Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (11): 2147-2162.doi: 10.3724/SP.J.1006.2021.04271

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Construction linkage maps and identification of quantitative trait loci associated with important agronomic traits in purple-fleshed sweetpotato

MA Meng(), YAN Hui, GAO Run-Fei, KOU Meng, TANG Wei, WANG Xin, ZHANG Yun-Gang, LI Qiang*()   

  1. Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences / Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District / Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou 221131, Jiangsu, China
  • Received:2020-12-13 Accepted:2021-03-19 Online:2021-11-12 Published:2021-04-12
  • Contact: LI Qiang E-mail:1325428037@qq.com;instrong@163.com
  • Supported by:
    National Key Research and Development Program of China(2019YFD1001300);National Key Research and Development Program of China(2019YFD1001304);China Agriculture Research System(CARS-10, 甘薯)

Abstract:

Ideal agronomic traits are the important objectives in sweetpotato breeding, but the breeding methods are still lacking. We constructed linkage maps using a mapping population of 274 individuals derived from a cross between the female parent Xuzishu 8 (a purple-fleshed cultivar with many branches, medium vine, and high yield) and the male parent Meiguohong (a white-fleshed cultivar with few branches, long vine, and medium yield) by simple sequence repeats (SSR) markers in this study. The female parent map contained 24 linkage groups, and covered 1325.8 cM with an average marker interval of 9.2 cM. The male parent map contained 21 linkage groups, and covered 1088.6 cM with an average marker interval of 8.2 cM. The maps could increase the density of existing genetic maps. Using the composite interval mapping, we analyzed five important agronomic traits, including branch number, vine diameter, longest vine length, petiole length, and internode length in sweetpotato, thus identified one QTL related to branch number explaining the phenotypic variance of 53.2%, one QTL related to internode diameter explaining the phenotypic variance of 16.7%, two QTLs related to longest vine length explaining the phenotypic variance of 9.5% and 13.7%, two QTLs related to petiole length explaining the phenotypic variance of 8.8% and 11.3%, and five QTLs related to internode length explaining the phenotypic variance of 9.6%-28.1%. The QTLs can be used to develop molecular markers and assist the screening of plants with ideal agronomic traits at early seedling stage, thus improved the efficiency of field selection.

Key words: sweetpotato, the number of branches, vine diameter, the longest vine length, petiole length, internode length, QTLs

Fig. 1

Linkage maps of Xuzishu 8"

Fig. 2

Linkage maps of Meiguohong"

Table 1

Parent values of branch number in sweetpotato and its distribution in F1 population"

年份
Year
母本(个)
Maternal
父本(个)
Paternal
最大值(个)
Max.
最小值(个)
Min.
平均值(个)
Mean
标准差
SD
偏度
Skewness
峰度
Kurtosis
2019 14.83 6.67 75.00 7.00 23.00 10.47 1.37 3.29
2020 14.20 8.00 25.80 2.33 11.95 3.70 0.64 1.03
平均Average 14.52 7.33 66.00 6.20 18.14 8.56 2.04 6.41

Fig. 3

Frequency distribution of branch number in F1 population"

Fig. 4

Distribution of QTLs for branch number in genetic linkage map of sweetpotato"

Table 2

Parent values of internode diameter in sweetpotato and their distribution in F1 population"

年份
Year
母本
Maternal (mm)
父本
Paternal (mm)
最大值
Max. (mm)
最小值
Min. (mm)
平均值
Mean (mm)
标准差
SD
偏度
Skewness
峰度
Kurtosis
2019 3.93 6.88 7.04 2.52 5.17 0.80 -0.21 0.39
2020 4.19 6.90 7.26 2.80 5.23 0.72 0.06 0.75
平均Average 4.06 6.89 7.19 2.96 5.19 0.72 -0.13 0.54

Fig. 5

Frequency distribution of internode diameter in F1 population"

Fig. 6

Distribution of QTLs for internode diameter in genetic linkage map of sweetpotato"

Table 3

Parent values of the longest vine length in sweetpotato and their distribution in F1 population"

年份
Year
母本
Maternal (cm)
父本
Paternal (cm)
最大值
Max. (cm)
最小值
Min. (cm)
平均值
Mean (cm)
标准差
SD
偏度
Skewness
峰度
Kurtosis
2019 178.33 185.00 425.00 75.00 178.09 52.82 0.93 2.41
2020 182.00 195.00 361.00 77.00 172.74 47.83 0.50 0.60
平均Average 180.17 190.00 393.00 75.00 174.68 43.86 0.63 2.20

Fig. 7

Frequency distribution of the longest vine length in F1 population"

Table 4

Mapping QTL for the longest vine length in sweetpotato"

QTL名称
QTL name
连锁图谱
Linkage group
QTL位置
QTL location (cM)
年份
Year
遗传效应
Genetic effect
贡献率
R2 (%)
qVLm-1p Meiguohong (2) 5.006 2020 正向Positive 18.0
平均Average 13.7
qVLf-1p Xuzishu 8 (18) 15.775 2019 正向Positive 12.4
平均Average 9.5

Fig. 8

Distribution of QTLs for the longest vine length in genetic linkage map of sweetpotato"

Table 5

Parent values of petiole length in sweetpotato and their distribution in F1 population"

年份
Year
母本
Maternal (cm)
父本
Paternal (cm)
最大值
Max. (cm)
最小值
Min. (cm)
平均值
Mean (cm)
标准差
SD
偏度
Skewness
峰度
Kurtosis
2019 14.17 15.48 27.98 5.80 16.74 4.18 0.47 -0.24
2020 17.94 10.92 26.64 8.80 18.60 3.16 -0.05 0.10
平均Average 16.05 13.20 25.24 5.80 17.54 3.38 0.02 -0.14

Fig. 9

Frequency distribution of petiole length in F1 population"

Table 6

Mapping QTL for petiole length in sweetpotato"

QTL名称
QTL name
连锁图谱
Linkage group
QTL位置
QTL location (cM)
年份
Year
遗传效应
Genetic effect
贡献率
R2 (%)
qPLf-1p Xuzishu 8 (1) 40.483 2019 正向Positive 6.5
平均Average 11.3
qPLf-2p Xuzishu 8 (18) 41.837 2020 正向Positive 6.5
平均Average 8.8

Fig. 10

Distribution of QTLs for petiole length in genetic linkage map of sweetpotato"

Table 7

Parent values of internode length in sweetpotato and their distribution in F1 population"

年份
Year
母本
Maternal (cm)
父本
Paternal (cm)
最大值
Max. (cm)
最小值
Min. (cm)
平均值
Mean (cm)
标准差
SD
偏度
Skewness
峰度
Kurtosis
2019 4.08 3.95 10.35 2.00 4.16 1.45 1.46 2.78
2020 4.98 3.48 9.46 3.10 5.39 1.17 0.63 0.51
平均Average 4.53 3.72 9.55 2.40 4.73 1.23 0.76 1.50

Fig. 11

Frequency distribution of internode length in F1 population"

Table 8

Mapping QTL for internode length in sweetpotato"

QTL名称
QTL name
连锁图谱
Linkage group
QTL位置
QTL location (cM)
年份
Year
遗传效应
Genetic effect
贡献率
R2 (%)
qILm-1p Meiguohong (2) 5.006 2020 正向Positive 9.8
平均Average 9.6
qILf-1p Xuzishu 8 (1) 40.483 2019 正向Positive 15.0
平均Average 15.8
qILf-2n Xuzishu 8 (2) 13.470 2019 负向Negative 13.1
平均Average 16.1
qILf-3n Xuzishu 8 (9) 24.405 2019 负向Negative 53.6
平均Average 28.1
qILf-4p Xuzishu 8 (18) 21.380 2019 正向Positive 43.5
平均Average 20.6

Fig. 12

Distribution of QTL for internode length in genetic linkage map of sweetpotato"

[1] 刘庆昌. 甘薯在我国粮食和能源安全中的重要作用. 科技导报, 2004, (9):21-22.
Liu Q C. Importance of sweetpotato in the security of food and energy in China. Sci Technol Rev, 2004, (9):21-22 (in Chinese with English abstract)
[2] 张凯, 罗小敏, 王季春, 唐道彬, 吴正丹, 叶爽, 王莉. 甘薯淀粉产量及相关性状的遗传多样性和关联度分析. 中国生态农业学报, 2013, 21: 365-374.
Zhang K, Luo X M, Wang J C, Tang D B, Wu Z D, Ye S, Wang L. Genetic diversity and correlation analysis of starch yield-related traits in sweet potato. Chin J Eco-Agric, 2013, 21: 365-374 (in Chinese with English abstract).
[3] 闫会, 李强, 张允刚, 后猛, 唐维, 王欣, 刘亚菊, 马代夫. 基因型和栽插密度对甘薯农艺性状及结薯习性的影响. 西南农业学报, 2017, 30: 1739-1745.
Yan H, Li Q, Zhang Y G, Hou M, Tang W, Wang X, Liu Y J, Ma D F. Effects of genotype and planting density on agronomic traits and storage root of sweetpotato. Southwest China J Agric Sci, 2017, 30: 1739-1745 (in Chinese with English abstract).
[4] Cervantes-Flores J C, Yencho G C, Davis E L. Efficient evaluation of resistance to three root-knot nematode species in selected sweetpotato cultivars. Hortscience, 2002, 37: 390-392.
doi: 10.21273/HORTSCI.37.2.390
[5] 梁雪莲, 罗忠霞, 房伯平, 谢振文. 甘薯分子遗传图谱研究进展与展望. 广东农业科学, 2014, 41(3):145-148.
Liang X L, Luo Z X, Fang B P, Xie Z W. Research progress and prospect on the Molecular Genetic Maps of sweet potato. Guangdong Agric Sci, 2014, 41(3):145-148 (in Chinese with English abstract).
[6] 唐道彬, 张凯, 吕长文, 谢德斌, 傅体华, 王季春. 基于EST-SSR标记甘薯连锁图谱构建及淀粉性状的QTL定位. 中国农业科学, 2016, 49: 4488-4506.
Tang D B, Zhang K, Lyu C W, Xie D B, Fu T H, Wang J C. Genetic linkage map construction based on EST-SSR and analysis of QTLs for starch content in sweetpotato (Ipomoea batatas (L.) Lam.). Sci Agric Sin, 2016, 49: 4488-4506 (in Chinese with English abstract).
[7] Zhao N, Yu X, Jie Q, Li H, Li H, Hu J, Zhai H, He S, Liu Q. A genetic linkage map based on AFLP and SSR markers and mapping of QTL for dry-matter content in sweetpotato. Mol Breed, 2013, 32: 807-820.
doi: 10.1007/s11032-013-9908-y
[8] 李爱贤, 申春云, 王庆美, 解备涛, 侯夫云, 董顺旭, 张海燕, 张立明. 甘薯β-胡萝卜素含量的QTL定位. 分子植物育种, 2014, 12: 270-277.
Li A X, Shen C Y, Wang Q M, Xie B T, Hou F Y, Dong S X, Zhang H Y, Zhang L M. Mapping QTLs for carotene content in sweetpotato (Ipomoea batatas (L.) Lam.). Mol Plant Breed, 2014, 12: 270-277 (in Chinese with English abstract).
[9] Chang K Y, Lo H F, Lai Y C. Identification of quantitative trait loci associated with yield-related traits in sweetpotato (Ipomoea Batatas). Bot Stud, 2009, 50: 43-55.
[10] 李慧. 甘薯SSR分子连锁图谱的构建和块根产量相关QTL的定位. 中国农业大学博士学位论文, 北京, 2014.
Li H. Development of SSR Genetic Linkage Maps and Mapping of QTLs for Storage Root Yield in Sweetpotato [Ipomoea batatas (L.) Lam.]. PhD Dissertation of China Agricultural University, Beijing, China, 2014 (in Chinese with English abstract).
[11] Kriegner A, Cervantes J C, Burg K, Mwanga R O M, Zhang D. A genetic linkage map of sweetpotato [Ipomoea batatas (L.) Lam.] based on AFLP markers. Mol Plant Breed, 2003, 11: 169-185.
[12] Sasai R, Tabuchi H, Shirasawa K, Kishimoto K, Sato S, Okada Y, Kuramoto A, Kobayashi A, Isobe S, Tahara M, Monden Y. Development of molecular markers associated with resistance to Meloidogyne incognita by performing quantitative trait locus analysis and genome-wide association study in sweetpotato. DNA Res, 2019, 26: 399-409.
doi: 10.1093/dnares/dsz018 pmid: 31377774
[13] Ma Z, Gao W, Liu L, Liu M, Zhao N, Han M, Wang Z, Jiao W, Gao Z, Hu Y, Liu Q. Identification of QTL for resistance to root rot in sweetpotato (Ipomoea batatas (L.) Lam) with SSR linkage maps. BMC Genomics, 2020, 21: 366.
doi: 10.1186/s12864-020-06775-9
[14] 张允刚, 房伯平. 甘薯种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006. p 23.
Zhang Y G, Fang B P. Sweetpotato Germplasm Resource Description Specification and Data Standard. Beijing: China Agriculture Press, 2006. p 23 (in Chinese).
[15] 李强, 揭琴, 刘庆昌, 王欣, 马代夫, 翟红, 王玉萍. 甘薯基因组DNA高效快速提取方法. 分子植物育种, 2007, 5: 743-746.
Li Q, Jie Q, Liu Q C, Wang X, Ma D F, Zhai H, Wang Y P. An efficient and rapid method for sweetpotato genomic DNA extraction. Mol Plant Breed, 2007, 5: 743-746 (in Chinese with English abstract).
[16] Meng Y, Zhao N, Li H, Zhai H, He S, Liu Q. SSR fingerprinting of 203 sweetpotato (Ipomoea batatas (L.) Lam.) varieties. J Integr Agric, 2018, 17: 86-93.
doi: 10.1016/S2095-3119(17)61687-3
[17] 高闰飞. 利用形态学和SSR标记分析中国紫心甘薯育成品种遗传多样性. 中国农业科学院硕士学位论文, 北京, 2019.
Gao R F. Genetic Diversity Analysis of Purple-fleshed Sweetpotato Cultivars Bred in China Revealed by Morphology and SSR Markers. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2019 (in Chinese with English abstract).
[18] 于肖夏. 甘薯高密度分子连锁图谱的构建和干物质含量的QTL定位. 中国农业大学博士学位论文, 北京, 2013.
Yu X X. Development of a High-density Genetic Linkage Map and Mapping of QTLs for Dry-matter Content in Sweetpotato [Ipomoea batatas (L.) Lam.]. PhD Dissertation of China Agricultural University, Beijing, China, 2013 (in Chinese with English abstract).
[19] 李强. 甘薯及其近缘野生种的遗传多样性分析. 中国农业大学博士学位论文, 北京, 2008.
Li Q. Analysis of Genetic Diversity in Sweetpotato and Its Wild Relatives. PhD Dissertation of China Agricultural University, Beijing, China, 2008 (in Chinese with English abstract).
[20] 赵大伟, 徐宁生, 黄兴粉, 邓国军, 孟凡来. 甘薯新品种“文薯2号”产量和农艺性状的环境效应分析. 农业研究与应用, 2019, 32(1):1-5.
Zhao D W, Xu N S, Huang X F, Deng G J, Meng F L. Environmental effects on yield and agronomic traits of new sweet potato variety “Wenshu 2”. Agric Res Appl, 2019, 32(1):1-5 (in Chinese with English abstract).
[21] 崔翠, 周清元, 蒲海斌, 张建奎, 何凤发. 甘薯部分数量性状的遗传力及其相关分析. 西南农业大学学报(自然科学版), 2004, 26: 560-562.
Cui C, Zhou Q Y, Pu H B, Zhang J K, He F F. Study on heritability and correlation of some quantitative characters in sweetpotato. J Southwest Agric Univ (Nat Sci Edn), 2004, 26: 560-562 (in Chinese with English abstract).
[22] 郑光武, 郑金仲, 沈正熙, 黄锦龙, 刘文滔. 甘薯主要数量性状的配合力分析. 福建农业科技, 1985, (4):22-24.
Zheng G W, Zheng J Z, Shen Z X, Huang J L, Liu W T. Combining analysis on main quantitative traits of sweetpotato. Fujian Agric Sci Technol, 1985, (4):22-24 (in Chinese with English abstract).
[23] 后猛, 李强, 马代夫, 张允刚, 王欣, 唐维, 李秀英. 甘薯主要经济性状的遗传倾向及其相关性分析. 西北农业学报, 2011, 20(2):99-103.
Kou M, Li Q, Ma D F, Zhang Y G, Wang X, Tang W, Li X Y. Inherited tendency and correlation of main economic traits in sweetpotato. Acta Agric Boreali-Occident Sin, 2011, 20(2):99-103 (in Chinese with English abstract).
[24] 余金龙. 甘薯块根产量及相关性状的典型相关分析. 西南农业学报, 2001, 14(2):107-110.
Yu J L. Canonical correlation analysis on the tuber yield and its relative characters of sweetpotato. Southwest Chin J Agric Sci, 2001, 14(2):107-110 (in Chinese with English abstract)
[25] 李爱贤, 刘庆昌, 王庆美, 翟红, 阎文昭, 张海燕, 李明. 甘薯淀粉含量的QTL定位. 分子植物育种, 2010, 8: 516-520.
Li A X, Liu Q C, Wang Q M, Zhai H, Yan W Z, Zhang H Y, Li M. Mapping QTLs for starch content in sweetpotato. Mol Plant Breed, 2010, 8: 516-520 (in Chinese with English abstract).
[26] 李俊, 王章英, 罗忠霞, 陈新亮, 房伯平, 李育军, 刘小红. 分子生物学技术在甘薯育种中的应用. 广东农业科学, 2011, 38(15):108-113.
Li J, Wang Z Y, Luo Z X, Chen X L, Fang B P, Li Y J, Liu X H. Application of molecular biology in sweet potato breeding. Guangdong Agric Sci, 2011, 38(15):108-113 (in Chinese with English abstract).
[27] Thompson P G, Hong L L, Ukoskit K, Zhu Z. Genetic linkage of randomly amplified polymorphic DNA (RAPD) markers in sweetpotato. J Am Soc Hortic Sci, 1997, 122: 79-82.
[28] Grattapaglia D, Sederoff R. Genetic linkage maps of eucalyptus grandis and eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers. Genetics, 1994, 137: 1121-1137
pmid: 7982566
[29] Jones A. Theoretical segregation ratios of qualitatively inherited characters for hexaploid sweetpotato (Ipomoea batatas). In: Department of Agriculture in cooperation with Georgia Agricultural Experiment Stations. USA: Agricultural Research Service, 1967. pp 1-6.
[30] Kim J H, Chung I K, Kim K M. Construction of a genetic map using EST-SSR markers and QTL analysis of major agronomic characters in hexaploid sweet potato (Ipomoea batatas (L.) Lam). PLoS One, 2017, 12: e185073.
[31] Mangelsdorf P C, Jones D F. The expression of mendelian factors in the gametophyte of maize. Genetics, 1926, 11: 423-455.
pmid: 17246465
[32] Charlesworth B. Driving genes and chromosomes. Nature, 1988, 332: 394-395.
doi: 10.1038/332394a0
[33] Foisset N, Delourme R, Barret P, Hubert N, Landry B S, Renard M. Molecular-mapping analysis in Brassica napus using isozyme, RAPD and RFLP markers on a doubled-haploid progeny. Thero Appl Genet, 1996, 93: 1017-1025.
[34] 马建强. 茶树高密度遗传图谱构建及重要性状QTL定位. 中国农业科学院博士学位论文, 北京, 2013.
Ma J Q. Construction of High-Density Genetic Map and Its Application for QTL Analysis in Tea Plant. PhD Dissertation of Chinese Academy of Agricultural Sciences, Beijing, China, 2013 (in Chinese with English abstract).
[1] HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356.
[2] YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102.
[3] JIN Rong, JIANG Wei, LIU Ming, ZHAO Peng, ZHANG Qiang-Qiang, LI Tie-Xin, WANG Dan-Feng, FAN Wen-Jing, ZHANG Ai-Jun, TANG Zhong-Hou. Genome-wide characterization and expression analysis of Dof family genes in sweetpotato [J]. Acta Agronomica Sinica, 2022, 48(3): 608-623.
[4] HUANG Li, CHEN Yu-Ning, LUO Huai-Yong, ZHOU Xiao-Jing, LIU Nian, CHEN Wei-Gang, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Advances of QTL mapping for seed size related traits in peanut [J]. Acta Agronomica Sinica, 2022, 48(2): 280-291.
[5] ZHANG Hai-Yan, XIE Bei-Tao, JIANG Chang-Song, FENG Xiang-Yang, ZHANG Qiao, DONG Shun-Xu, WANG Bao-Qing, ZHANG Li-Ming, QIN Zhen, DUAN Wen-Xue. Screening of leaf physiological characteristics and drought-tolerant indexes of sweetpotato cultivars with drought resistance [J]. Acta Agronomica Sinica, 2022, 48(2): 518-528.
[6] ZHANG Si-Meng, NI Wen-Rong, LYU Zun-Fu, LIN Yan, LIN Li-Zhuo, ZHONG Zi-Yu, CUI Peng, LU Guo-Quan. Identification and index screening of soft rot resistance at harvest stage in sweetpotato [J]. Acta Agronomica Sinica, 2021, 47(8): 1450-1459.
[7] WANG Rui-Li, WANG Liu-Yan, LEI Wei, WU Jia-Yi, SHI Hong-Song, LI Chen-Yang, TANG Zhang-Lin, LI Jia-Na, ZHOU Qing-Yuan, CUI Cui. Screening candidate genes related to aluminum toxicity stress at germination stage via RNA-seq and QTL mapping in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(12): 2407-2422.
[8] LYU Guo-Feng, BIE Tong-De, WANG Hui, ZHAO Ren-Hui, FAN Jin-Ping, ZHANG Bo-Qiao, WU Su-Lan, WANG Ling, WANG Zun-Jie, GAO De-Rong. Evaluation and molecular detection of three major diseases resistance of new bred wheat varieties (lines) from the lower reaches of the Yangtze River [J]. Acta Agronomica Sinica, 2021, 47(12): 2335-2347.
[9] ZHONG Xiao-Yuan, DENG Fei, CHEN Duo, TIAN Qing-Lan, ZHAO Min, WANG Li, TAO You-Feng, REN Wan-Jun. Effects of sowing date on the numbers of branches and spikelets per panicle of machine-transplanted indica hybrid rice at different tiller positions [J]. Acta Agronomica Sinica, 2021, 47(10): 2012-2027.
[10] JIANG Shu-Kun,WANG Li-Zhi,YANG Xian-Li,LI Bo,MU Wei-Jie,DONG Shi-Chen,CHE Wei-Cai,LI Zhong-Jie,CHI Li-Yong,LI Ming-Xian,ZHANG Xi-Juan,JIANG Hui,LI Rui,ZHAO Qian,LI Wen-Hua. Detection of QTLs controlling cold tolerance at bud bursting stage by using a high-density SNP linkage map in japonica rice [J]. Acta Agronomica Sinica, 2020, 46(8): 1174-1184.
[11] Shan-Bin CHEN, Si-Fan SUN, Nan NIE, Bing DU, Shao-Zhen HE, Qing-Chang LIU, Hong ZHAI. Cloning of IbCAF1 and identification on tolerance to salt and drought stress in sweetpotato [J]. Acta Agronomica Sinica, 2020, 46(12): 1862-1869.
[12] Hai-Yan ZHANG,Bei-Tao XIE,Bao-Qing WANG,Shun-Xu DONG,Wen-Xue DUAN,Li-Ming ZHANG. Evaluation of drought tolerance and screening for drought-tolerant indicators in sweetpotato cultivars [J]. Acta Agronomica Sinica, 2019, 45(3): 419-430.
[13] Hai-Ping GUO, Gao-Yang SUN, Xiao-Xiang ZHANG, Peng-Shuai YAN, Kun LIU, Hui-Ling XIE, Ji-Hua TANG, Dong DING, Wei-Hua LI. QTL Analysis of Under-ear Internode Length Based on SSSL Population [J]. Acta Agronomica Sinica, 2018, 44(04): 522-532.
[14] ZHANG Hai-Yan,DUAN Wen-Xue,XIE Bei-Tao,DONG Shun-Xu,WANG Bao-Qing,SHI Chun-Yu,ZHANG Li-Ming. Effects of Drought Stress at Different Growth Stages on Endogenous Hormones and Its Relationship with Storage Root Yield in Sweetpotato [J]. Acta Agron Sin, 2018, 44(01): 126-136.
[15] WANG Shun-Yi,LI Huan,LIU Qing,SHI Yan-Xi*. Effect of Potassium Application on Root Grow and Yield of Sweet Potato and Its Physiological Mechanism [J]. Acta Agron Sin, 2017, 43(07): 1057-1066.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!