Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (5): 915-928.doi: 10.3724/SP.J.1006.2021.03033

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Characteristics of post-anthesis carbon and nitrogen accumulation and translocation in maize cultivars with different low nitrogen tolerance

WU Ya-Wei(), PU Wei, ZHAO Bo, WEI Gui, KONG Fan-Lei, YUAN Ji-Chao*()   

  1. College of Agronomy, Sichuan Agricultural University / Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture / Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu 611130, Sichuan, China
  • Received:2020-05-28 Accepted:2020-11-13 Online:2021-05-12 Published:2020-12-23
  • Contact: YUAN Ji-Chao E-mail:wyw6140@163.com;yuanjichao5@163.com
  • Supported by:
    National Key Research and Development Program of China(2018YFD0301206);National Key Research and Development Program of China(2017YFD0301704);National Key Research and Development Program of China(2016YFD0300307);National Key Research and Development Program of China(2016YFD0300209)

Abstract:

To understand the suitable amount of nitrogen (N) application and the potential of increasing yield and improve efficiency for the maize cultivars with different low N tolerance. The experiment was setting from 2017 to 2019, the low-N tolerant cultivar ‘Zhenghong 311 (ZH311)’ and the low-N sensitive cultivar ‘Xianyu 508 (XY508)’ were selected and four N application rates (0 kg hm-2, 150 kg hm-2, 300 kg hm-2, and 450 kg hm-2) were set to investigate the effects of N level on carbon (C) and N accumulation and translocation in the later growth stage of different maize cultivars. The results showed that in low N environment, maize increased the C and N translocations of pre-silking to the grain to ensure the yield. Increasing the N fertilizer applications could improve the contribution rates of dry matter and carbohydrate to grain yield. Compared with XY508, ZH311 had higher accumulations of plant dry matter, N and non-structural carbohydrate (NSC) of pre- and post-silking, and higher contribution rates of dry matter, N and accumulations to grain yield of post-silking, so it had higher grain yield. There was no significant difference between cultivars in the rate of dry matter, N and NSC translocation of pre-silking. In the face of low N stress, ZH 311 not only ensured the sufficient C and N translocations of pre-silking to the grain, but also maintained a higher capacity of assimilate accumulation to affect the yield formation.

Key words: low nitrogen tolerance, maize, dry matter, nitrogen, non-structural carbohydrate

Fig. 1

Meteorological information of whole growth stages (from March to July) in maize from 2017 to 2019"

Table 1

Foundation soil capacity of 0-20 cm soil layer before maize sowing date from 2017 to 2019"

年份
Year
全氮
Total N
(g kg-1)
有机质
Organic matter
(g kg-1)
碱解氮
Alkali-hydrolysable N
(mg kg-1)
速效磷
Available P
(mg kg-1)
速效钾
Available K
(mg kg-1)
pH
2017 1.55 10.32 110.60 11.16 131.91 5.78
2018 1.51 11.13 108.53 15.43 105.27 5.90
2019 1.23 10.66 48.22 12.84 122.07 5.46

Table 2

Variance analysis of year, cultivar, and nitrogen application on grain yield, nitrogen and carbon translocation, and accumulation amount in maize"

变异来源
Source of variation
籽粒产量
Yield
花前干物质
转运量
DRA
花后干物质
积累量
DAA
花前氮素
转运量
NRA
花后氮素
积累量
NAA
花前NSC
转运量
NSCRA
花后NSC
积累量
NSCAA
年份 Year (Y) 630.15** 9.61** 14.86** 1913.22** 46.96** 18.99** 40.73**
品种 Cultivar (C) 111.32** 0.37 124.41** 502.68** 18.95** 127.54** 89.09**
氮肥 Nitrogen (N) 165.15** 107.02** 180.00** 27.18** 152.56** 174.83** 154.60**
Y×C 14.72** 57.38** 5.01* 908.82** 75.69** 0.44 25.00**
Y×N 17.30** 8.16** 13.82** 86.57** 46.11** 2.97* 11.42**
C×N 13.23** 10.82** 2.41* 5.97** 4.18* 20.81** 3.28*
Y×C×N 1.05 12.17** 4.14** 12.90** 19.08** 8.21** 2.14

Fig. 2

Effects of N level on grain yield and its components of maize with different low N tolerance ZH311: Zhenghong 311; XY508: Xianyu 508. (A): kernel per ear; (B): efficient ear numbers; (C): 100-kernel weight; (D): grain yield. Values followed by different lowercase letters in the same year and two cultivars indicate significant differences at P < 0.05 by LSD test."

Fig. 3

Effects of N level on dry matter accumulation of maize with different low N tolerance ZH311: Zhenghong 311; XY508: Xianyu 508. Values followed by lowercase letters in the same year and two cultivars indicate significant differences at P < 0.05 by LSD test."

Table 3

Effects of N level on dry matter translocation of maize with different low N tolerance after silking stage"

年份
Year
品种
Cultivar
氮肥处理
N treatment
(kg hm-2)
花前干物质
转运量
DRA
(×106 kg hm-2)
花前干物质
转运率
DRR
(%)
花后干物质
积累量
DAA
(×106 kg hm-2)
花前干物质转运对
籽粒重的贡献率
CDRA
(%)
收获指数
HI
2017 ZH311 0 0.93 a 17.12 a 5.47 e 14.54 a 0.52 ab
150 0.94 a 14.61 ab 6.69 c 12.34 ab 0.52 ab
300 0.53 cd 6.92 c 8.53 a 5.86 c 0.50 bc
450 0.46 d 5.77 c 8.37 a 5.19 c 0.49 c
XY508 0 0.69 bc 17.09 a 4.39 f 13.69 a 0.52 ab
150 0.76 ab 14.19 ab 5.40 e 12.31 ab 0.51 ab
300 0.74 b 12.36 b 6.20 d 10.67 b 0.53 a
450 0.47 d 7.46 c 7.07 b 6.25 c 0.49 c
2018 ZH311 0 1.35 a 15.43 ab 6.97 c 16.23 a 0.47 ab
150 1.33 a 14.44 b 7.21 c 15.59 a 0.46 b
300 0.99 b 9.96 c 7.87 b 11.14 b 0.45 b
450 0.00 e 0.00 e 9.21 a 0.00 e 0.46 b
XY508 0 0.95 b 18.32 a 5.04 e 15.23 a 0.51 ab
150 0.52 c 9.76 c 6.11 d 7.87 bc 0.46 b
300 0.31 cd 5.62 d 6.95 c 4.25 cd 0.48 ab
450 0.25 d 4.06 d 7.43 bc 3.15 de 0.53 a
2019 ZH311 0 1.03 a 22.07 b 3.59 e 22.39 a 0.49 c
150 0.41 c 7.09 d 6.36 c 6.00 b 0.49 c
300 0.00 d 0.00 e 9.23 a 0.00 c 0.46 d
450 0.00 d 0.00 e 8.00 b 0.00 c 0.46 d
XY508 0 0.92 ab 28.26 a 3.66 e 21.64 a 0.56 b
150 1.03 a 22.69 b 7.38 b 16.76 a 0.58 ab
300 0.74 b 13.14 c 8.12 b 9.39 b 0.56 b
450 0.35 c 6.42 d 7.25 b 4.17 bc 0.58 a

Fig. 4

Effects of N level on non-structural carbohydrate (NSC) accumulation of maize with different low N tolerance ZH311: Zhenghong 311; XY508: Xianyu 508. Values followed in the same year and two cultivars are not significantly different at P < 0.05 by the LSD test."

Table 4

Effects of N level on non-structural carbohydrate (NSC) translocation of maize with different low N tolerance after silking stage"

年份
Year
品种
Cultivar
氮肥处理
N treatment
(kg hm-2)
花前NSC转运量
NSCRA
(t hm-2)
花前NSC转运率
NSCRR
(%)
花后NSC积累量
NSCAA
(t hm-2)
花前NSC转运对
籽粒NSC贡献率
CNSCRA (%)
NSC
收获指数
NSCHI
2018 ZH311 0 0.24 a 75.70 b 4.55 d 5.01 b 0.97 b
150 0.11 cd 50.32 c 5.25 c 2.07 c 0.96 c
300 0.01 e 10.50 d 5.90 b 0.33 d 0.94 e
450 0.00 e 0.00 e 6.49 a 0.00 d 0.92 f
XY508 0 0.21 a 94.19 a 2.83 f 7.10 a 0.98 a
150 0.16 b 75.32 b 4.11 e 3.78 b 0.97 b
300 0.15 bc 70.64 b 4.42 d 4.22 b 0.97 b
450 0.10 d 46.94 c 5.24 c 1.81 c 0.95 d
2019 ZH311 0 0.17 a 44.03 c 2.55 d 6.40 b 0.89 b
150 0.08 c 18.34 e 4.00 c 2.04 cd 0.88 b
300 0.00 d 0.00 f 5.79 a 0.00 d 0.85 c
450 0.00 d 0.00 f 5.44 a 0.00 d 0.85 c
XY508 0 0.20 a 66.25 a 2.13 d 9.44 a 0.91 a
150 0.19 a 53.97 b 3.48 c 5.23 b 0.92 a
300 0.05 c 32.73 d 4.70 b 4.18 bc 0.91 a
450 0.01 d 3.94 f 5.78 a 0.25 d 0.91 a

Fig. 5

Effect of N level on N accumulation with different low N tolerance in maize ZH311: Zhenghong 311; XY508: Xianyu 508. Values followed by different lowercase letters in the same year and two cultivars indicate significant differences at P < 0.05 by LSD test."

Table 5

Effects of N level on N translocation of maize with different low N tolerance after silking"

年份
Year
品种
Cultivar
氮肥处理
N treatment
(kg hm-2)
花前氮素转运量
NRA
(kg hm-2)
花前氮素转运率
NRR
(%)
花后氮素积累量
NAA
(kg hm-2)
花前氮素转运对
籽粒氮素的贡献
CNRA (%)
氮素收获
指数
NHI
2018 ZH311 0 80.14 a 67.63 a 33.01 c 70.85 a 0.70 a
150 74.92 b 63.92 b 37.91 c 66.42 a 0.69 ab
300 84.54 a 61.20 b 40.06 c 67.93 a 0.65 bc
450 52.60 c 44.81 d 70.23 a 43.09 c 0.60 de
XY508 0 42.06 d 54.03 c 32.75 c 56.92 b 0.64 c
150 34.18 e 45.43 d 55.73 b 38.10 cd 0.65 c
300 33.70 e 42.61 d 59.89 ab 36.24 d 0.63 cd
450 22.80 f 29.34 e 62.98 ab 27.86 e 0.57 e
2019 ZH311 0 19.23 bc 48.01 b 22.99 e 45.75 b 0.61 bc
150 17.39 c 35.49 c 63.40 c 21.65 d 0.63 abc
300 9.63 d 12.76 e 119.36 a 7.51 e 0.59 c
450 21.82 b 27.86 d 83.40 b 20.51 d 0.58 c
XY508 0 22.49 b 61.79 a 17.35 e 56.44 a 0.62 abc
150 20.73 bc 50.87 b 44.90 d 31.51 c 0.67 ab
300 20.09 bc 38.47 c 68.60 c 22.71 d 0.70 a
450 28.19 a 47.94 b 67.70 c 29.77 c 0.65 abc

Table 6

Relationship between grain yield and pre-silking translocation and post-silking accumulation of dry matter, nitrogen, and non-structural carbohydrates"

品种
Cultivar
籽粒产量
Yield
有效穗数
EEN
穗粒数
SPE
百粒重
100-KW
花前干物质转运量
DRA
花后干物质积累量
DAA
花前氮素转运量
NRA
花后氮素积累量
NAA
花前NSC转运量
NSCRA
ZH 311 有效穗数ENN 0.89**



穗粒数 SPE 0.80** 0.64
百粒重100-KW 0.72* 0.64 0.18
花前干物质转运量 DRA -0.30 -0.41 0.21 -0.72*
花后干物质积累量 DAA 0.87** 0.89** 0.66 0.64 -0.55
花前氮素转运量 NRA 0.62 0.39 0.88** 0.04 0.44 0.31
花后氮素积累量 NAA 0.31 0.28 -0.22 0.82** -0.72* 0.36 -0.44
花前NSC转运量 NSCRA -0.49 -0.68* 0.01 -0.72* 0.83** -0.62 0.16 -0.49
花后NSC积累量 NSCAA 0.88** 0.92** 0.72* 0.54 -0.43 0.96** 0.45 0.14 -0.63
XY 508 有效穗数 ENN 0.63



穗粒数 SPE 0.51 -0.33
百粒重 100-KW 0.82** 0.85** 0.01
花前干物质转运量 DRA -0.78* -0.28 -0.68* -0.39
花后干物质积累量 DAA 0.97** 0.67 0.43 0.85** -0.79*
花前氮素转运量 NRA 0.25 0.68* -0.53 0.73* 0.30 0.26
花后氮素积累量 NAA 0.53 0.92** -0.42 0.90** -0.04 0.58 0.88**
花前NSC转运量 NSCRA -0.74* -0.78* -0.01 -0.80** 0.65 -0.81** -0.43 -0.69*
花后NSC积累量 NSCAA 0.91** 0.68* 0.34 0.83** -0.81** 0.98** 0.24 0.58 -0.86**
[1] 郭皓升. 中国玉米产业面临的挑战与机遇. 现代管理科学, 2020, (2):31-33.
Guo H S. Challenges and opportunities for China’s corn industry. Modern Manage Sci, 2020, (2):31-33 (in Chinese).
[2] Liu X J, Zhang Y, Han W X, Tang A, Shen J L, Cui Z L, Vitousek P J, Erisman J W, Goulding K, Christie P, Fangmeier A, Zhang F S. Enhanced nitrogen deposition over China. Nature, 2013,494:459-462.
[3] Kong X B. China must protect high-quality arable land. Nature, 2014,506:7.
[4] 张卫峰, 马林, 黄高强, 武良, 陈新平, 张福锁. 中国氮肥发展、贡献和挑战. 中国农业科学, 2013,46:3161-3671.
Zhang W F, Ma L, Huang G Q, Wu L, Chen X P, Zhang F S. The development and contribution of nitrogenous fertilizer in China and challenges faced by the country. Sci Agric Sin, 2013,46:3161-3671 (in Chinese with English abstract).
[5] Wu Y W, Zhao B, Li Q, Kong F L, Du L J, Zhou F, Shi H C, Ke Y P, Liu Q L, Feng D J, Yuan J C. Non-structural carbohydrates in maize with different nitrogen tolerance are affected by nitrogen addition. PLoS One, 2019,14:e225753.
[6] 李强, 罗延宏, 谭杰, 孔凡磊, 杨世民, 袁继超. 玉米杂交种苗期耐低氮指标的筛选与综合评价. 中国生态农业学报, 2014,22:1190-1199.
Li Q, Luo Y H, Tan J, Kong F L, Yang S M, Yuan J C. Indexes screening and comprehensive evaluation of low nitrogen tolerance of hybrid maize cultivars at seedling stage. Chin J Eco-Agric, 2014,22:1190-1199 (in Chinese with English abstract).
[7] 米国华, 陈范骏, 春亮, 郭亚芬, 田秋英, 张福锁. 玉米氮高效品种的生物学特征. 植物营养与肥料学报. 2007,13:155-159.
Mi G H, Chen F J, Chun L, Guo Y F, Tian Q Y, Zhang F S. Biological characteristics of nitrogen efficient maize genotypes. Plant Nutr Fert Sci, 2007,13:155-159 (in Chinese with English abstract).
[8] Moll R H, Kamprath E J, Jackson W A. Analysis and interpretation of factors which contribute to efficiency of N utilization. Agron J, 1982,74:562-564.
[9] 钟思荣, 龚丝雨, 张世川, 陈仁霄, 刘齐元, 翟小清. 作物不同基因型耐低氮性和氮效率研究进展. 核农学报, 2018,32:1656-1663.
Zhong S R, Gong S Y, Zhang S C, Chen R X, Liu Q Y, Zhai X Q. Research progress on low nitrogen tolerance and nitrogen efficiency in crop plants. Acta Agric Nuc Sin, 2018,32:1656-1663 (in Chinese with English abstract).
[10] Plénet D, Lemaire G. Relationships between dynamics of nitrogen uptake and dry matter accumulation in maize crops. Determination of critical N concentration. Plant Soil, 2000,216:65-82.
[11] Ning P, Yang L, Li C J, Fritschi F B. Post-silking carbon partitioning under nitrogen deficiency revealed sink limitation of grain yield in maize. J Exp Bot, 2018,69:1707-1719.
[12] 马剑, 张钰. 分期追施氮肥对玉米营养器官中非结构性碳水化合物积累转运及产量的影响. 玉米科学, 2019,27(2):155-160.
Ma J, Zhang Y. Effect of topdressing nitrogen on transportation and accumulation of non-structural carbohydrate of vegetative organs and yield in maize. J Maize Sci, 2019,27(2):155-160 (in Chinese with English abstract).
[13] 武文明, 陈洪俭, 王世济, 魏凤珍, 李金才. 氮肥运筹对苗期受渍夏玉米干物质和氮素积累与转运的影响. 作物学报, 2015,41:1246-1256.
Wu W M, Chen H J, Wang S J, Wei F Z, Li J C. Effects of nitrogen fertilization application regime on dry matter, nitrogen accumulation and transportation in summer maize under waterlogging at the seedling stage. Acta Agron Sin, 2015,41:1246-1256 (in Chinese with English abstract).
[14] 苌建峰, 董朋飞, 王秀玲, 刘卫玲, 李潮海. 氮肥运筹对不同夏玉米品种碳氮代谢协调性的影响. 中国农业科学, 2017,50:2282-2293.
Chang Y F, Dong P F, Wang X L, Liu W L, Li C H. Effect of nitrogen application on carbon and nitrogen metabolism of different summer maize varieties. Sci Agric Sin, 2017,50:2282-2293 (in Chinese with English abstract).
[15] Chen F J, Mi G H. Comparison of nitrogen accumulation and nitrogen utilization efficiency between elite inbred lines and the landraces of maize. Acta Agric Scandinavica, Section B: Soil Plant Sci, 2012,62:565-569.
[16] 温立玉, 薛艳芳, 张慧, 张秀清, 高英波, 刘开昌, 李宗新. 不同氮效率玉米品种亲本自交系花粒期氮素转运特性. 植物营养与肥料学报, 2019,25:568-578.
Wen L Y, Xue Y F, Zhang H, Zhang X Q, Gao Y B, Liu K C, Li Z X. The characteristics of nitrogen translocation of maize inbred lines with different nitrogen efficiency from anthesis to maturity. Plant Nutr Fert Sci, 2019,25:568-578 (in Chinese with English abstract).
[17] 陈延玲. 协调玉米高产与氮高效转运的机制. 中国农业大学博士学位论文, 北京, 2015. pp 83-85.
Chen Y L. Mechanisms for Coordination of High Yield and High Nitrogen Remobilization Efficiency in Maize. PhD Dissertation of China Agricultural University, Beijing, China, 2016. pp 83-85 (in Chinese with English abstract).
[18] 李强, 孔凡磊, 袁继超. 年际气象差异对西南丘陵区玉米物质积累与产量的影响. 作物杂志, 2020, (4):150-157.
Li Q, Kong F L, Yuan J C. Effects of inter annual meteorological differences on material accumulation and yield of maize in hilly area of southwest China. Crops, 2020,4:150-157 (in Chinese with English abstract).
[19] 张颖. 北方春玉米不同生育期干物质积累与氮、磷、钾含量的变化. 玉米科学, 1996,4(1):63-65.
Zhang Y. Dry matter accumulation and changes of nitrogen, phosphorus and potassium contents in spring maize at different growth stages in northern China. J Maize Sci, 1996,4(1):63-65 (in Chinese with English abstract).
[20] 李强, 马晓君, 程秋博, 豆攀, 余东海, 罗延宏, 袁继超, 孔凡磊. 氮肥对不同耐低氮性玉米品种花后物质生产及叶片功能特性的影响. 中国生态农业学报, 2016,24(1):17-26.
Li Q, Ma X J, Cheng Q B, Dou P, Yu D H, Luo Y H, Yuan J C, Kong F L. Effects of nitrogen fertilizer on post-silking dry matter production and leaves function characteristics of low-nitrogen tolerance maize. Chin J Eco-Agric, 2016,24(1):17-26 (in Chinese with English abstract).
[21] 张忠学, 刘明, 齐智娟. 喷灌条件下水氮用量对玉米氮素吸收转运的影响. 农业机械学报, 2019,50(8):299-308.
Zhang X Z, Liu M, Qi Z J. Effect of water nitrogen dosage on nitrogen absorption and transformation of maize under sprinkler irrigation condition. Trans CSAM, 2019,50(8):299-308 (in Chinese with English abstract).
[22] 尹彩侠, 李前, 孔丽丽, 秦裕波, 王蒙, 于雷, 刘春光, 王立春, 侯云鹏. 控释氮肥减施对春玉米产量、氮素吸收及转运的影响. 中国农业科学, 2018,51:3941-3950.
Yin C X, Li Q, Kong L L, Qin Y B, Wang M, Yu L, Liu C G, Wang L C, Hou Y P. Effect of reduced controlled-release nitrogen fertilizer application on yield, nitrogen absorption and transportation of spring maize. Sci Agric Sin, 2018,51:3941-3950 (in Chinese with English abstract).
[23] 周培禄, 任红, 齐华, 赵明, 李从锋. 氮肥用量对两种不同类型玉米杂交种物质生产及氮素利用的影响. 作物学报, 2017,43:263-276.
Zhou P L, Ren H, Qi H, Zhao M, Li C F. Effects of nitrogen application rates on dry matter productivity and nitrogen utilization of different type maize hybrids.Acta Agron Sin, 43:263-276 (in Chinese with English abstract).
[24] 李永虎, 曹梦琳, 杜慧玲, 郭平毅, 张海颖, 郭美俊, 原向阳. 施肥位置及施肥量对杂交谷子干物质累积、转运和产量的影响. 中国农业科学, 2017,52:4177-4190.
Li Y H, Cao M L, Du H L, Guo P Y, Zhang H Y, Guo M J, Yuan X Y. Effect of fertilization location and amount on dry matter accumulation, translocation and yield of hybrid millet. Sci Agric Sin, 2017,52:4177-4190 (in Chinese with English abstract).
[25] 顾朝剑, 杨海泉, 蒋卫利, 舒小丽, 张贵超, 吴先军, 陈晓琼. 不同颜色水稻品种的总蛋白、可溶性蛋白含量分析. 分子植物育种, 2017,15:1035-1042.
Gu C J, Yang H Q, Jiang W L, Shu X L, Zhang G C, Wu X J, Chen X Q. The content analysis of total protein and soluble protein in different colored rice varieties. Mol Plant Breed, 2017,15:1035-1042 (in Chinese with English abstract).
[26] 郑飞娜, 初金鹏, 张秀, 费立伟, 代兴龙, 贺明荣. 播种方式与种植密度互作对大穗型小麦品种产量和氮素利用率的调控效应. 作物学报, 2020,46:423-431.
Zheng F N, Chu J P, Zhang X, Fei L W, Dai X L, He M R. Interactive effects of sowing pattern and planting density on grain yield and nitrogen use efficiency in large spike wheat cultivar. Acta Agron Sin, 2020,46:423-431 (in Chinese with English abstract).
[27] Li Q, Kong F L, Wu Y W, Feng D J, Yuan J C. Increasing nitrogen accumulation and reducing nitrogen loss with N-efficient maize cultivars. Plant Prod Sci, 2020,23:260-269.
[28] 潘俊峰, 崔克辉, 向镜, 魏冬, 王凯, 黄见良, 聂立孝. 不同库容量类型基因型水稻茎鞘非结构性碳水化合物积累转运特征. 华中农业大学学报, 2015,34(1):9-15.
Pan J F, Cui K H, Xiang J, Wei d, Wang K, Huang J L, Nie L X. Characteristics of non-structural carbohydrate accumulation and translocation in rice genotypes with various sink-capacity. J Huazhong Agric Univ, 2015,34(1):9-15 (in Chinese with English abstract).
[29] 杨明达, 关小康, 刘影, 崔静宇, 丁超明, 王静丽, 韩静丽, 王怀苹, 康海平, 王同朝. 滴灌模式和水分调控对夏玉米干物质和氮素积累与分配及水分利用的影响. 作物学报, 2019,45:443-459.
Yang M D, Guan X K, Liu Y, Cui J Y, Ding C M, Wang J L, Han J L, Wang H P, Kang H P, Wang T C. Effects of drip irrigation pattern and water regulation on the accumulation and allocation of dry matter and nitrogen, and water use efficiency in summer maize. Acta Agron Sin, 2019,45:443-459 (in Chinese with English abstract).
[30] 吕晓, 牛善栋, 李振波, 黄贤金, 钟太洋. 中国耕地集约利用研究现状及趋势分析. 农业工程学报, 2015,31(18):212-224.
Lyu X, Niu S D, Li Z B, Huang X J, Zhong T Y. Present situation and trends in research on cultivated land intensive use in China. Trans CSAE, 2015,31(18):212-224 (in Chinese with English abstract).
[31] Yu J J, Han J N, Wang R F, Li X X. Down-regulation of nitrogen/carbon metabolism coupled with coordinative hormone modulation contributes to developmental inhibition of the maize ear under nitrogen limitation. Planta, 2016,244:111-124.
[32] Masclaux C, Valadier M H, Brugiere N, Morot-Gaudry J F, Hirel B. Characterization of the sink/source transition in tobacco ( Nicotiana tabacum L.) shoots in relation to nitrogen management and leaf senescence. Planta, 2000,211:510-518.
[33] 潘俊峰. 氮对水稻茎鞘非结构性碳水化合物积累转运特征的影响及其遗传基础研究. 华中农业大学博士学位论文, 湖北武汉, 2010. pp 9-10.
Pan J F. Effects of Nitrogen Treatments on Characteristics of Accumulation and Translocation of Nonstructural Carbohydrates in Stems and Their Genetic Basis. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2010. pp 9-10 (in Chinese with English abstract).
[34] 徐云姬, 许阳东, 李银银, 钱希旸, 王志琴, 杨建昌. 干湿交替灌溉对水稻花后同化物转运和籽粒灌浆的影响. 作物学报, 2018,44:554-568.
Xu Y J, Xu Y D, Li Y Y, Qian X Y, Wang Z Q, Yang J C. Effect of alternate wetting and drying irrigation on post-anthesis remobilization of assimilates and grain filling of rice. Acta Agron Sin, 2018,44:554-568 (in Chinese with English abstract).
[35] 徐云姬. 三种禾谷类作物强、弱势粒灌浆差异机理及其调控技术. 扬州大学博士学位论文, 江苏扬州, 2016. pp 201-205.
Xu Y J. Mechanism in Filling Difference between Superior and Inferior Caryopses of Three Cereal Crops and Its Regulation Techniques. PhD Dissertation of Yangzhou University, Yangzhou, Jiangsu, China, 2016. pp 201-205 (in Chinese with English abstract).
[36] Wu Y, Li Q, Jin R, Chen W, Liu X L, Kong F L, Ke Y P, Shi H C, Yuan J C. Effect of low-nitrogen stress on photosynthesis and chlorophyll fluorescence characteristics of maize cultivars with different low-nitrogen tolerances. J Integr Agric, 2019,18:1246-1256.
[37] 李强, 马晓君, 程秋博, 豆攀, 余东海, 罗延宏, 孔凡磊, 袁继超. 氮肥对不同耐低氮性玉米品种氮素吸收利用及氮素平衡的影响. 水土保持学报. 2016,30(3):171-176.
Li Q, Ma X J, Cheng Q B, Dou P, Yu D H, Luo Y H, Kong F L, Yuan J C. Effects of nitrogen application on nitrogen utilization and nitrogen balance in fields of maize cultivars with different low nitrogen tolerance. J Soil Water Conserv, 2016,30(3):171-176 (in Chinese with English abstract).
[38] Li Q, Wu Y W, Chen W, Jin R, Kong F L, Ke Y P, Shi H C, Yuan J C. Cultivar differences in root nitrogen uptake ability of maize hybrids. Front Plant Sci, 2017,8:1060.
[39] 秦俭, 杨志远, 孙永健, 徐徽, 马均. 不同穗型杂交籼稻物质积累、氮素吸收利用和产量的差异比较. 中国水稻科学, 2014,28:514-522.
Qin J, Yang Z Y, Sun Y J, Xu H, Ma J. Differential comparison of assimilation products accumulation, nitrogen uptake and utilization and grain yield of hybrid indica rice combinations with different panicle types. Chin J Rice Sci, 2014,28:514-522 (in Chinese with English abstract).
[40] 穆心愿, 赵霞, 谷利敏, 冀保毅, 丁勇, 张凤启, 张君, 齐建双, 马智艳, 夏来坤, 唐保军. 秸秆还田量对不同基因型夏玉米产量及干物质转运的影响. 中国农业科学, 2020,53:29-41.
Mu X Y, Zhao X, Gu L M, Ji B Y, Ding Y, Zhang F Q, Zhang J, Qi J S, Ma Z Y, Xia L K, Tang B J. Effects of straw returning amount on grain yield, dry matter accumulation and transfer in summer maize with different genotypes. Sci Agric Sin, 2020,53:29-41 (in Chinese with English abstract).
[41] 郭松, 孙文彦, 顾日良, 王章奎, 陈范骏, 赵秉强, 袁力行, 米国华. 两个玉米品种灌浆期叶片氮转移效率差异的分子机制. 植物营养与肥料学报, 2018,24:1149-1157.
Guo S, Sun W Y, Gu R L, Wang Z K, Chen F J, Zhao B Q, Yuan L X, Mi G H. Differences in leaf nitrogen remobilization efficiency and related gene expression during grain filling stage of two maize hybrids. Plant Nutr Fert Sci, 2018,24:1149-1157 (in Chinese with English abstract).
[42] 魏廷邦, 胡发龙, 赵财, 冯福学, 于爱忠, 刘畅, 柴强. 氮肥后移对绿洲灌区玉米干物质积累和产量构成的调控效应. 中国农业科学, 50:2916-2927.
Wei T B, Hu F L, Zhao C, Feng F X, Yu A Z, Liu C, Chai Q. Response of dry matter accumulation and yield components of maize under N-fertilizer postponing application in oasis irrigation areas.Sci Agric Sin, 50:2916-2927 (in Chinese with English abstract).
[43] 李强, 马晓君, 程秋博, 豆攀, 余东海, 罗延宏, 袁继超, 孔凡磊. 氮肥对不同耐低氮性玉米品种干物质及氮素积累与分配的影响. 浙江大学学报(农业与生命科学版), 2015,41:527-536.
Li Q, Ma X J, Cheng Q B, Dou P, Yu D H, Luo Y H, Yuan J C, Kong F L. Effects of nitrogen fertilizer on the accumulation and allocation of dry matter and nitrogen for maize cultivars with different low nitrogen tolerance. J Zhejiang Univ (Agric Life Sci Edn), 2015,41:527-536 (in Chinese with English abstract).
[1] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[2] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[3] QIN Lu, HAN Pei-Pei, CHANG Hai-Bin, GU Chi-Ming, HUANG Wei, LI Yin-Shui, LIAO Xiang-Sheng, XIE Li-Hua, LIAO Xing. Screening of rapeseed germplasms with low nitrogen tolerance and the evaluation of its potential application as green manure [J]. Acta Agronomica Sinica, 2022, 48(6): 1488-1501.
[4] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[5] GUO Xing-Yu, LIU Peng-Zhao, WANG Rui, WANG Xiao-Li, LI Jun. Response of winter wheat yield, nitrogen use efficiency and soil nitrogen balance to rainfall types and nitrogen application rate in dryland [J]. Acta Agronomica Sinica, 2022, 48(5): 1262-1272.
[6] SHAN Lu-Ying, LI Jun, LI Liang, ZHANG Li, WANG Hao-Qian, GAO Jia-Qi, WU Gang, WU Yu-Hua, ZHANG Xiu-Jie. Development of genetically modified maize (Zea mays L.) NK603 matrix reference materials [J]. Acta Agronomica Sinica, 2022, 48(5): 1059-1070.
[7] PENG Xi-Hong, CHEN Ping, DU Qing, YANG Xue-Li, REN Jun-Bo, ZHENG Ben-Chuan, LUO Kai, XIE Chen, LEI Lu, YONG Tai-Wen, YANG Wen-Yu. Effects of reduced nitrogen application on soil aeration and root nodule growth of relay strip intercropping soybean [J]. Acta Agronomica Sinica, 2022, 48(5): 1199-1209.
[8] YAN Xiao-Yu, GUO Wen-Jun, QIN Du-Lin, WANG Shuang-Lei, NIE Jun-Jun, ZHAO Na, QI Jie, SONG Xian-Liang, MAO Li-Li, SUN Xue-Zhen. Effects of cotton stubble return and subsoiling on dry matter accumulation, nutrient uptake, and yield of cotton in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(5): 1235-1247.
[9] XU Jing, GAO Jing-Yang, LI Cheng-Cheng, SONG Yun-Xia, DONG Chao-Pei, WANG Zhao, LI Yun-Meng, LUAN Yi-Fan, CHEN Jia-Fa, ZHOU Zi-Jian, WU Jian-Yu. Overexpression of ZmCIPKHT enhances heat tolerance in plant [J]. Acta Agronomica Sinica, 2022, 48(4): 851-859.
[10] LIU Lei, ZHAN Wei-Min, DING Wu-Si, LIU Tong, CUI Lian-Hua, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize [J]. Acta Agronomica Sinica, 2022, 48(4): 886-895.
[11] YAN Yu-Ting, SONG Qiu-Lai, YAN Chao, LIU Shuang, ZHANG Yu-Hui, TIAN Jing-Fen, DENG Yu-Xuan, MA Chun-Mei. Nitrogen accumulation and nitrogen substitution effect of maize under straw returning with continuous cropping [J]. Acta Agronomica Sinica, 2022, 48(4): 962-974.
[12] LI Xin-Ge, GAO Yang, LIU Xiao-Jun, TIAN Yong-Chao, ZHU Yan, CAO Wei-Xing, CAO Qiang. Effects of sowing dates, sowing rates, and nitrogen rates on growth and spectral indices in winter wheat [J]. Acta Agronomica Sinica, 2022, 48(4): 975-987.
[13] XU Ning-Kun, LI Bing, CHEN Xiao-Yan, WEI Ya-Kang, LIU Zi-Long, XUE Yong-Kang, CHEN Hong-Yu, WANG Gui-Feng. Genetic analysis and molecular characterization of a novel maize Bt2 gene mutant [J]. Acta Agronomica Sinica, 2022, 48(3): 572-579.
[14] YUAN Jia-Qi, LIU Yan-Yang, XU Ke, LI Guo-Hui, CHEN Tian-Ye, ZHOU Hu-Yi, GUO Bao-Wei, HUO Zhong-Yang, DAI Qi-Gen, ZHANG Hong-Cheng. Nitrogen and density treatment to improve resource utilization and yield in late sowing japonica rice [J]. Acta Agronomica Sinica, 2022, 48(3): 667-681.
[15] DING Hong, XU Yang, ZHANG Guan-Chu, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of drought at different growth stages and nitrogen application on nitrogen absorption and utilization in peanut [J]. Acta Agronomica Sinica, 2022, 48(3): 695-703.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!