Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (12): 2407-2422.doi: 10.3724/SP.J.1006.2021.04231

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Screening candidate genes related to aluminum toxicity stress at germination stage via RNA-seq and QTL mapping in Brassica napus L.

WANG Rui-Li1(), WANG Liu-Yan1, LEI Wei1,2, WU Jia-Yi1, SHI Hong-Song1, LI Chen-Yang1, TANG Zhang-Lin1,2, LI Jia-Na1,2, ZHOU Qing-Yuan1,2,*(), CUI Cui1,*()   

  1. 1College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
    2Chongqing Rape Engineering Technology Research Center, Chongqing 400715, China
  • Received:2020-10-27 Accepted:2021-05-17 Online:2021-12-12 Published:2021-06-09
  • Contact: ZHOU Qing-Yuan,CUI Cui E-mail:1525731297@qq.com;qingyuan@swu.edu.cn;cuicui@swu.edu.cn
  • Supported by:
    National Key Research and Development Program of China(2018YFD0100500);China Agriculture Research System(CARS-12);Technological Innovation, and the Application Development in Chongqing(cstc2019jscx-msxmX0383)

Abstract:

With the aggravation of soil acidification, aluminum toxicity has become one of the important stress factors affecting seed germination quality and crop yield. In order to study the molecular mechanism of the effect of aluminum toxicity on rapeseed seed germination, a total of 9344 significantly differentially expressed genes [log2 (fold change) ≥ 1 and FDR ≤ 0.05] were detected in the transcriptome analysis of aluminum-tolerant strain 18D300 and aluminum-sensitive strain 27011 by RNA-seq technology, among which 4406 DEGs (differentially expressed genes) were up-regulated and 4938 DEGs were down-regulated. GO enrichment showed that DEGs were mainly related to oxidation reaction, carbohydrate metabolism, and transporter activity. KEGG enrichment revealed that DEGs were mainly concentrated in phenylpropane biosynthesis, starch and sucrose metabolism, MAPK signal pathway-plant, plant-pathogen interaction, plant hormone signal transduction and so on. In addition, 44 DEGs (10 down-regulated and 34 up-regulated) were screened by integrating the results of RNA transcriptome sequencing and QTL mapping of root-related traits at germination stage under aluminum toxicity stress in rapeseed, which were mainly related to oxidative stress, osmotic regulation, cell wall modification, transporter, and hormone signal transduction.

Key words: Brassica napus L., aluminum poison, transcriptome sequencing, QTLs, differentially expressed genes

Table 1

Quality analysis of sequencing data"

样品名称
Sample name
S0 R0 ST RT 总数
Total
原始读数Raw reads 48,585,792 55,778,592 45,860,428 47,308,644 197,533,456
干净读数Clean reads 44,642,424 51,491,214 41,819,768 43,518,768 181,472,174
干净碱基Clean data (bp) 6,696,363,600 7,723,682,100 6,272,965,200 6,527,815,200 27,220,826,100
N (%) 0.001385 0.00138 0.001418 0.00137
Q20 (%) 97.57 97.59 97.72 97.43
Q30 (%) 94.14 94.22 94.43 93.74

Table 2

Primers of candidate differentially expressed genes used for qRT-PCR"

基因名称
Gene name
正向引物
Forward primer (5°-3°)
反向引物
Reverse primer (5°-3°)
BraACTIN7 GGAGCTGAGAGATTCCGTTG GAACCACCACTGAGGACGAT
BnaA03g47720D ACAAAGCAATGCACTCTTTAGG GTTGTTGAAGACTCTGCAGTTT
BnaC03g62130D AACAAAGACAAACCTGGGACTA CTTGTTGATCGAACGGTAATCG
BnaA09g02030D CTTCTGCTCAAGGCTCT GGGTTTCCCAATGTTAG
BnaA03g03740D GAAGTATGTGAGGATGGAGAGG GATCTTCTCCAAATCAGCGTTC
BnaA03g53200D GCCATTGTTGTATATTGGGCAT TGATGTGTATGAAACAAGCAGC
BnaC03g65590D ACGTTGAGCCAAACAGAGTG CTATTATCGTAGACACCGGACG

Fig. 1

Mean root length of different resistant materials 0 represents the control; T represents the treatments; S represents the sensitive strain to aluminum; R represents the resistant strain to aluminum. **: P < 0.01."

Fig. 2

Differentially expressed genes in four libraries Abbreviations of sample name are the same as those given in Table 1."

Fig. 3

Venn analysis of differentially expressed genes Abbreviations of sample name are the same as those given in Table 1."

Fig. 4

GO classification of differentially expressed genes in S0 vs R0 and S0 vs ST Abbreviations of sample name are the same as those given in Table 1."

Table 3

KEGG pathway significantly overrepresented in R0 vs RT and S0 vs ST"

KEGG编号KEGG ID KEGG术语
KEGG term
基因数目
Genes number
比值
Ratio (%)
矫正后的P
P-value
R0 vs RT
bna00940 苯丙烷生物合成Phenylpropanoid biosynthesis 55 21.32 3.81844E-21
bna00500 淀粉和蔗糖代谢Starch and sucrose metabolism 27 10.47 2.29236E-06
bna00910 氮素代谢Nitrogen metabolism 13 5.04 1.81952E-05
bna00270 半胱氨酸和蛋氨酸代谢CySteine and methionine metabolism 21 8.14 0.000110181
bna04016 MAPK信号通路-植物MAPK signaling pathway-plant 23 8.91 0.000143365
bna00010 糖酵解/糖异生Glycolysis/Gluconeogenesis 21 8.14 0.000268893
bna00130 泛醌和其他萜类醌生物合成
Ubiquinone and other terpenoid-quinone biosynthesis
11 4.26 0.001478368
bna00380 色氨酸代谢Tryptophan metabolism 12 4.65 0.003486812
bna00360 苯丙氨酸代谢Phenylalanine metabolism 10 3.88 0.006641539
KEGG编号KEGG ID KEGG术语
KEGG term
基因数目
Genes number
比值
Ratio (%)
矫正后的P
P-value
bna00460 氰基氨基酸代谢Cyanoamino acid metabolism 12 4.65 0.006641539
bna00350 酪氨酸代谢Tyrosine metabolism 9 3.49 0.007588613
bna04075 植物激素信号转导Plant hormone signal transduction 34 13.18 0.007588613
bna00052 半乳糖代谢Galactose metabolism 10 3.88 0.009316627
S0 vs ST
bna00940 苯丙烷生物合成Phenylpropanoid biosynthesis 97 31.80 5.89634E-43
bna04016 MAPK信号通路-植物MAPK signaling pathway-plant 38 12.46 9.09024E-08
bna00910 氮素代谢Nitrogen metabolism 16 5.25 2.123E-05
bna00460 氰基氨基酸代谢Cyanoamino acid metabolism 19 6.23 0.000428636
bna04075 植物激素信号转导Plant hormone signal transduction 52 17.05 0.001727744
bna00520 氨基糖和核苷酸糖代谢
Amino sugar and nucleotide sugar metabolism
27 8.85 0.004361711
bna04626 植物-病原体相互作用Plant-pathogen interaction 35 11.48 0.004455032
bna00040 戊糖和葡糖醛酸相互转化
Pentose and glucuronate interconversions
21 6.89 0.005458802

Fig. 5

GO classification of differentially expressed genes in S0 vs R0 and ST vs RT Abbreviations of sample name are the same as those given in Table 1."

Fig. 6

Enrichment factor scatter plot of the top 11 significant KEGG pathways in S0 vs R0 and ST vs RT The horizontal axis represents enrichment factors, and the vertical axis represents metabolic pathways. The location of bubbles represents the enrichment item, the size of bubbles represents the number of differential genes, and the color of bubbles represents the significant degree of enrichment. Abbreviations of sample name are the same as those given in Table 1."

Fig. 7

Heat map of candidate genes in R0 and RT Abbreviations of samples names are the same as those given in Table 1."

Fig. 8

Heat map of candidate genes in S0 and ST Abbreviations of samples names are the same as those given in Table 1."

Table 4

Candidate genes possibly involved in aluminum poison coercion using QTL and RNA-Seq techniques"

性状
Trait
位点
QTL
甘蓝型油菜基因编号
Gene ID in B. napus
基因登录号
Gene accession
调节
Regulated
RT:fpkm ST:fpkm 基因注释
Gene annotations
相对发芽势RGV Up 19.6 0.87
BnaA01g31480D AT3G10720 Up 58.3 16.8 植物转化酶/果胶甲基酯酶抑制剂超家族
Plant invertase/Pectin methyl esterase inhibitor superfamily
BnaA01g30490D AT3G12580 Up 176 56.5 热激蛋白70heatshockprotein70,hsp70
BnaA01g28900D AT3G15450 Up 264 30 Al具有YGL和LRDR图案的铝诱导蛋白质
Al-induced protein with YGL and LRDR patterns
BnaA01g27670D AT3G16690 Up 11.7 0.47 结蛋白MtN3家族蛋白Nodin MtN3 family protein
qRGV-A03-1 BnaA03g50730D AT3G48000 Down 0.08 13.5 乙醛脱氢酶2B4Acetaldehyde dehydrogenase 2B4
BnaA03g50130D AT4G30420 Up 20.9 4.05 结蛋白MtN21 /EamA样转运蛋白家族蛋白
Nodin MtN21 /EamA-like transporter family protein
BnaA03g50050D AT4G30270 Up 36.2 9.65 木葡聚糖内葡聚糖酰化酶/水解酶 (XTH)
Xyloglucan endoglucanase/hydrolase (XTH)
BnaA03g47720D AT4G26010 Up 6.4 0.7 过氧化物酶超家族蛋白Peroxidase superfamily protein
BnaA03g47250D AT4G25260 Up 36.6 4.89 植物转化酶/果胶甲基酯酶抑制剂超家族
Plant invertase/Pectin methyl esterase inhibitor superfamily
BnaA03g46060D AT4G23590 Up 11 0.16 酪氨酸转氨酶家族蛋白Tyrosine transaminase family protein
BnaA03g45950D AT4G00430 Up 18.7 2.9 跨膜蛋白CTransmembrane protein c
BnaA03g44820D AT4G21680 Down 3.21 4.06 硝酸盐转运体Nitrate transporter
BnaA03g43140D AT4G17550 Up 10.3 0.05 主要促进因子超家族蛋白质Major promoter superfamily proteins
BnaA03g42860D AT4G16820 Up 6.25 0.62 α/β-水解酶超家族蛋白质α/β-hydrolase superfamily protein
BnaA03g42310D AT4G15960 Up 17.6 4.18 α/β-水解酶超家族蛋白质α/β-hydrolase superfamily protein
BnaA03g40990D AT3G50830 Down 0.31 17.7 冷调节413等离子体Cold conditioning 413 plasma
BnaA03g40380D AT5G61600 Up 173 31.6 乙烯响应因子104 (ERF104)
Ethylene response factor 104 (ERF104)
qRGV-A03-2 BnaA03g09460D AT5G59530 Down 1.94 14.8 2-氧代戊二酸和铁依赖性加氧酶超家族蛋白
2-oxoglutarate and iron-dependent oxygenase superfamily proteins
BnaA03g09400D AT5G59550 Up 42.4 10.6 锌指(C3HC4型无名指)家族蛋白
Zinc finger (C3HC4 ring finger) family protein
BnaA03g09290D AT5G59730 Up 27.3 5.38 外胚层亚单位exo70家族蛋白
Exoderm subunit exo70 family protein
BnaA03g08870D AT5G60530 Up 10.7 0.26 晚期胚胎发生丰富蛋白/ LEA蛋白
Late embryogenesis rich protein/LEA protein
BnaA03g08820D AT5G60660 Up 44.5 0.84 质膜内在蛋白2 Plasma membrane intrinsic protein 2
BnaA03g07790D AT5G19855 Down 3.53 6.86 伴侣蛋白RbcX Companion protein RbcX
BnaA03g07660D AT5G19600 Down 2.83 21.8 硫酸盐转运蛋白Sulfate transporter
BnaA03g03740D AT5G12020 Up 99.8 18.3 17.6 kD二类热激蛋白(HSP17.6II)
17.6 kD class ii heat shock protein (HSP17.6II)
qRGV-C03 BnaC03g08610D AT5G17820 Up 14.7 0.78 过氧化物酶超家族蛋白Peroxidase superfamily protein
相对发芽率RGR qRGR-C04 BnaC04g10740D AT2G34500 Up 55.9 12.3 细胞色素P450,家族710,亚家族A,多肽1 (CYP710)
Cytochrome P450, family 710, subfamily A, polypeptide 1 (CYP710)
BnaC04g08480D AT2G36780 Down 0.9 23.3 UDP-糖基转移酶超家族蛋白
UDP-glycosyltransferase superfamily protein
BnaC04g07650D AT2G37820 Up 10.1 0.22 富含半胱氨酸/组氨酸结构域家族蛋白
Protein rich in cysteine/histidine domain family
BnaC04g06480D AT2G38940 Down 3.11 182 磷酸盐转运蛋白Phosphate transporter
BnaC04g06140D AT2G39430 Up 33.4 5.44 抗病反应(定向蛋白样)家族蛋白
Disease resistance response (directed protein-like) family protein
相对根长RRL qRRL-A03-2 BnaA03g53200D AT4G35180 Down 0.46 0.31 赖氨酸/组氨酸转运蛋白7 (LHT7)
Lysine/histidine transporter 7 (LHT7)
BnaA03g52830D AT4G34410 Up 17.2 2.6 氧化还原反应转录因子1 (RRTF1)
Redox transcription factor 1 (RRTF1)
qRRL-A09 BnaA09g02040D AT4G12550 Up 37.1 0 生长素诱导的根培养Root culture induced by auxin
BnaA09g02030D AT4G12550 Up 470 34.5 生长素诱导的根培养1Auxin-induced root culture 1
qRRL-C03 BnaC03g65590D AT4G35060 Down 4.57 6.67 重金属转运/解毒超家族蛋白
Heavy metal transport/detoxification superfamily protein
BnaC03g65200D AT4G23550 Up 13.6 1.28 WRKY29家族WRKY29 familyWRKY29 family wrky 29 family
BnaC03g62130D AT4G23700 Up 256 70.6 阳离子/氢离子交换器17 (CHX17)
Cation/hydrogen ion exchanger 17 (CHX17)
相对芽长RBL qRBL-C08 BnaC08g17880D AT1G18300 Up 115 28.1 nudix水解酶同源物(NUDT) Nudix hydrolase homologue (NUDT)
BnaC08g16940D AT1G16390 Up 1.89 0.05 有机阳离子/肉碱转运蛋白Organic cation/carnitine transporter
相对干重RDW qRDW-A09-1 BnaA09g30120D AT1G23090 Up 0.04 0.66 硫酸盐转运蛋白(AST) Sulfate transporter (AST)
BnaA09g29940D AT4G13390 Up 38.4 3.17 富含脯氨酸的伸展蛋白样家族蛋白
Proline-rich extension-like family proteins
qRDW-A10-2 BnaA10g25970D AT5G04250 Down 7.13 22.2 半胱氨酸蛋白酶超家族蛋白
Cysteine protease superfamily protein

Fig. 9

Heat map of candidate genes in RT and ST Abbreviations of samples names are the same as those given in Table 1."

Fig. 10

Correlation analysis between qRT-PCR and RNA-seq"

Table 5

Physiological index of rapeseed root system after aluminum poison coercion"

生理指标
Physiological index
R系 R strain S系 S strain
R0 RT 增幅
Range of increase (%)
S0 ST 增幅
Range of increase (%)
丙二醛 MDA (nmol g-1) 4.26 4.44 0.04 5.63 6.16 0.10**
苯丙氨酸解氨酶 PAL (U g-1) 4.54 6.53 0.44 5.06 6.45 0.27
脯氨酸 Pro (µg g-1) 51.26 56.70 0.11** 52.39 57.20 0.09**
超氧化物歧化酶 SOD (U g-1) 54.89 86.50 0.58** 58.63 66.13 0.13**
过氧化氢酶 CAT (U g-1) 281.71 261.39 -0.07** 376.24 282.13 -0.25**
过氧化物酶 POD (U g-1) 14,521.79 10,566.33 -0.27 13,381.75 10,337.50 -0.23**
可溶性糖 SUG (mg g-1) 2.18 1.80 -0.17** 3.12 2.85 -0.09**
[1] Zhang Q Y, Cao Z, Sun X D, Zuang C C, Huang W Y, Li Y F. Aluminum trichloride Induces hypertension and disturbs the function of erythrocyte membrane in male rats. Biol Trace Elem Res, 2015, 171:1-8.
doi: 10.1007/s12011-016-0635-1
[2] Balkovic J, Kollar J, Simonovic V, Zarnovican H. Plant assemblages respond sensitively to aluminium solubility in acid soils. Commun Ecol, 2014, 15:94-103.
doi: 10.1556/ComEc.15.2014.1.10
[3] Wu L Y, Guo Y Y, Cai S G, Kuang L H, Shen Q F, Wu D Z, Zhang G P. The zinc finger transcription factor ATF1 regulates aluminum tolerance in barley. J Environ Biol, 2020, 71:6512-6523.
[4] Ahn S J, Matsumoto H. The role of the plasma membrane in the response of plant roots to aluminum toxicity. Plant Signal Behav, 2006, 1:34-75.
[5] Zhou W J, Zhang G Q, Tuvesson S, Dayteg C, Gertsson B. Genetic survey of Chinese and Swedish oilseed rape ( Brassica napus L.) by simple sequence repeats (SSRs). Genet Resour Crop Evol, 2006, 53:443-447.
doi: 10.1007/s10722-004-7862-6
[6] 马志慧. 铝胁迫下杉木无性系苗若干生理过程及转录组的研究. 福建农林大学博士学位论文, 福建福州, 2015.
Ma Z H. The Research on Several Physiological Processes and Transcriptome Sequencing of the Seedlings of Chinese Fir Clone under Aluminum Stress. PhD Dissertation of Fujian Agriculture and Forestry University, Fuzhou, Fujian, China, 2015 (in Chinese with English abstract).
[7] Huang C F, Yamaji N, Ma J F. Knockout of a bacterial-type ATP-binding cassette transporter gene, At STAR1, results in increased aluminum sensitivity in Arabidopsis. Plant Physiol, 2010, 153:1669-1677.
doi: 10.1104/pp.110.155028
[8] Ryan P R, Tyerman S D, Sasaki T, Furuichi T, Yamamoto Y, Zhang W H, Delhaize E. The identification of aluminium-resistance genes provides opportunities for enhancing crop production on acid soils. J Exp Bot, 2011, 62:9-20.
doi: 10.1093/jxb/erq272 pmid: 20847099
[9] Chen L S, Qi Y P, Jiang H X, Yang L T, Yang G H. Photosynthesis and photoprotective systems of plants in response to aluminum toxicity. Afr J Biotechnol, 2010, 9:9237-9247.
[10] Rehmus A, Bigalke M, Valarezo C, Castillo J M, Wilcke W. Aluminum toxicity to tropical montane forest tree seedlings in southern Ecuador: response of biomass and plant morphology to elevated Al concentrations. Plant Soil, 2014, 382:301-315.
doi: 10.1007/s11104-014-2110-0
[11] Yang Y, Shen Y S, Li S D, Ge X H, Li Z Y. High density linkage map construction and QTL detection for three silique-related traits in Orychophragmus violaceus derived Brassica napus population. Front Plant Sci, 2017, 8:1512.
doi: 10.3389/fpls.2017.01512 pmid: 28932230
[12] 王刘艳, 王瑞莉, 叶桑, 郜欢欢, 雷维, 陈柳依, 吴家怡, 孟丽姣, 袁芳, 唐章林, 李加纳, 周清元, 崔翠. 苯磺隆胁迫下甘蓝型油菜萌发期关联性状的QTL定位及候选基因筛选. 中国农业科学, 2020, 53:1510-1523.
Wang L Y, Wang R L, Ye S, Gao H H, Lei W, Chen L Y, Wu J Y, Meng L J, Yuan F, Tang Z L, Li J N, Zhou Q Y, Cui C. QTL mapping and candidate genes screening of related traits in Brassica napus L. during the germination under tribenuron-methyl stress. Sci Agric Sin, 2020, 53:1510-1523 (in Chinese with English abstract).
[13] 李明. 甜玉米苗期耐铝性状QTL定位及转录组分析. 仲恺农业工程学院硕士学位论文, 广东广州, 2019.
Li M. QTL Mapping and Transcriptome Analysis of Aluminum Tolerance Traits in Sweet Corn Seedings. MS Thesis of Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China, 2019 (in Chinese with English abstract).
[14] Wang T Y, Hou L T, Jian H J, Di F F, Li J N, Liu L Z. Combined QTL mapping, physiological and transcriptomic analyses to identify candidate genes involved in Brassica napus seed aging. Mol Genet Genomics, 2018, 293:1421-1435.
doi: 10.1007/s00438-018-1468-8
[15] Jian H J, Yang B, Zhang A X, Zhang L, Xu X F, Li J N, Liu L Z. Screening of candidate leaf morphology genes by integration of QTL mapping and RNA sequencing technologies in oilseed rape ( Brassica napus L.). PLoS One, 2017, 12:e0169641.
doi: 10.1371/journal.pone.0169641
[16] 王瑞莉, 王刘艳, 叶桑, 郜欢欢, 雷维, 吴家怡, 袁芳, 孟丽姣, 唐章林, 李加纳, 周清元, 崔翠. 铝毒胁迫下甘蓝型油菜种子萌发期相关性状的QTL定位. 作物学报, 2020, 46:832-843.
Wang R L, Wang L Y, Ye S, Gao H H, Lei W, Wu J Y, Yuan F, Meng L J, Tang Z L, Li J N, Zhou Q Y, Cui C. QTL mapping of seed germination-related traits in Brassica napus L. under aluminum toxicity stress. Acta Agron Sin, 2020, 46:832-843 (in Chinese with English abstract).
[17] D’Cunha G B, Satyanarayan V, Nair P M. Purification of phenylalanine ammonia lyase from Rhodotorula glutinis. Phytochem, 1996, 42:17-20.
doi: 10.1016/0031-9422(95)00914-0
[18] 张治安, 陈展宇. 植物生理学实验技术. 长春: 吉林大学出版社, 2008. pp 180-194.
Zhang Z A, Chen Z Y. Experimental Technology of Plant Physiology. Changchun: Jilin University Publishers, 2008. pp 180-194(in Chinese).
[19] Fimognari L, Dolker R, Kaselyte G, Jensen C N G, Akhtar S S, Grosskinsky D K, Roitsch T. Simple semi-high throughput determination of activity signatures of key antioxidant enzymes for physiological phenotyping. Plant Methods, 2020, 16:2-9.
doi: 10.1186/s13007-019-0549-y
[20] Heath R, Packer L. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys, 1968, 125:189-198.
pmid: 5655425
[21] Dudziak K, Zapalska M, Borner A, Szczerba H, Kowalczyk K, Nowak M. Analysis of wheat gene expression related to the oxidative stress response and signal transduction under short-term osmotic stress. Sci Rep, 2019, 9:2743.
doi: 10.1038/s41598-019-39154-w
[22] Chen Q, Zhang X, Wang S, Wang Q, Wang G, Nian H, Li K, Yu Y, Chen L. Transcriptional and physiological changes of alfalfa in response to aluminium stress. J Agric Sci, 2011, 149:737-751.
doi: 10.1017/S0021859611000256
[23] Kong X Y, Peng Z P, Li D X, Ma W N, An R D, Khan D, Wang X X, Liu Y, Yang E, He Y Z, Wu L Q, Zhang B G, Rengel Z, Wang J M, Chen Q. Magnesium decreases aluminum accumulation and plays a role in protecting maize from aluminum-induced oxidative stress. Plant Soil, 2020, 457:71-81.
doi: 10.1007/s11104-020-04605-1
[24] Wu Y, Yang Z, How J, Xu H, Chen L, Li K. Overexpression of a peroxidase gene ( AtPrx64) of Arabidopsis thaliana in tobacco improves plant’s tolerance to aluminum stress. Plant Mol Biol, 2017, 95:157-168.
doi: 10.1007/s11103-017-0644-2
[25] Liu W J, Xu F J, Lyu T, Zhou W W, Chen Y, Jin C W, Lu L L, Lin X Y. Spatial responses of antioxidative system to aluminum stress in roots of wheat ( Triticum aestivum L.) plants. Sci Total Environ, 2018, 627:462-469.
doi: 10.1016/j.scitotenv.2018.01.021
[26] Bhoomika K, Pyngrope S, Dubey R S. Differential responses of antioxidant enzymes to aluminum toxicity in two rice ( Oryza sativa L.) cultivars with marked presence and elevated activity of Fe SOD and enhanced activities of Mn SOD and catalase in aluminum tolerant cultivar. Plant Growth Regul, 2013, 71:235-252.
doi: 10.1007/s10725-013-9824-5
[27] Ma Z H, Lin S Z. Transcriptomic revelation of phenolic compounds involved in aluminum toxicity responses in roots of Cunninghamia lanceolata (Lamb.) Hook. Genes, 2019, 10:835.
doi: 10.3390/genes10110835
[28] Kidd P, Poschenrieder C, Llugany M, Gunse B, Barcelo J. The role of root exudates in aluminium resistance and silicon-induced amelioration of aluminium toxicity in three varieties of maize ( Zea mays L.). J Exp Bot, 2001, 52:1339-1352.
pmid: 11432953
[29] Garg C, Sharma H, Garg M. Skin photo-protection with phytochemicals against photo-oxidative stress, photo-carcinogenesis, signal transduction pathways and extracellular matrix remodeling—an overview. Age Res Rev, 2020, 62:101127.
doi: 10.1016/j.arr.2020.101127
[30] Zhu Y, Chen Y H, Zhang X, Xie G Y, Qin M J. Copper stress-induced changes in biomass accumulation, antioxidant activity and flavonoid contents in Belamcanda chinensis Calli. Plant Cell Tissue Organ Cult, 2020, 142:299-311.
doi: 10.1007/s11240-020-01863-w
[31] Yoshibay Y, Kiyosue T, Katagiri T, Uedr H, Mizoguchi T, Yamaguchishinozaki K, Wdad K, Harada Y, Shinozaki K. Correlation between the induction of a gene for delta 1-pyrroline- 5-carboxylate synthetase and the accumulation of proline in Arabidopsis thaliana under osmotic stress. Plant J, 2010, 7:751-760.
doi: 10.1046/j.1365-313X.1995.07050751.x
[32] Liu L J, Huang L, Lin X Y, Sun C L. Hydrogen peroxide alleviates salinity-induced damage through enhancing proline accumulation in wheat seedlings. Plant Cell Rep, 2020, 39:567-575.
doi: 10.1007/s00299-020-02513-3
[33] Eva V, Dirk I, Frank V B. Signal transduction during oxidative stress. J Exp Bot, 2002: 1227-1236.
[34] Meng Y, Mao J P, Tahir M M, Wang H, Wei Y H, Zhao C D, Li K, Ma D D, Zhao C P, Zhang D. Mdm-miR160 participates in auxin-induced adventitious root formation of apple rootstock. Sci Hortic, 2020, 270:109442.
doi: 10.1016/j.scienta.2020.109442
[35] Wang Q, Nian F, Zhao L, Li F, Yang H, Yang Y. Exogenous indole-3-acetic acid could reduce the accumulation of aluminum in root apex of wheat ( Triticum aestivum L.) under Al stress. J Soil Sci Plant Nutr, 2013, 13:534-543.
[36] Illgen S, Zintl S, Zuther E, Hincha D K, Schmulling T. Characterisation of the ERF102 to ERF105 genes of Arabidopsis thaliana and their role in the response to cold stress. Plant Mol Biol, 2020, 103:303-320.
doi: 10.1007/s11103-020-00993-1
[37] Sun P, Tian Q Y, Zhao M G. Aluminum-induced ethylene production is associated with inhibition of root elongation in Lotus japonicus L. Plant Cell Physiol, 2007, 48:1229-1235.
doi: 10.1093/pcp/pcm077
[38] Sun C L, Lyu T, Huang L, Liu X X, Jin C W, Lin X Y. Melatonin ameliorates aluminum toxicity through enhancing aluminum exclusion and reestablishing redox homeostasis in roots of wheat. J Pineal Res, 2020, 68:12642.
[39] Harada T, Torii Y, Morita S, Onodera R, Hara Y, Yokoyama R, Nishitani K, Satoh S. Cloning, characterization, and expression of xyloglucan endotransglucosy-lase/hydrolase and expansion genes associated with petalgrowth and development during carnation flower opening. J Exp Bot, 2011, 62:815-823.
doi: 10.1093/jxb/erq319 pmid: 20959626
[40] Cronmiller E, Toor D, Shao N C, Kariyawasam T, Wang M H, Lee J H. Cell wall integrity signaling regulates cell wall-related gene expression in Chlamydomonas reinhardtii. Sci Rep, 2019, 9:12204.
doi: 10.1038/s41598-019-48523-4 pmid: 31434930
[41] Liu Z D, Wang H C, Xu R K. The effects of root surface charge and nitrogen forms on the adsorption of aluminum ions by the roots of rice with different aluminum tolerances. Plant Soil, 2016, 408:1-11.
doi: 10.1007/s11104-016-2794-4
[42] Dongwon B, Joon Y C, Kang S, Bokyung P, Hyo J L, Hong H, Jin C H, Hoon K D, Chul K M, Yeol L S. The Arabidopsis a zinc finger domain protein ARS1 isessential for seed germination and ROS homeostasis in response to ABA and oxidative stress. Front Plant Sci, 2015, 6:963.
doi: 10.3389/fpls.2015.00963 pmid: 26583028
[43] Mowla S B, Cuypers A, Driscoll S P, Kiddle G, Thomson J, Foyer C H, Theodoulou F L. Yeast complementation reveals a role for an Arabidopsis thaliana late embryogenesis abundant (LEA)-like protein in oxidative stress tolerance. Plant J, 2010, 48:743-756.
doi: 10.1111/tpj.2006.48.issue-5
[44] Rizhsky L, Davletova S, Liang H J, Mittler R. The zinc finger protein Zat12 is required for cytosolic ascorbate peroxidase 1 expression during oxidative stress in Arabidopsis. J Biol Chem, 2004, 279:11736-11743.
doi: 10.1074/jbc.M313350200
[45] Ligaba A, Katsuhara M, Ryan P R, Shibasaka M, Matsumoto H. The Bn ALMT1 and Bn ALMT2 genes from rape encode aluminum-activated malate transporters that enhance the aluminum resistance of plant cells. Plant Physiol, 2006, 142:1294-1303.
doi: 10.1104/pp.106.085233
[46] Xia J, Yamaji N, Kasai T, Ma J F. Plasma membrane-localized transporter for aluminum in rice. Proc Natl Acad Sci USA, 2010, 107:18381-18385.
doi: 10.1073/pnas.1004949107
[47] Ji X D, Chun H C, Zhi X C. Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response. Plant Mol Biol, 2003, 51:21-37.
doi: 10.1023/A:1020780022549
[48] Yokosho K, Yamaji N, Ma J F. Global transcriptome analysis of Al-inducedgenes in an Al accumulating species, common buckwheat ( Fagopyrum esculentum Moench). Plant Cell Physiol, 2014, 55:2077-2091.
doi: 10.1093/pcp/pcu135 pmid: 25273892
[49] Gamas P, Niebel F D C, Lescure N, Cullimore J. Use of a subractive sybridization approach to identify new Medicago truncatula gene induced during root nodule development. Mol Plant Mirobe Interact, 1996, 9:233-242.
[1] HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356.
[2] YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102.
[3] LI A-Li, FENG Ya-Nan, LI Ping, ZHANG Dong-Sheng, ZONG Yu-Zheng, LIN Wen, HAO Xing-Yu. Transcriptome analysis of leaves responses to elevated CO2 concentration, drought and interaction conditions in soybean [Glycine max (Linn.) Merr.] [J]. Acta Agronomica Sinica, 2022, 48(5): 1103-1118.
[4] WANG Rui, CHEN Xue, GUO Qing-Qing, ZHOU Rong, CHEN Lei, LI Jia-Na. Development of linkage InDel markers of the white petal gene based on whole-genome re-sequencing data in Brassica napus L. [J]. Acta Agronomica Sinica, 2022, 48(3): 759-769.
[5] HUANG Li, CHEN Yu-Ning, LUO Huai-Yong, ZHOU Xiao-Jing, LIU Nian, CHEN Wei-Gang, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Advances of QTL mapping for seed size related traits in peanut [J]. Acta Agronomica Sinica, 2022, 48(2): 280-291.
[6] HUANG Wen-Gong, JIANG Wei-Dong, YAO Yu-Bo, SONG Xi-Xia, LIU Yan, CHEN Si, ZHAO Dong-Sheng, WU Guang-Wen, YUAN Hong-Mei, REN Chuan-Ying, SUN Zhong-Yi, WU Jian-Zhong, KANG Qing-Hua. Transcriptome profiling of flax (Linum usttatissimum L.) response to low potassium stress [J]. Acta Agronomica Sinica, 2021, 47(6): 1070-1081.
[7] XU Jing, PAN Li-Juan, LI Hao-Yuan, WANG Tong, CHEN Na, CHEN Ming-Na, WANG Mian, YU Shan-Lin, HOU Yan-Hua, CHI Xiao-Yuan. Expression pattern analysis of genes related to lipid synthesis in peanut [J]. Acta Agronomica Sinica, 2021, 47(6): 1124-1137.
[8] ZHOU Xin-Tong, GUO Qing-Qing, CHEN Xue, LI Jia-Na, WANG Rui. Construction of a high-density genetic map using genotyping by sequencing (GBS) for quantitative trait loci (QTL) analysis of pink petal trait in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 587-598.
[9] LI Shu-Yu, HUANG Yang, XIONG Jie, DING Ge, CHEN Lun-Lin, SONG Lai-Qiang. QTL mapping and candidate genes screening of earliness traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 626-637.
[10] MENG Jiang-Yu, LIANG Guang-Wei, HE Ya-Jun, QIAN Wei. QTL mapping of salt and drought tolerance related traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(3): 462-471.
[11] LYU Guo-Feng, BIE Tong-De, WANG Hui, ZHAO Ren-Hui, FAN Jin-Ping, ZHANG Bo-Qiao, WU Su-Lan, WANG Ling, WANG Zun-Jie, GAO De-Rong. Evaluation and molecular detection of three major diseases resistance of new bred wheat varieties (lines) from the lower reaches of the Yangtze River [J]. Acta Agronomica Sinica, 2021, 47(12): 2335-2347.
[12] GUO Qing-Qing, ZHOU Rong, CHEN Xue, CHEN Lei, LI Jia-Na, WANG Rui. Location and InDel markers for candidate interval of the orange petal gene in Brassica napus L. by next generation sequencing [J]. Acta Agronomica Sinica, 2021, 47(11): 2163-2172.
[13] LEI Wei, WANG Rui-Li, WANG Liu-Yan, YUAN Fang, MENG Li-Jiao, XING Ming-Li, XU Lu, TANG Zhang-Lin, LI Jia-Na, CUI Cui, ZHOU Qing-Yuan. Genome-wide association study of seed density and its related traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(11): 2099-2110.
[14] MA Meng, YAN Hui, GAO Run-Fei, KOU Meng, TANG Wei, WANG Xin, ZHANG Yun-Gang, LI Qiang. Construction linkage maps and identification of quantitative trait loci associated with important agronomic traits in purple-fleshed sweetpotato [J]. Acta Agronomica Sinica, 2021, 47(11): 2147-2162.
[15] JIANG Shu-Kun,WANG Li-Zhi,YANG Xian-Li,LI Bo,MU Wei-Jie,DONG Shi-Chen,CHE Wei-Cai,LI Zhong-Jie,CHI Li-Yong,LI Ming-Xian,ZHANG Xi-Juan,JIANG Hui,LI Rui,ZHAO Qian,LI Wen-Hua. Detection of QTLs controlling cold tolerance at bud bursting stage by using a high-density SNP linkage map in japonica rice [J]. Acta Agronomica Sinica, 2020, 46(8): 1174-1184.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!