Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (4): 738-751.doi: 10.3724/SP.J.1006.2021.03044

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of planting density on lodging resistance and grain yield of spring maize stalks in Guizhou province

ZHENG Ying-Xia1(), CHEN Du1, WEI Peng-Cheng1, LU Ping2, YANG Jin-Yue3, LUO Shang-Ke4, YE Kai-Mei1, SONG Bi1,*()   

  1. 1College of Agriculture, Guizhou University, Guiyang 550025, Guizhou, China
    2Anshun Academy of Agricultural Sciences, Anshun 561000, Guizhou, China
    3Dry Food Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, Guizhou, China
    4Yuqing County Agriculture and Rural Bureau, Yuqing 564400, Guizhou, China
  • Received:2020-07-13 Accepted:2020-10-14 Online:2021-04-12 Published:2020-10-29
  • Contact: SONG Bi E-mail:1534570966@qq.com;sb6264@126.com
  • Supported by:
    National Key Research and Development Program of China(2016YFD0300307);Special Fund for Agro-scientific Research in the Public Interest(201503127);Guizhou Province Characteristic Grain and Oil Crops Cultivation and Physiological and Ecological Research Technological Innovation Talent Team (Qiankehe Platform Talent) [2019]5613([2019]5613);Guizhou Province High-level Innovative Talents “Hundred” Level Talent Project (Qiankehe Platform Talent)([2018]5632);Guizhou Province Biology First-class Discipline Construction Project(GNYL[2017]009)

Abstract:

The objective of this study was to clarify the changes of spring maize stalk characteristics and yield and their relationship under the dense planting conditions, and it provides theoretical basis and practical guidance for high yield of spring maize dense planting in Guizhou province. The field experiments were carried out to study the effect of planting density on spring maize stalk morphology and mechanical properties, empty stalk rate, lodging rate and grain yield using Guizhou's widely planted maize variety Xianyu 1171 and Xinzhongyu 801 with six density 3×104, 4.5×104, 6.0×104, 7.5×104, 9.0×104, 10.5×104 plants hm-2 from 2018 to 2019. The results were as follows: (1) Plant height and ear height of spring maize increased first and then decreased with the increase in density; the third node length increased the most after densification, the third node's dry weight per stem length, puncture strength and flexural strength, the seventh nodal thickness, dry weight and cross-sectional area decreased the most; the density had no significant effect on the flatness of the cross-sectional area of the stem. Compared with the varieties, Xianyu 1171 internode length, the 3rd and 5th internode dry weight and the 3rd node puncture strength were significantly higher than Xinzhongyu 801. The 7th node dry weight, internode thickness, dry weight per stem length, the cross-sectional area, cross-sectional flatness and flexural strength of internodes were significantly lower than that of Xinzhongyu 801. (2) Lodging rate and empty shot rate increased with the increase in density. After densification, the lodging rate of Xianyu 1171 was significantly higher than that of Xinzhongyu 801, and the rate of empty shot was significantly lower than that of Xinzhongyu 801. (3) The yield increased first and then decreased with the increase in density. Xianyu 1171 and Xinzhongyu 801 had the highest yields at 93,000 plants hm-2 and 86,000 plants hm-2, respectively. After densification, the yield of Xianyu 1171 was higher 10.28% than that of Xinzhongyu 801, and the number of effective panicles and grains per panicle were higher. (4) Correlation and multiple regression analysis showed that plant height, ear height and lodging rate were significantly positively correlated, and internode thickness and dry matter per stalk length had a significant positive effect on corn stalk bending resistance. The yield was closely related to stalk traits, and plant height had the greatest positive effect on yield. It can be seen that the lodging resistance and grain yield of different spring maize stalks were different in response to density. After the densification of Xinzhongyu 801, the internodes of the stalks were short and thick, the dry weight per stalk length was larger, and the lodging resistance ability was stronger. Because Xianyu 1171 had a lower empty stem rate than Xinzhongyu 801 under high density, it had a higher effective ear number and grain number per ear, the yield was higher under high density. Considering the culm traits and yield, the suitable density of Xianyu 1171 and Xinzhongyu 801 in Guizhou were 90,000 plants hm-2 and 85,000 plants hm-2, respectively.

Key words: spring maize, planting density, stalk trait, lodging resistance, grain yield

Fig. 1

Average temperature and rainfall during whole growth stages in maize"

Table 1

Effects of planting density on plant height, ear height, and ear position coefficient of different spring maize"

品种
Varieties

密度
Density
2018 2019
株高
Plant height
(cm)
穗位高
Ear height
(cm)
穗位系数
Ear position
coefficient
株高
Plant height
(cm)
穗位高
Ear height
(cm)
穗位系数
Ear position
coefficient
先玉1171
Xianyu 1171
D1 299.6 c 89.2 d 0.30 c 256.6 d 71.2 d 0.28 b
D2 318.2 b 97.5 cd 0.31 bc 271.7 c 76.4 cd 0.28 b
D3 324.2 ab 102.4 bc 0.32 bc 277.7 bc 82.9 abc 0.30 ab
D4 332.0 a 109.1 ab 0.33 a 289.8 a 89.7 a 0.31 a
D5 331.3 a 118.2 a 0.36 a 279.7 b 89.8 a 0.32 a
D6 320.0 ab 109.7 ab 0.34 a 276.9 bc 85.8 ab 0.31 a
平均值Mean 320.9 104.4 0.32 275.4 82.7 0.3
变异系数CV (%) 4.52 12.30 9.07 4.57 10.21 7.85
新中玉801
Xinzhongyu 801
D1 234.1 bc 77.6 b 0.33 c 212.5 d 73.7 b 0.35 c
D2 233.0 c 78.1 b 0.33 bc 217.5 cd 77.1 b 0.35 bc
D3 246.0 ab 88.6 a 0.36 ab 230.2 ab 88.5 a 0.38 a
D4 239.2 abc 88.1 a 0.37 a 223.6 bc 83.9 a 0.37 a
D5 248.9 a 93.1 a 0.37 a 234.3 a 90.3 a 0.38 a
D6 242.5 abc 92.5 a 0.38 a 230.0 ab 89.5 a 0.39 a
平均值Mean 240.6 86.3 0.36 224.7 83.8 0.37
变异系数CV (%) 5.32 11.26 7.21 5.46 11.12 5.97
变异来源
Source of variation
品种Varieties (V) ** ** **
密度Density (D) ** ** **
年份Year (Y) ** ** ns
品种×密度 (V×D) ns ns ns
品种×年份 (V×D) ** ** **
密度×年份 (D×Y) ns ns ns

Table 2

Effects of planting density on internode length and internode stem thickness of different spring maize"

品种
Varieties
密度
Density
2018 2019
节间长度
Internode length (cm)
节间粗
Internode stem thickness (mm)
节间长度
Internode length (cm)
节间粗
Internode stem thickness (mm)
3 5 7 3 5 7 3 5 7 3 5 7
先玉1171
Xianyu 1171
D1 13.76 d 18.83 a 18.84 a 21.50 a 20.59 a 18.88 a 13.09 b 17.72 d 17.64 b 20.47 a 18.81 a 15.72 a
D2 13.71 d 20.03 a 20.49 a 21.30 a 20.17 a 18.61 a 13.19 b 19.03 cd 19.63 a 20.49 a 18.97 a 15.30 a
D3 14.34 cd 20.72 a 20.39 a 19.83 b 19.11 b 17.18 b 14.41 b 19.87 bc 19.29 a 18.89 b 17.06 b 13.96 b
D4 15.18 bc 22.28 a 22.10 a 18.97 b 17.55 c 16.48 b 15.97 a 20.61 ab 19.83 a 17.34 c 16.00 c 13.22 bc
D5 16.22 ab 21.70 a 21.65 a 17.71 c 16.74 cd 15.37 c 16.03 a 21.98 a 20.41 a 16.41 cd 15.08 c 12.39 cd
D6 16.67 a 21.94 a 20.40 a 17.07 c 16.33 cd 15.28 c 17.25 a 22.05 a 19.27 a 15.37 d 13.81 d 11.29 d
平均值Mean 14.98 20.92 20.65 19.4 17.98 16.94 14.99 20.21 19.35 18.10 16.62 13.65
变异系数CV (%) 11.83 8.95 8.46 10.32 10.64 10.40 17.54 11.31 7.31 12.74 13.77 16.87
新中玉801
Xinzhongyu 801
D1 8.88 b 14.21 c 17.03 b 23.95 a 23.91 a 22.77 a 9.23 c 12.38 c 14.17 b 25.88 a 23.05 a 20.17 a
D2 9.86 b 15.94 bc 17.65 b 22.52 b 22.09 b 21.11 b 9.81 c 12.72 bc 14.07 b 24.59 ab 22.1 ab 19.95 a
D3 12.17 a 22.38 a 16.86 b 20.19 c 19.81 c 19.05 c 11.19 ab 14.63 a 15.52 a 23.47 b 20.89 b 19.28 a
D4 12.89 a 17.33 bc 18.33ab 18.09 d 17.99 d 17.81 d 10.33 bc 14.09 ab 15.69 a 21.25 c 19.46 c 17.27 b
D5 12.87 a 18.88 ab 19.48 a 17.22 e 16.72 e 16.17 e 11.99 a 15.78 a 16.44 a 20.37 c 18.44 d 16.13 b
D6 12.10 a 18.60 ab 18.05 ab 16.62 e 16.45 e 14.96 f 12.49 a 15.60 a 16.81 a 18.66 d 16.77 e 14.71 c
平均值Mean 11.46 17.06 17.9 19.77 19.50 18.64 10.84 14.2 15.45 22.37 20.12 17.92
变异系数CV (%) 17.31 13.62 10.93 15.56 14.60 15.31 17.22 16.16 13.50 12.65 12.05 14.60
变异来源
Source of
variation
品种Varieties (V) ** ** ** ** ** **
密度Density (D) ** ** ** ** ** **
年份Year (Y) ns ** ** ** ** **
品种×密度 (V×D) ns ns ns ** * **
品种×年份 (V×Y) ns ** * ** ** **
密度×年份 (D×Y) ns ns ns ns ns ns

Table 3

Effects of planting density on stalk internode dry matter and dry weight per unit stem length of different spring maize"

品种
Varieties
密度
Density
2018 2019
节间干重
Internode dry weight
(g)
单位茎长干重
Dry weight per unit stem length (g cm-1)
节间干重
Internode dry weight
(g)
单位茎长干重
Dry weight per unit stem length (g cm-1)
3 5 7 3 5 7 3 5 7 3 5 7
先玉1171
Xianyu 1171
D1 9.61 a 10.17 a 7.80 a 0.70 a 0.54 a 0.41 a 9.19 a 8.00 b 4.98 a 0.71 a 0.46 ab 0.40 a
D2 8.54 b 9.59 a 7.28 a 0.62 a 0.48 b 0.35 b 9.22 a 9.21 a 5.54 a 0.70 a 0.49 a 0.35 a
D3 7.40 c 8.16 b 6.15 b 0.52 b 0.39 c 0.30 c 7.94 b 7.67 b 4.79 ab 0.56 b 0.39 bc 0.30 b
D4 6.50 d 7.56 bc 5.96 b 0.42 c 0.34 d 0.27 c 7.27 b 6.45 c 4.64 ab 0.46 c 0.32 cd 0.27 bc
D5 6.36 d 6.79 cd 4.98 c 0.39 c 0.32 de 0.23 d 6.35 c 6.29 c 3.92 b 0.41 c 0.29 de 0.23 cd
D6 6.18 d 6.16 d 4.49 c 0.37 c 0.28 e 0.22 d 5.35 d 5.13 d 2.86 c 0.31 d 0.23 e 0.19 d
平均值Mean 7.43 8.07 6.11 0.51 0.39 0.30 7.55 7.12 4.46 0.52 0.36 0.23
变异系数CV (%) 21.57 21.90 27.66 27.30 27.56 28.72 27.03 29.50 34.76 34.59 34.47 34.50
新中玉801
Xinzhongyu 801
D1 8.05 a 9.77 a 9.43 a 0.97 a 0.69 a 0.55 a 9.29 a 9.04 a 7.24 a 1.04 a 0.74 a 0.28 a
D2 6.74 b 9.27 a 8.05 b 0.68 b 0.59 b 0.46 b 7.65 b 7.31 b 5.96 ab 0.79 b 0.58 b 0.28 a
D3 5.54 c 7.14 b 6.13 c 0.45 c 0.38 c 0.37 c 7.17 b 7.40 b 5.61 bc 0.65 c 0.50 bc 0.25 a
D4 5.31 cd 5.83 c 5.39 cd 0.41 cd 0.34 cd 0.30 d 5.80 c 6.03 c 4.78 cd 0.58 c 0.44 cd 0.23 ab
D5 4.71 de 6.06 c 5.09 de 0.36 d 0.32 de 0.26 de 5.60 c 5.73 c 4.41 de 0.48 d 0.37 d 0.19 bc
D6 4.40 e 5.42 c 4.30 e 0.35 d 0.30 e 0.24 e 4.73 d 4.38 d 3.70 e 0.38 e 0.28 e 0.15 c
平均值Mean 5.79 7.25 6.40 0.54 0.44 0.36 6.71 6.65 5.28 0.65 0.49 0.35
变异系数CV (%) 25.87 27.74 31.86 46.27 36.72 34.60 28.67 32.94 36.77 41.67 41.15 38.79
变异来源
Source of variation
品种Varieties (V) ** ** * ** ** **
密度Density (D) ** ** ** ** ** **
年份Year (Y) * ** ** ** ns **
品种×密度 (V×D) ns ns ns ** * *
品种×年份 (V×Y) ns ns ns ns * *
密度×年份 (D×Y) ns ns ns ns ns ns

Fig. 2

Effects of density on the cross-sectional area and cross-section flatness of maize stalk internodes in 2019 Bars marked with different lowercase letters indicate significantly different among treatments at P < 0.05. D1, D2, D3, D4, D5, and D6 represent planting densities of 3.0×104, 4.5×104, 6.0×104, 7.5×104, 9.0×104, and 10.5×104 plants hm-2, respectively. XY1171: Xianyu 1171; XZY801: Xinzhongyu 801."

Table 4

Variance analysis of puncture strength and bending resistance of different spring maize"

变异来源
Source of variation
穿刺强度Rind penetration strength 抗折力Bending strength
3 5 7 3 5 7
品种Varieties (V) ** ns ns ** ** **
密度Density (D) ** ** ** ** ** **
年份Year (Y) ns * ** ** ** **
品种×密度V×D ns ns ns * ** **
品种×年份V×Y ns ** ** * ns ns
密度×年份D×Y ns ns ns ** ** **

Fig. 3

Relationship between planting density and stalk puncture strength and bending resistance Abbreviations are the same as those given in Fig. 2."

Table 5

Variance analysis of lodging rates and empty shot rate of different spring maize varieties"

变异来源
Source of variation
倒伏率
Lodging rate
空秆率
Empty shot rate
品种 Varieties (V) ** **
密度 Density (D) ** **
年份 Year (Y) ** ns
品种×密度 (V×D) * ns
品种×年份 (V×Y) ** ns
密度×年份 (D×Y) ** ns

Fig. 4

Relationship between planting density and lodging rate and empty shot rate Abbreviations are the same as those given in Fig. 2."

Table 6

Effects of planting density on yield and composition of different spring maize"

品种
Varieties
密度
Density
2018 2019
有效穗数
Ear number
穗粒数
Kernels
per ear
百粒重
100-kernel
weight (g)
籽粒产量
Grain yield
(kg hm-2)
有效穗数
Ear number
穗粒数
Kernels
per ear
百粒重
100-kernel weight (g)
籽粒产量
Grain yield
(kg hm-2)
先玉1171
Xianyu 1171
D1 45,959.6 d 767.4 a 36.8 a 9145.3 b 29,798.0 f 730.3 a 33.7 a 6345.4 d
D2 50,505.1 d 754.4 a 36.4 a 10,232.1 b 43,602.7 e 716.0 a 31.4 ab 9561.8 c
D3 61,279.5 d 749.1 a 33.8 b 11,811.2 a 55,892.3 d 685.6 ab 30.8 ab 10,350.4 b
D4 72,727.3 b 653.8 b 32.6 bc 11,891.7 a 70,033.7 c 658.3 b 29.4 b 11,609.4 a
D5 76,936 b 684.7 b 33.2 bc 13,051.3 a 79,292.9 b 637.9 b 29.4 b 11,858.6 a
D6 87,878.8 a 677.0 b 31.2 c 11,957.9 a 93,939.4 a 633.2 b 29.0 b 12,358.7 a
新中玉801
Xinzhongyu 801
D1 43,266.0 c 828.3 a 41.3 a 8177.7 c 37,037.0 f 669.1 a 36.6 a 8219.4 c
D2 48,989.9 c 794.8 a 39.0 a 9046.9 bc 46,127.9 e 646.6 a 36.4 a 9629.5 b
D3 62,626.3 ab 633.3 b 39.9 a 11,357.4 a 57,070.7 d 627.1 a 36.3 a 10,744.7 a
D4 61,784.5 b 577.3 b 36.1 b 10,283.6 ab 67,340.1 c 566.2 b 34.4 ab 10,744.6 a
D5 66,330.0 ab 579.4 b 35.6 b 10,667.6 a 79,124.6 b 511.4 c 33.6 ab 11,305.1 a
D6 71,548.8 a 611.2 b 34.1 b 11,055.9 a 91,077.4 a 436.0 d 32.6 b 10,664.1 a
变异来源
Source of variation
品种Varieties (V) * ** ** **
密度Density (D) ** ** ** **
年份Year (Y) ns ** ** ns
品种×密度 (V×D) ns * ns ns
品种×年份 (V×Y) ** * ns *
密度×年份 (D×Y) ** ns ns ns

Table 7

Regression relationship between planting density and spring maize yield and its components"

项目
Item
品种
Varieties
回归方程
Regression equation
R2
产量
Grain yield
先玉1171 Xianyu 1171 y= -112.4x2 + 2096.3x + 2555.5 0.8331**
新中玉801 Xinzhongyu 801 y = -89.6x2 + 1547.3x + 4385.2 0.8589**
有效穗数
Ear number
先玉1171 Xianyu 1171 y = 7069.1x + 16,271 0.9955**
新中玉801 Xinzhongyu 801 y = 5448.1x + 24,252 0.9909**
穗粒数
Kernels per ear
先玉1171 Xianyu 1171 y = -14.2x + 792.6 0.9046**
新中玉801 Xinzhongyu 801 y = -25.4x + 757.1 0.8519**
百粒重
100-kernel weight
先玉1171 Xianyu 1171 y = -0.7x + 36.8 0.9227**
新中玉801 Xinzhongyu 801 y = -0.8x + 41.5 0.9227**

Table 8

Correlation analysis between stalk morphology, mechanical properties, lodging rate and yield"

指标
Item
倒伏率
Lodging rate
穿刺强度
Rind penetration strength
抗折力
Bending strength
产量
Grain yield
空秆率Empty shot rate -0.34 -0.51** -0.29 -0.56**
株高Plant height 0.76** -0.14 -0.25 0.48*
穗位高 Ear height 0.88** -0.56** -0.32 0.77**
穗位系数Ear position coefficient 0.01 -0.51** -0.05 0.31
节间长Internode length 0.75** -0.39 -0.53** 0.59**
节间粗Internode stem thickness -0.54** 0.64** 0.88** -0.63**
节间干重Internode dry weight -0.34 0.82** 0.76** -0.63**
单位茎长干重Dry weight under length -0.60** 0.81** 0.83** -0.80**
节间横截面积Cross-sectional area -0.82** 0.49* 0.97** -0.52**
横截面扁率Cross section flatness -0.59** -0.08 0.47* -0.04
穿刺强度Rind penetration strength -0.55** -0.83**
抗折力Bending strength -0.41* 0.61** -0.58**
[1] 李少昆, 赵久然, 董树亭, 赵明, 李潮海, 崔彦宏, 刘永红, 高聚林, 薛吉全, 王立春, 王璞, 陆卫平, 王俊河, 杨祁峰, 王子明. 中国玉米栽培研究进展与展望. 中国农业科学, 2017,50:1941-1959.
Li S K, Zhao J R, Dong S T, Zhao M, Li C H, Cui Y H, Liu Y H, Gao J L, Xue J Q, Wang L C, Wang P, Lu W P, Wang J H, Yang Q F, Wang Z M. Advances and prospects of maize cultivation in China. Sci Agric Sin, 2017,50:1941-1959 (in Chinese with English abstract).
[2] 明博, 谢瑞芝, 侯鹏, 李璐璐, 王克如, 李少昆. 2005-2016年中国玉米种植密度变化分析. 中国农业科学, 2017,50:1960-1972.
Ming B, Xie R Z, Hou P, Li L L, Wang K R, Li S K. Changes of maize planting density in China. Sci Agric Sin, 2017,50:1960-1972 (in Chinese with English abstract).
[3] 赵波, 李小龙, 周茂林, 宋碧, 雷恩, 李钟, 吴雅薇, 袁继超, 孔凡磊. 西南玉米机械粒收籽粒破碎率现状及影响因素分析. 作物学报, 2020,46:74-83.
Zhao B, Li X L, Zhou M L, Song B, Lei E, Li Z, Wu Y W, Yuan J C, Kong F L. Current status and influencing factors of broken rate in mechanical grain harvesting of maize in Southwest China. Acta Agron Sin, 2020,46:74-83 (in Chinese with English abstract).
[4] 张琳琳, 孙仕军, 陈志君, 姜浩, 张旭东, 迟道才. 不同颜色地膜与种植密度对春玉米干物质积累和产量的影响. 应用生态学报, 2018,29:113-124.
Zhang L L, Sun S J, Chen Z J, Jiang H, Zhang X D, Chi D C. Effects of different colored plastic film mulching and planting density on dry matter accumulation and yield of spring maize. Chin J Appl Ecol, 2018,29:113-124 (in Chinese with English abstract).
[5] 邓妍, 王创云, 郭虹霞, 张丽光, 赵丽, 王陆军, 牛学谦, 王美霞. 群体密度对玉米茎秆农艺性状、力学特性和产量的影响. 作物杂志, 2017, (4):89-95.
Deng Y, Wang C Y, Guo H Y, Zhang L G, Zhao L, Wang L J, Niu X Q, Wang M X. Effect of population density on agronomic traits, mechanical properties and yield of maize stalks. Crops, 2017, (4):89-95 (in Chinese with English abstract).
[6] 田再民, 黄智鸿, 陈建新, 史宝林, 魏东, 瞿文洁, 李环. 种植密度对3个紧凑型玉米品种抗倒伏性和产量的影响. 玉米科学, 2016,24(5):83-88.
Tian Z M, Huang Z H, Chen J A, Shi B L, Wei D, Qu W J, Li H. Effects of planting density on lodging resistance and yield of three compact maize varieties. J Maize Sci, 2016,24(5):83-88 (in Chinese with English abstract).
[7] 高鑫, 高聚林, 于晓芳, 王志刚, 孙继颖, 苏治军, 胡树平, 叶君, 王海燕, 崔超, 李维敏. 高密植对不同类型玉米品种茎秆抗倒特性及产量的影响. 玉米科学, 2012,20(4):69-73.
Gao X, Gao J L, Yu X F, Wang Z G, Sun J X, Su Z J, Hu S P, Ye J, Wang H Y, Cui C, Li W M. Stalks lodging-resistance characteristics and yield traits among different maize varieties under high close planting. J Maize Sci, 2012,20(4):69-73 (in Chinese with English abstract).
[8] 豆攀, 黄科程, 王兴龙, 马晓君, 张嘉莉, 孔凡磊, 袁继超. 川中丘区不同玉米品种春、夏播茎秆抗倒特性研究. 华北农学报, 2017,32(4):162-168.
Dou P, Huang K C, Wang X L, Ma X J, Zhang J L, Kong F L, Yuan J C. Study on stalk lodging resistant of different maize varieties in spring and summer. Acta Agric Boreali-Sin, 2017,32(4):162-168 (in Chinese with English abstract).
[9] 谷利敏, 乔江方, 张美微, 朱卫红, 黄璐, 代书桃, 董树亭, 刘京宝. 种植密度对不同耐密夏玉米品种茎秆性状与抗倒伏能力的影响. 玉米科学, 2017,25(5):91-97.
Gu L M, Qiao J F, Zhang M W, Zhu W H, Huang L, Dai S T, Dong S T, Liu J B. Effect of planting density on stalk characteristics and lodging-resistant capacity of different density-resistant summer maize varieties. J Maize Sci, 2017,25(5):91-97 (in Chinese with English abstract).
[10] 勾玲, 黄建军, 张宾, 李涛, 孙锐, 赵明. 群体密度对玉米茎秆抗倒力学和农艺性状的影响. 作物学报, 2007,33:1688-1695.
Gou L, Huang J J, Zhang B, Li T, Sun Y, Zhao M. Effects of population density on stalk lodging resistant mechanism and agronomic characteristics of maize. Acta Agron Sin, 2007,33:1688-1695 (in Chinese with English abstract).
[11] 刘胜群, 宋凤斌, 朱先灿, 张卫建, 任军, 宋振伟, 郭金瑞, 阎孝贡. 玉米穗下节间与抗倒性相关的某些性状对增加密度的响应. 土壤与作物, 2013, (4):145-149.
Liu S Q, Song F B, Zhu X C, Zhang W J, Ren J, Song Z W, Guo J R, Yan X G. Responses of internodes below ear and lodging-related traits to increased planting density in maize. Soil Crops, 2013, (4):145-149 (in Chinese with English abstract).
[12] 马德志, 于乔乔, 孙玉珺, 吴玥, 张倩, 杨德光. 黑龙江省三、四积温带玉米新品种抗倒伏性比较研究. 西南农业学报, 2019,32:1692-1700.
Ma D Z, Yu Q Q, Sun Y J, Wu Y, Zhang Q, Yang D G. Comparative study on lodging resistance of new maize varieties in three and four accumulated temperate zones in Heilongjiang province. Southwest China J Agric Sci, 2019,32:1692-1700 (in Chinese with English abstract).
[13] 尚赏, 胡启国, 郭书亚, 张艳, 汤其宁, 卢广远. 种植密度对黄淮海夏玉米品种倒伏率与茎秆抗倒特性的影响. 山西农业科学, 2018,46:1282-1285.
Shang S, Hu Q G, Guo S Y, Zhang Y, Tang Q N, Lu G Y. Effect of planting density on lodging rate and stalk mechanics characteristic of summer maize varieties in the Huang-Huai-Hai region. J Shanxi Agric Sci, 2018,46:1282-1285 (in Chinese with English abstract).
[14] 姚启伦. 玉米抗茎倒折性状遗传的研究. 西南农业大学学报, 2003, (2):123-126.
Yao Q L. Studies of the inheritance of stalk breaking resistance traits in maize. J Southwest Agric Univ, 2013, (2):123-126 (in Chinese with English abstract).
[15] 黄建军, 赵明, 刘娟. 不同抗倒能力玉米品种物质生产与分配及产量性状研究. 玉米科学, 2009,17(4):82-88.
Huang J J, Zhao M, Liu J. Study on dry matter accumulation, distribution and yield traits of maize varieties differ in lodging resistant ability. J Maize Sci, 2009,17(4):82-88 (in Chinese with English abstract).
[16] 徐幸. 种植密度对不同株高玉米品种茎秆抗倒伏性能及产量的影响. 吉林农业大学硕士学位论文, 吉林长春, 2019.
Xu X. The Effects of Planting Density on Stems Lodging Resistance and Yield for Different Plant Height Maize Varieties. MS Thesis of Jilin Agricultural University, Changchun, Jilin, China, 2019 (in Chinese with English abstract).
[17] 徐宗贵, 孙磊, 王浩, 王淑兰, 王小利, 李军. 种植密度对旱地不同株型春玉米品种光合特性与产量的影响. 中国农业科学, 2017,50:2463-2475.
Xu Z G, Sun L, Wang H, Wang S L, Wang X L, Li J. Effects of different planting densities on photosynthetic characteristics and yield of different variety types of spring maize on dryland. Sci Agric Sin, 2017,50:2463-2475 (in Chinese with English abstract).
[18] 金容, 李钟, 杨云, 周芳, 杜伦静, 李小龙, 孔凡磊, 袁继超. 密度和株行距配置对川中丘区夏玉米群体光分布及雌雄穗分化的影响. 作物学报, 2020,46:614-630.
Jin R, Li Z, Yang Y, Zhou F, Du L J, Li X L, Kong F L, Yuan J C. Effects of density and row spacing on population light distribution and male and female spike differentiation of summer maize in hilly area of central Sichuan. Acta Agron Sin, 2020,46:614-630 (in Chinese with English abstract).
[19] 张翼飞, 于崧, 杨克军, 徐晶宇, 吴琼, 王怀鹏, 尹雪巍, 杨丽. 不同氮钾配比对玉米茎秆形态力学特性及籽粒产量的影响. 生态学杂志, 2019,38:1741-1750.
Zhang Y F, Yu S, Yang K J, Xu J Y, Wu Q, Wang H P, Yin X W, Yang L. Effect of different nitrogen-potassium ratios on stem morphological and mechanical characteristics and grain yield of maize. Chin J Ecol, 2019,38:1741-1750 (in Chinese with English abstract).
[20] Yan P, Chen Y Q, Sui P, Alison V, Zhang X P. Effect of maize plant morphology on the formation of apical kernels at different sowing date sand under different plant densities. Field Crops Res, 2018,223:83-92.
[21] 任佰朝, 李利利, 董树亭, 刘鹏, 赵斌, 杨今胜, 王丁波, 张吉旺. 种植密度对不同株高夏玉米品种茎秆性状与抗倒伏能力的影响. 作物学报, 2016,42:1864-1872.
Ren B C, Li L L, Dong S T, Liu P, Zhao B, Yang J S, Wang D B, Zhang J W. Effects of plant density on stem traits and lodging resistance of summer maize hybrids with different plant heights. Acta Agron Sin, 2016,42:1864-1872 (in Chinese with English abstract).
[22] 蒋帆, 徐开未, 胡月秋, 龙玲, 周元, 莫太相, 钟贤华, 陈远学. 种植密度对川中丘陵春玉米茎秆性状及力学特性的影响. 云南农业大学学报(自然科学), 2020,35:377-385.
Jiang F, Xu K W, Hu Y Q, Long L, Zhou Y, Mo T X, Zhong X H, Chen Y X. Effect of planting density on the stalk characteristics and mechanical properties of spring maize in hilly region of central Sichuan. J Yunnan Agric Univ (Nat Sci Edn), 2020,35:377-385 (in Chinese with English abstract).
[23] Ma D L, Xie R Z, Liu X, Niu X K, Hou P, Wang K R, Lu Y L, Li S K. Lodging-related stalk characteristics of maize varieties in China since the 1950s. Crop Sci, 2014,54:2805-2814.
[24] 徐田军, 吕天放, 陈传永, 刘月娥, 张译天, 刘秀芝, 赵久然, 王荣焕. 种植密度和植物生长调节剂对玉米茎秆性状的影响及调控. 中国农业科学, 2019,52:629-638.
Xu T J, Lyu T F, Chen C Y, Liu Y E, Zhang Y T, Liu X Z, Zhao J R, Wang R H. Effects of plant density and plant growth regulator on stalk traits of maize and their regulation. Sci Agric Sin, 2019,52:629-638 (in Chinese with English abstract).
[25] 曹庆军. 春玉米抗茎倒能力评价及其化学调控技术研究. 中国科学院大学博士学位论文, 北京, 2016.
Cao Q J. Evaluation of Stalk Lodging Resistance of Different Spring Maize Genotypes and Mechanism of Its Improvement by Plant Growth Regulators. PhD Dissertation of University of Chinese Academy of Sciences, Beijing, China, 2016 (in Chinese with English abstract).
[26] 勾玲, 黄建军, 孙锐, 丁在松, 董志强, 赵明. 玉米不同耐密植品种茎秆穿刺强度的变化特征. 农业工程学报, 2010,26(11):156-162.
Gou L, Huang J J, Sun R, Ding Z S, Dong Z Q, Zhao M. Variation characteristic of stalk penetration strength of maize with different density-tolerance varieties. Trans CSAE, 2010,26(11):156-162 (in Chinese with English abstract).
[27] 马延华, 孙德全, 李绥艳, 林红, 潘丽艳, 张长勇. 玉米茎皮抗穿刺强度与形态性状和化学成分含量间的相关分析. 黑龙江农业科学, 2012, (4):1-4.
Ma Y H, Sun D Q, Li S Y, Lin H, Pan L Y, Zhang C Y. Correlation analysis between rind punctration resistance and morphological characters and chemical components in maize stalk. Heilongjiang Agric Sci, 2012, (4):1-4 (in Chinese with English abstract)
[28] 丰光, 刘志芳, 李妍妍, 邢锦丰, 黄长玲. 玉米茎秆耐穿刺强度的倒伏遗传研究. 作物学报, 2009,35:2133-2138.
Feng G, Liu Z F, Li Y Y, Xing J F, Huang C L. Genetics of lodging in tolerance to maize stem puncture. Acta Agron Sin, 2009,35:2133-2138 (in Chinese with English abstract).
[29] 刘卫星, 王晨阳, 王强, 岳鹏莉, 谢旭东, 刘甘霖, 马耕, 卢红芳. 不同玉米品种茎秆抗倒特性及其与产量的关系. 河南农业科学, 2015,44(7):17-21.
Liu W X, Wang C Y, Wang Q, Yue P L, Xie X D, Liu G L, Ma G, Lu H F. Stalk lodging-resistance property and its correlation with yield among different maize varieties. Henan Agric Sci, 2015,44(7):17-21 (in Chinese with English abstract).
[30] 许莹莹, 马青美, 宋希云, 郭新梅, 裴玉贺. 不同玉米品种倒伏抗性与产量相关性状的聚类和相关分析. 玉米科学, 2019,27(5):15-21.
Xu Y Y, Ma Q M, Song X Y, Guo X M, Pei Y H. Clustering and correlation analysis of lodging resistance and yield-related traits of different maize varieties. J Maize Sci, 2019,27(5):15-21 (in Chinese with English abstract).
[31] 马晓君, 路明远, 邢春景, 莫太相, 刘晓林, 吴雅薇, 袁继超, 孔凡磊. 群体密度对夏玉米穗下茎秆性状及抗倒伏力学特性的影响. 玉米科学, 2018,26(4):118-125.
Ma X J, Lu M Y, Xing C J, Mo T X, Liu X L, Wu Y W, Yuan J C, Kong F L. Effects of planting density on stalk and lodging-resistance in summer maize. J Maize Sci, 2018,26(4):118-125 (in Chinese with English abstract).
[32] 刘晓林, 马晓君, 豆攀, 黄科程, 王兴龙, 张頔, 孔凡磊, 袁继超. 种植密度对川中丘陵夏玉米茎秆性状及产量的影响. 中国生态农业学报, 2017,25:356-364.
Liu X L, Ma X J, Dou P, Huang K C, Wang X L, Zhang F, Kong F L, Yuan J C. Effect of planting density on stem characteristics and yield of summer maize in the hilly central Sichuan basin. Chin J Eco-Agric, 2017,25:356-364 (in Chinese with English abstract).
[33] 曹铁华, 梁烜赫, 李刚, 任军, 王洪君, 陈宝玉, 王立春. 玉米倒伏和扶直的产量效应研究. 玉米科学, 2013,21(6):81-83.
Cao T H, Liang X H, Li G, Ren J, Wang H J, Chen B Y, Wang L C. Study on the yield effect of maize lodging and straightening. J Maize Sci, 2013,21(6):81-83 (in Chinese with English abstract).
[34] 梁书荣, 赵会杰, 李洪岐, 王俊忠, 王林华, 曲小菲, 吕淑敏. 密度、种植方式和品种对夏玉米群体发育特征的影响. 生态学报, 2010,30:1927-1931.
Liang S R, Zhao H J, Li H Q, Wang J Z, Wang L H, Qu X F, Lyu S M. Effects of density, planting methods and varieties on the developmental characteristics of summer maize populations. Acta Ecol Sin, 2010,30:1927-1931 (in Chinese with English abstract).
[35] Xu W J, Liu C W, Wang K R, Xie R Z, Ming B, Wang Y H, Zhang G Q, Liu G Z, Zhao R L, Fan P P, Li S K, Hou P. Adjusting maize plant density to different climatic conditions across a large longitudinal distance in China. Field Crops Res, 2017,212:126-134.
[36] 柏延文, 杨永红, 朱亚利, 李红杰, 薛吉全, 张仁和. 种植密度对不同株型玉米冠层光能截获和产量的影响. 作物学报, 2019,45:1868-1879.
Bai Y W, Yang Y H, Zhu Y L, Li H J, Xue J Q, Zhang R H. Effect of planting density on light interception within canopy and grain yield of different plant types of maize. Acta Agron Sin, 2019,45:1868-1879 (in Chinese with English abstract).
[1] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[2] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[3] LI Rui-Dong, YIN Yang-Yang, SONG Wen-Wen, WU Ting-Ting, SUN Shi, HAN Tian-Fu, XU Cai-Long, WU Cun-Xiang, HU Shui-Xiu. Effects of close planting densities on assimilate accumulation and yield of soybean with different plant branching types [J]. Acta Agronomica Sinica, 2022, 48(4): 942-951.
[4] LIU Yun-Jing, ZHENG Fei-Na, ZHANG Xiu, CHU Jin-Peng, YU Hai-Tao, DAI Xing-Long, HE Ming-Rong. Effects of wide range sowing on grain yield, quality, and nitrogen use of strong gluten wheat [J]. Acta Agronomica Sinica, 2022, 48(3): 716-725.
[5] XIE Cheng-Hui, MA Hai-Zhao, XU Hong-Wei, XU Xi-Yang, RUAN Guo-Bing, GUO Zheng-Yan, NING Yong-Pei, FENG Yong-Zhong, YANG Gai-He, REN Guang-Xin. Effects of nitrogen rate on growth, grain yield, and nitrogen utilization of multiple cropping proso millet after spring-wheat in Irrigation Area of Ningxia [J]. Acta Agronomica Sinica, 2022, 48(2): 463-477.
[6] LOU Hong-Xiang, JI Jian-Li, KUAI Jie, WANG Bo, XU Liang, LI Zhen, LIU Fang, HUANG Wei, LIU Shu-Yan, YIN Yu-Feng, WANG Jing, ZHOU Guang-Sheng. Effects of planting density on yield and lodging related characters of reciprocal hybrids in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(9): 1724-1740.
[7] CHEN Yun, LIU Kun, ZHANG Hong-Lu, LI Si-Yu, ZHANG Ya-Jun, WEI Jia-Li, ZHANG Hao, GU Jun-Fei, LIU Li-Jun, YANG Jian-Chang. Effects of machine transplanting density and panicle nitrogen fertilizer reduction on grains starch synthesis in good taste rice cultivars [J]. Acta Agronomica Sinica, 2021, 47(8): 1540-1550.
[8] GAO Zhen, LIANG Xiao-Gui, ZHANG Li, ZHAO Xue, DU Xiong, CUI Yan-Hong, ZHOU Shun-Li. Effects of irrigating at different growth stages on kernel number of spring maize in the North China Plain [J]. Acta Agronomica Sinica, 2021, 47(7): 1324-1331.
[9] KE Jian, CHEN Ting-Ting, XU Hao-Cong, ZHU Tie-Zhong, WU Han, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Effects of different application methods of controlled-release nitrogen fertilizer on grain yield and nitrogen utilization of indica-japonica hybrid rice in pot-seedling mechanically transplanted [J]. Acta Agronomica Sinica, 2021, 47(7): 1372-1382.
[10] LIU Qiu-Yuan, ZHOU Lei, TIAN Jin-Yu, CHENG Shuang, TAO Yu, XING Zhi-Peng, LIU Guo-Dong, WEI Hai-Yan, ZHANG Hong-Cheng. Relationships among grain yield, rice quality and nitrogen uptake of inbred middle-ripe japonica rice in the middle and lower reaches of Yangtze River [J]. Acta Agronomica Sinica, 2021, 47(5): 904-914.
[11] ZHU Ya-Li, WANG Chen-Guang, YANG Mei, ZHENG Xue-Hui, ZHAO Cheng-Feng, ZHANG Ren-He. Response of grain filling and dehydration characteristics of kernels located in different ear positions in the different maturity maize hybrids to plant density [J]. Acta Agronomica Sinica, 2021, 47(3): 507-519.
[12] ZHANG Jin-Dan, FAN Hong, DU Jin-Yong, YIN Wen, FAN Zhi-Long, HU Fa-Long, CHAI Qiang. Synchronously higher planting density can increase yield via optimizing interspecific interaction of intercropped wheat and maize [J]. Acta Agronomica Sinica, 2021, 47(12): 2481-2489.
[13] HU Xin-Hui, GU Shu-Bo, ZHU Jun-Ke, WANG Dong. Effects of applying potassium at different growth stages on dry matter accumulation and yield of winter wheat in different soil-texture fields [J]. Acta Agronomica Sinica, 2021, 47(11): 2258-2267.
[14] LIU Peng-Zhao,SHI Zu-Jiao,NING Fang,WANG Rui,WANG Xiao-Li,LI Jun. Critical nitrogen dilution curves and nitrogen nutrition diagnosis of spring maize under different precipitation patterns in Weibei dryland [J]. Acta Agronomica Sinica, 2020, 46(8): 1225-1237.
[15] LI Rui-Jie,TANG Hui-Hui,WANG Qing-Yan,XU Yan-Li,WANG Qi,LU Lin,YAN Peng,DONG Zhi-Qiang,ZHANG Feng-Lu. Effects of 5-aminolevulinic acid and ethephon compound on carbon balance of source-sink of spring maize in Northeast China [J]. Acta Agronomica Sinica, 2020, 46(7): 1063-1075.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!