斌, 江晓东, 王应平, 陈德, 黄维, 于庚康, 石春林. 光温要素对水稻群体茎蘖增长动态影响的分析及模拟. 作物学报, 2016,42:82-92.
Wang M M, Yang S B, Jiang X D, Wang Y P, Chen D, Huang W, Yu G K, Shi C L. Analysis and simulation of impact of light and temperature on rice tillering. Acta Agron Sin, 2016,42:82-92 (in Chinese with English abstract).
[18] 孙成明, 庄恒扬, 杨连新, 杨洪建, 黄建晔, 董桂春, 朱建国, 王余龙. FACE水稻茎蘖动态模型. 应用生态学报, 2006,17:1448-1452.
Sun C M, Zhuang H Y, Yang L X, Yang H J, Huang J Y, Dong G C, Zhu J G, Wang Y L. Dynamic model of rice tiller in FACE. Chin J Appl Ecol, 2006,17:1448-1452 (in Chinese with English abstract).
[19] Huang M, Yang C L, Ji Q M, Jiang L G, Tan J L, Li Y Q. Tillering responses of rice to plant density and nitrogen rate in a subtropical environment of southern China. Field Crops Res, 2013,149:187-192.
[20] Ao H J, Peng S B, Zou Y B, Tang Q Y, Visperas R M. Reduction of unproductive tillers did not increase the grain yield of irrigated rice. Field Crops Res, 2010,116:108-115.
[21] 吕伟生, 曾勇军, 石庆华, 潘晓华, 黄山, 商庆银, 谭雪明, 李木英, 胡水秀. 基于机插晚稻分蘖成穗特性获取基本苗定量参数. 农业工程学报, 2016,32(1):30-37.
Lyu W S, Zeng Y J, Shi Q H, Pan X H, Huang S, Shang Q Y, Tan X M, Li M Y, Hu S X. Calculation of quantitative parameters of basic population of machine-transplanted late rice based on its tillering and panicle formation characteristics. Trans CSAE, 2016,32(1):30-37 (in Chinese with English abstract).
[22] 荆培培, 崔敏, 秦涛, 周在中, 戴其根. 土培条件下不同盐分梯度对水稻产量及其生理特性的影响. 中国稻米, 2017,23(4):26-33.
Jing P P, Cui M, Qin T, Zhou Z Z, Dai Q G. Effects of different saline stress on yield and physiological properties of rice in soil culture. Chin Rice, 2017,23(4):26-33 (in Chinese with English abstract).
[23] 李景蕻, 李刚华, 杨从党, 王绍华, 刘正辉, 王强盛, 丁艳锋. 增加土壤温度对高海拔生态区水稻分蘖成穗及产量形成的影响. 中国水稻科学, 2010,24:36-42.
Li J H, Li G H, Yang C D, Wang S H, Liu Z H, Wang Q S, Ding Y F. Effects of temperature increase of soil on productive tiller percentage and yield of rice in high altitude ecological area. Chin J Rice Sci, 2010,24:36-42 (in Chinese with English abstract).
[24] 钟旭华, 彭少兵, Sheehy J E, 刘鸿先. 水稻群体成穗率与干物质积累动态关系的模拟研究. 中国水稻科学, 2001,15:107-112.
Zhong X H, Peng S B, Sheehy J E, Liu H X. Relationship between productive tiller percentage and biomass accumulation in rice ( Oryza sativa L.): a simulation approach. Chin J Rice Sci, 2001,15:107-112 (in Chinese with English abstract).
[25] 袁奇, 于林惠, 石世杰, 邵建国, 丁艳锋. 机插秧每穴栽插苗数对水稻分蘖与成穗的影响. 农业工程学报, 2007,23(10):121-125.
Yuan Q, Yu L H, Shi S J, Shao J G, Ding Y F. Effects of different tiller production planting seedlings per hill on outgrowth and quantities of machine-transplanted rice. Trans CSAE, 2007,23(10):121-125 (in Chinese with English abstract).
[26] 李杰, 张洪程, 龚金龙, 常勇, 吴桂成, 郭振华, 戴其根, 霍中洋, 许轲, 魏海燕. 稻麦两熟地区不同栽培方式超级稻分蘖特性及其与群体生产力的关系. 作物学报, 2011,37:309-320.
Li J, Zhang H C, Gong J L, Chang Y, Wu G C, Guo Z H, Dai Q G, Huo Z Y, Xu K, Wei H Y. Tillering characteristics and its relationships with population productivity of super rice under different cultivation methods in rice-wheat cropping areas. Acta Agron Sin, 2011,37:309-320 (in Chinese with English abstract).
[27] Wang J J, Dai Q X, Shang J L, Jin X L, Sun Q, Zhou G S, Dai Q G. Field-scale rice yield estimation using sentinel-1A synthetic aperture radar (SAR) data in coastal saline region of Jiangsu province, China. Remote Sens, 2019,11:2274.
[28] 张瑞珍, 邵玺文, 童淑媛, 汪恒武, 齐春燕, 孙长占. 盐碱胁迫对水稻源库与产量的影响. 中国水稻科学, 2006,20:116-118.
Zhang R Z, Shao X W, Tong S Y, Wang H W, Qi C Y, Sun C Z. Effect of saline alkali stress on source-sink and yield of rice. Chin J Rice Sci, 2006,20:116-118 (in Chinese with English abstract).
[29] 胡博文, 谷娇娇, 贾琰, 沙汉景, 张君颜, 黄书勤, 赵宏伟. 盐胁迫对寒地粳稻籽粒淀粉形成积累及产量的影响. 华北农学报, 2019,34(1):115-123.
Hu B W, Gu J J, Jia Y, Sha H J, Zhang J Y, Huang S Q, Zhao H W. Effect of salt stress on starch formation and yield of japonica rice in cold-region. Acta Agric Boreali-Sin, 2019,34(1):115-123 (in Chinese with English abstract).
[30] 隗溟, 李冬霞. 水稻主茎节位分蘖及生产力补偿能力. 生态学报, 2013,33:7098-7107.
Wei M, Li D X. The compensation capacity of tillering and production of main stem nodes in rice. Acta Ecol Sin, 2013,33:7098-7107 (in Chinese with English abstract).
[31] 黄丽芬, 陶晓婷, 高威, 王远玲, 庄恒扬. 江苏沿海地区减磷对机插常规粳稻产量形成及品质的影响. 中国水稻科学, 2014,28:632-638.
Huang L F, Tao X T, Gao W, Wang Y L, Zhuang H Y. Effect of reduced phosphorus fertilizer application on yield formation and quality of japonica rice in Jiangsu coastal region. Chin J Rice Sci, 2014,28:632-638 (in Chinese with English abstract).
[32] 张洪程, 龚金龙. 中国水稻种植机械化高产农艺研究现状及发展探讨. 中国农业科学, 2014,47:1273-1289.
Zhang H C, Gong J L. Research status and development discussion on high-yielding agronomy of mechanized planting rice in China. Sci Agric Sin, 2014,47:1273-1289 (in Chinese with English abstract).
[33] 田蕾, 陈亚萍, 刘俊, 马晓刚, 王娜, 杨兵, 李莹, 郭海东, 李娟, 胡慧, 张银霞, 李培富. 粳稻种质资源芽期耐盐性综合评价与筛选. 中国水稻科学, 2017,31:631-642.
Tian L, Chen Y P, Liu J, Ma X G, Wang N, Yang B, Li Y, Guo H D, Li J, Hu H, Zhang Y X, Li P F. Comprehensive evaluation and selection of rice (Oryza sativa japonica) germplasm for saline tolerance at germination stage. Chin J Rice Sci, 2017,31:631-642 (in Chinese with English abstract).
[1] TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388.
[2] ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400.
[3] ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415.
[4] ZHENG Xiao-Long, ZHOU Jing-Qing, BAI Yang, SHAO Ya-Fang, ZHANG Lin-Ping, HU Pei-Song, WEI Xiang-Jin. Difference and molecular mechanism of soluble sugar metabolism and quality of different rice panicle in japonica rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1425-1436.
[5] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[6] YANG Jian-Chang, LI Chao-Qing, JIANG Yi. Contents and compositions of amino acids in rice grains and their regulation: a review [J]. Acta Agronomica Sinica, 2022, 48(5): 1037-1050.
[7] DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080.
[8] YANG De-Wei, WANG Xun, ZHENG Xing-Xing, XIANG Xin-Quan, CUI Hai-Tao, LI Sheng-Ping, TANG Ding-Zhong. Functional studies of rice blast resistance related gene OsSAMS1 [J]. Acta Agronomica Sinica, 2022, 48(5): 1119-1128.
[9] ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140.
[10] WANG Xiao-Lei, LI Wei-Xing, OU-YANG Lin-Juan, XU Jie, CHEN Xiao-Rong, BIAN Jian-Min, HU Li-Fang, PENG Xiao-Song, HE Xiao-Peng, FU Jun-Ru, ZHOU Da-Hu, HE Hao-Hua, SUN Xiao-Tang, ZHU Chang-Lan. QTL mapping for plant architecture in rice based on chromosome segment substitution lines [J]. Acta Agronomica Sinica, 2022, 48(5): 1141-1151.
[11] WANG Ze, ZHOU Qin-Yang, LIU Cong, MU Yue, GUO Wei, DING Yan-Feng, NINOMIYA Seishi. Estimation and evaluation of paddy rice canopy characteristics based on images from UAV and ground camera [J]. Acta Agronomica Sinica, 2022, 48(5): 1248-1261.
[12] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[13] CHEN Yue, SUN Ming-Zhe, JIA Bo-Wei, LENG Yue, SUN Xiao-Li. Research progress regarding the function and mechanism of rice AP2/ERF transcription factor in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 781-790.
[14] WANG Lyu, CUI Yue-Zhen, WU Yu-Hong, HAO Xing-Shun, ZHANG Chun-Hui, WANG Jun-Yi, LIU Yi-Xin, LI Xiao-Gang, QIN Yu-Hang. Effects of rice stalks mulching combined with green manure (Astragalus smicus L.) incorporated into soil and reducing nitrogen fertilizer rate on rice yield and soil fertility [J]. Acta Agronomica Sinica, 2022, 48(4): 952-961.
[15] QIN Qin, TAO You-Feng, HUANG Bang-Chao, LI Hui, GAO Yun-Tian, ZHONG Xiao-Yuan, ZHOU Zhong-Lin, ZHU Li, LEI Xiao-Long, FENG Sheng-Qiang, WANG Xu, REN Wan-Jun. Characteristics of panicle stem growth and flowering period of the parents of hybrid rice in machine-transplanted seed production [J]. Acta Agronomica Sinica, 2022, 48(4): 988-1004.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!