Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (2): 380-395.doi: 10.3724/SP.J.1006.2022.04273

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

QTLs analysis of oil and three main fatty acid contents in cottonseeds

ZHANG Yan-Bo(), WANG Yuan(), FENG Gan-Yu, DUAN Hui-Rong, LIU Hai-Ying*()   

  1. School of Agriculture, Yunnan University, Kunming 650091, Yunnan, China
  • Received:2020-12-14 Accepted:2021-07-12 Online:2022-02-12 Published:2021-08-10
  • Contact: LIU Hai-Ying E-mail:zhangyanbo@mail.ynu.edu.cn;wymorning@outlook.com;liuhaiying@ynu.edu.cn
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(31760404);the Agricultural Discipline Construction Project of Yunnan University(C176210302)

Abstract:

In this study, in order to uncover more useful gene information for these traits, the analysis of QTLs controlling the contents of oil, palmitic acid, oleic acid, and linoleic acid in cottonseeds was conducted in different genetic systems. Based on a set of 188 recombinant inbred lines (RILs) derived from an intra-specific cross between two upland germplasms HS46 (P1) and MARCABUCAG8US-1-88 (P2), double backcross populations BC (P1) and BC (P2) were constructed in 2017 and 2018, respectively. BC (P1) and BC (P2) populations were obtained through backcrossing each of the two parents (HS46 and MARCABUCAG8US-1-88) with the 188 RILs, respectively. The cottonseeds from these backcross populations were used for QTLs analysis of oil, palmitic acid, oleic acid, and linoleic acid contents. To map QTLs for these traits, the mixed linear genetic model and the QTL Network-CL-2.0-Seed software, which were developed especially for seed traits, were applied. In total, seven QTLs for the oil content, three for the palmitic acid content, two for the oleic acid content, and three for the linoleic acid content were detected. Significant additive effects of QTLs from maternal plants and embryos were detected for all the QTLs. Seven QTLs, each of which explained more than 10% of total phenotypic variation, were found. The detected QTLs in the present study may give us better understanding of the molecular inheritance for these four traits, and provide more reliable information for molecular marker assisted breeding.

Key words: cotton, quantitative trait loci (QTL), oil content, fatty acid, embryo nuclear genome, maternal nuclear genome

Table 1

Statistical analysis of cottonseed oil and three fatty acid contents in parents and two backcross populations for two years"

年份Year 性状
Trait
回交群体BC(P1) 回交群体BC(P2) 亲本Parents
平均值
Mean
标准差
SD
最小值
Min.
最大值
Max.
偏度
Skew
峰度
Kurt
平均值
Mean
标准差
SD
最小值
Min.
最大值
Max.
偏度
Skew
峰度
Kurt
HS46 MAR
2017 油分含量
Oil content
32.28 1.85 25.26 38.06 -0.23 0.12 33.05 1.98 27.59 37.30 -0.18 -0.17 31.01 a 33.49 b
棕榈酸含量
Palmitic acid content
25.66 0.63 24.19 27.40 0.13 -0.07 25.73 0.67 23.82 27.75 -0.38 0.56 25.49 a 25.94 b
油酸含量
Oleic acid content
17.86 0.80 15.84 20.53 0.34 0.34 17.51 1.01 14.88 20.34 -0.11 0.54 17.31 17.01
亚油酸含量
Linoleic acid content
56.90 1.16 53.81 59.79 -0.13 -0.31 56.85 1.29 52.80 60.85 -0.14 0.88 57.55 a 56.81 b
2018 油分含量
Oil content
32.86 0.92 29.58 35.08 -0.80 0.75 33.58 0.97 30.94 36.82 -0.22 0.29 29.70 A 32.69 B
棕榈酸含量
Palmitic acid content
24.72 0.57 23.13 26.45 0.17 0.36 25.16 0.51 23.26 27.17 -0.37 0.09 24.63 A 25.22 B
油酸含量
Oleic acid content
17.38 0.68 15.63 19.15 0.10 -0.07 17.02 0.59 15.24 18.85 -0.01 0.33 16.60 a 16.21 b
亚油酸含量
Linoleic acid content
58.47 0.97 55.76 61.14 -0.05 0.21 58.06 0.70 56.16 59.80 -0.03 0.12 59.06 58.45

Fig. 1

Frequency distribution of oil, palmitic acid, oleic acid, and linoleic acid contents in cottonseeds of BC (P1) and BC (P2) in 2017 and 2018"

Table 2

Correlation analysis among four quality traits of cottonseeds"

性状
Trait
油分
Oil content
棕榈酸
Palmitic acid content
油酸
Oleic acid content
亚油酸
Linoleic acid content
油分Oil content 1.00000
棕榈酸Palmitic acid content 0.45145** 1.00000
油酸Oleic acid content -0.14629** 0.15922** 1.00000
亚油酸Linoleic acid content -0.13874** -0.64037** -0.73753** 1.00000

Table 3

Genetic effects and detection of the QTLs for oil content and three fatty acid contents of cottonseed across environments"

性状
Trait
QTL 连锁群
Chr. / LG
标记区间
Marker interval
位置Position
(cM)
范围
Range
(cM)
ae de am aeE1 aeE2 deE1 deE2 amE1 amE2
油分含量
Oil content
qOil-3-1 Chr. 3 MUCS127(c3)-NAU808 4.8 2.0-7.3 9.49** 0.05 -9.32** -0.02 -0.05 0.11 -0.10 0.02 0.06
qOil-18-1 Chr. 18 JESPR204(c18)-CIR099(18) 0.0 0.0-1.0 -21.10** -0.10 20.88** 0.09 0.00 -0.00 0.00 -0.09 -0.00
qOil-18-2 Chr. 18 TM0409a-NAU1001 14.8 13.9-16.8 -5.02** -0.23** 5.24** -0.07 -0.04 -0.07 0.07 0.07 0.03
qOil-18-3 Chr. 18 NAU5152b-NAU3053a 76.7 72.3-79.7 -0.32** 0.11* 0.50** -0.12* -0.01 0.08 -0.08 0.12* 0.01
qOil-LG3-1 lg3 NAU5146c-RAPD-I10-620 51.4 48.6-58.4 13.45** -0.01 -13.72** 0.07 0.08 0.00 -0.00 -0.07 -0.08
qOil-LG7-1 lg7 NAU983-TMB1791 0.0 0.0-2.0 0.81** -0.28** -0.90** -0.00 0.22** -0.22* 0.21** -0.00 -0.22**
qOil-LG8-1 lg8 NAU4919b*-NAU4960d 31.7 30.7-34.5 1.84** 0.05 -1.48** -0.16* 0.00 0.07 -0.09 0.16* -0.01
棕榈酸含量
Palmitic acid content
qC16-0-15-1 Chr. 15 BNL1579-BNL4082(c15) 25.1 23.1-27.0 5.72** -0.06* -5.66** -0.02 -0.00 0.00 -0.00 0.02 0.00
qC16-0-LG3-1 lg3 NAU5146c-RAPD-I10-620 56.4 50.6-62.4 -3.88** 0.04 3.74** 0.11** -0.13** -0.00 0.00 -0.11** 0.13**
qC16-0-LG6-1 lg6 NAU4852-NAU1247 40.5 39.2-42.5 -2.02** -0.04* 2.10** -0.01 -0.00 0.05 -0.05 0.02 0.00
油酸含量
Oleic acid content
qC18-1-18-1 Chr. 18 NAU5152a-NAU1232 44.6 40.6-47.6 -1.44** 0.01 1.28** 0.21** -0.20** 0.00 -0.00 -0.21** 0.20**
qC18-1-LG6-1 lg6 NAU456-NAU5328-170 19.9 17.9-21.9 1.74** -0.09** -1.83** 0.10** -0.02 -0.10* 0.09* -0.10** 0.02
亚油酸含量
Linoleic acid content
qC18-2-6-1 Chr. 6 NAU932*-NAU2566 81.4 75.4-91.0 10.47** 0.01 -10.60** 0.04 0.00 0.11* -0.11* -0.04 -0.00
qC18-2-15-1 Chr. 15 BNL1579-BNL4082(c15) 25.1 23.1-27.0 -4.83** 0.08* 4.71** -0.27** 0.29** -0.00 0.00 0.26** -0.28**
qC18-2-LG6-1 lg6 NAU5328-170-RAPD-G17-120 23.0 22.0-24.0 -5.45** -0.09* 5.64** -0.00 -0.05 0.15** -0.15** 0.00 0.04

Fig. 2

QTLs mapping of embryo and maternal plant nuclear genomes for oil and three fatty acids’ content of cottonseeds"

Table 4

Contribution rates of QTLs for oil and three fatty acid contents in cottonseed kernel"

性状Trait QTL R2 (am) R2 (ae) R2 (de) R2 (amE) R2 (aeE) R2 (deE) R2 (T)
油分含量
Oil content
qOil-3-1 1.1 1.4 0.0 0.0 0.0 0.0 2.5
qOil-18-1 5.3 6.7 0.0 0.0 0.0 0.0 12.0
qOil-18-2 0.3 0.4 0.0 0.0 0.0 0.0 0.7
qOil-18-3 0.0 0.0 0.0 5.4 0.0 0.0 5.4
qOil-LG3-1 2.3 2.7 0.0 0.0 0.0 0.0 5.0
qOil-LG7-1 0.0 0.0 0.0 0.0 21.3 6.2 27.5
qOil-LG8-1 0.0 0.1 0.0 8.6 0.0 0.0 8.7
棕榈酸含量
Palmitic acid content
qC16-0-15-1 5.0 6.4 0.0 0.0 0.0 0.0 11.4
qC16-0-LG3-1 2.2 3.0 0.0 11.6 19.6 0.0 36.5
qC16-0-LG6-1 0.7 0.8 0.0 0.0 0.0 0.0 1.5
油酸含量
Oleic acid content
qC18-1-18-1 1.4 2.5 0.0 8.0 8.8 0.0 20.9
qC18-1-LG6-1 3.3 3.7 0.0 1.8 0.0 0.6 9.4
亚油酸含量
Linoleic acid content
qC18-2-6-1 5.5 6.7 0.0 0.0 0.0 0.9 13.1
qC18-2-15-1 1.1 1.4 0.0 14.2 20.6 0.0 37.3
qC18-2-LG6-1 1.6 1.8 0.0 0.0 0.0 1.7 5.1

Table S1

Information from molecular genetic marker related to QTL for four traits of cottonseeds"

染色体/连锁群
Chr./Linkage group
分子标记
Molecular markers
引物
Primers
(5°-3°)
标记类型
Marker type
标记引物来源
Source of marker primer
标记来源
Source of marker
重复基序
Repeat motif
Chr3 MUCS127(c3) F: TTTGTACTCATGTTCCCGCC;
R: GCATGCTTGAAGAAGGTTCC
SSR Park et al.[40] G. arboreum EST TCTT(2)CTT(4)
Chr3 NAU808 F: GATGGCTACCTCCCTTTGTA;
R: CGTAAGGAAGCCTAGCAAAA
SSR Han et al. [41,42] G. hirsutum EST none
Chr18 JESPR204(c18) F: CTCCAGGTTCAATGGTCTG;
R: GCCATGTTGGACAAGTAGTC
SSR Reddy et al.[43] G. hirsutum genome (CTT)20
Chr18 CIR099(18) F: ATGATTCAAGTCGCGT;
R: TTCAAGGCTGAGTCAAA
SSR Nguyen et al.[44] G. hirsutum genome (GT)8
Chr18 TMO409a F: CAGAGGACGAAGGTAGCAG;
R: TGGTGGGTTTCACTTTCACA
SSR USDA-ARS G. hirsutum genome (CA)10+(GA)5
Chr18 NAU1001 F: TAAAGGAAGAAAACCCACCA;
R: TTTCTCTTCAACAGCAGCAG
SSR Han et al.[41,42] G. hirsutum EST (ACA )7
Chr18 NAU5152b F: TCCTTTCTACCCATGCCTAC;
R: GTCACGAGAAGCAGAGGACT
SSR Han et al.[41,42] G. hirsutum EST (tct)9
Chr18 NAU3053a F: TTGGAGGTGTCAGATCCTCT;
R: AAGATCCATGACCCAGAAAA
SSR Han et al.[41,42] G. hirsutum EST (at)13
LG3 NAU5146c F: ATCTCCATTCCCTCTCCTCT;
R: ATAAACGCAACGGATAAAGG
SSR Han et al.[41,42] G. hirsutum EST (ttta)5
LG3 RAPD-I10-620 GTCCACACGG RAPD 购于上海赛百盛生物技术公司
(The marker primer purchased from SBS Genetech Co.,Ltd)
G. hirsutum genome None
LG7 NAU983 F: GAAGGTCATGTTTTGCATTG;
R: AGCCATCAAATGACCAGTCT
SSR Han et al.[41,42] G. hirsutum EST (CAGCAT)3
LG7 TMB1791 F: GAGATCGTTTATCATTCCCACA;
R: TCTACCGGCCTCGTAAGCTA
SSR Yu et al.[45] G. hirsutum genome (GA)15+(CA)8
LG8 NAU4919b* F: ATCTAATGGGGGAGGAAGAG;
R: CTCCTTGAAACCCTTTGAGA
SSR Han et al.[41,42] G. hirsutum EST (cca)6
LG8 NAU4960d F: CGGCCTACCTCTTCCTCT;
R: TTAACGACAATTCCATCGTG
SSR Han et al.[41,42] G. hirsutum EST (tcc)6
Chr15 BNL4082(c15) F:GTAAAATGAAATAAAATAAAAGGAGAGA;
R: TTCAACACCGCCAAACATAA
SSR Brookhaven National Laboratory, NY, USA G. hirsutum genome (GA)24
LG3 NAU4852 F: ATCTCAAGGCCCAAATTACA;
R: CCTAAATTGTCAAGCGAGGT
SSR Han et al.[41,42] G. hirsutum EST (cat)6
LG3 NAU1247 F: AATTGGCTTCCAAGAGACTG;
R: CACCATCATCATCAAACTCG
SSR Han et al.[41,42] G. hirsutum EST (AAG)8
Chr18 NAU5152a F: TCCTTTCTACCCATGCCTAC;
R: GTCACGAGAAGCAGAGGACT
SSR Han et al.[41,42] G. hirsutum EST (tct)9
Chr18 NAU1232 F:GTGGAATGTGGTGATGAGAA;
R:CAATCCCACCCCATATCTA
SSR Han et al.[41,42] G. hirsutum EST (TGTA)5
LG6 NAU456 F: GAAGGAGGGCGAAAAACATA;
R: TTGGAGATTACGCGACCTTC
SSR Han et al.[41,42] G. hirsutum EST (CAC )8
LG6 NAU5328-170 F: AATGAGAGTGGCGGCTATAC;
R: CTTATAGCTCTGGGCAGCAT
SSR Han et al.[41,42] G. hirsutum EST (aatgca)3
Chr6 NAU932* F: ACAAAGCAAATATGGGTTCC;
R: CCCCCTTAAAATGGAAGAAG
SSR Han et al.[41,42] G. hirsutum EST (GGTGAA)3
Chr6 NAU2566 F: CAAAATCCACCCCCTCCT;
R: CCCTTCCCAGGAAAGTTTAT
SSR Han et al.[41,42] G. hirsutum EST (aata)4
Chr15 BNL1579 F: CATGAGAACTTCATGCATATTCA;
R: ATTTAAGTGCCTCCGTCCCT
SSR Brookhaven National Laboratory, NY, USA G. hirsutum genome (AG)17
LG6 RAPD-G17-120 GACGGATCAG RAPD 购于上海赛百盛生物技术公司
(The marker primer purchased from SBS Genetech Co., Ltd)
G. hirsutum genome None
[1] 许红霞, 杨伟华, 王延琴, 周大云, 匡猛, 冯新爱. 我国油用棉子质量状况分析. 中国棉花, 2009,36(7):2-3.
Xu H X, Yang W H, Wang Y Q, Zhou D Y, Kuang M, Feng X A. Analysis of the cottonseed amount in China. China Cotton, 2009,36(7):2-3 (in Chinese with English abstract).
[2] Jones L A, King C C. Bailey’s industrial oil and fat products, volume 1, edible oil and fat products: general applications (5th edn). Trends Food Sci Technol, 1996,7:379-380.
[3] Meneghetti S M P, Meneghetti M R, Serra T M, Barbosa D C, Wolf C R. Biodiesel production from vegetable oil mixtures: cottonseed, soybean, and castor oils. Energy Fuels, 2007,21:3746-3747.
[4] Kohel R J. Survey of Gossypium hirsutum L. Germplasm Collections for Seed Oil Percentage and Seed Characteristics. London: Agricultural Research Service Publication, 1978. pp 1-38.
[5] Singh M, Singh T H, Chahal G S. Genetic analysis of some seed quality characters in upland cotton (Gossypium hirsutum L.). Theor Appl Genet, 1985,71:126-128.
[6] 季道藩, 朱军. 陆地棉品种间杂种的种仁油分和氨基酸成分的遗传分析. 作物学报, 1988,14:1-6.
Ji D F, Zhu J. Genetic analysis of oil and amino acid content in shelled seed of upland cotton hybrids. Acta Agron Sin, 1988,14:1-6 (in Chinese with English abstract).
[7] Wu J X, Jenkins J N, McCarty J C, Thaxton P. Seed trait evaluation of Gossypium barbadense L. chromosomes/arms in a G. hirsutum L. background. Euphytica, 2009,167:371-380.
[8] Dani R G, Kohel R J. Maternal effects and generation mean analysis of seed-oil content in cotton (Gossypium hirsutum L.). Theor Appl Genet, 1989,77:569-575.
[9] 王国印, 李蒙恩. 棉子品质性状的遗传研究. 华北农学报, 1991,6(2):20-25.
Wang G Y, Li M E. Genetic study of cottonseed quality traits. Acta Agric Boreali-Sin, 1991,6(2):20-25 (in Chinese with English abstract).
[10] Yuan Y L, Zhang T Z, Jing S R, Pan J J, Xing C Z, Guo L R, Tang C M. Studies of the inheritanee of seed qualities and the exploitation of F2 heterosis in low gossypol strains in upland cotton. J Genet Genomics, 2001,28:471-481.
[11] 秦利. 陆地棉种子品质性状遗传及其QTL定位研究. 浙江大学博士学位论文, 浙江杭州, 2009.
Qin L. Inheritance of Seed Quality Traits and Their QTL Mapping in Unpanned Cotton (G. hirsutum L.). PhD Dissertation of Zhejiang University, Hangzhou, Zhejiang, China, 2009 (in Chinese with English abstract).
[12] Lukonge E, Labuschagne M T, Hugo A. The evaluation of oil and fatty acid composition in seed of cotton accessions from various countries. J Sci Food Agric, 2007,87:340-347.
[13] Dowd M K, Boykin D L, William R. Fatty acid profiles of cottonseed genotypes from the national cotton variety trials. J Cotton Sci, 2010,14:64-73.
[14] Zou J, Katavic V, Giblim E M, Barton D L, MacKenzie S L, Keller W A, Hu X, Taylor D C. Modification of seed oil content and acyl composition in the brassicaceae by expression of a yeast sn-2 acyltransferase. Plant Cell, 1997,9:909-923.
[15] 丁检, 吴双, 蔡彩平, 郭旺珍. 棉花溶血磷酸酯酰转移酶(LPAT)家族基因的发掘和表达分析. 作物学报, 2015,41:378-385.
Ding J, Wu S, Cai C P, Guo W Z. Genome-wide identification of lysophospatidic acid acyltransferase gene family and their expression analysis in cotton. Acta Agron Sin, 2015,41:378-385 (in Chinese with English abstract).
[16] 刘丽, 王玉美, 赵彦朋, 王丹, 赵鹏, 刘正杰, 华金平. 棉花脂肪酸合成酶基因GhKARGhENR表达载体构建及其功能初探. 棉花学报, 2016,28:527-537.
Liu L, Wang Y M, Zhao Y P, Wang D, Zhao P, Liu Z J, Hua J P. Construction of expression vectors and a preliminarily functional analysis of fatty acid synthetase genes of GhKAR and GhENR in upland cotton. Cotton Sci, 2016,28:527-537 (in Chinese with English abstract).
[17] 张军. 利用外源DGAT基因和编辑GoPGF基因创造棉花高油低酚种质. 华中农业大学硕士学位论文, 湖北武汉, 2018.
Zhang J. Creating Cotton Germplasm with High Oil and Low Phenol by Exogenous DGAT and GoPGF Gene Editing. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2018 (in Chinese with English abstract).
[18] Chapman K D, Brown S A, Spapace S A, Kinney A J, Ripp K G, Pirtle I L, Pirtle R M. Transgenic cotton plants with increased seed oleic acid content. J Am Oil Chem Soc, 2001,78:941-947.
[19] Liu Q, Singh S P, Green A G. High-stearic and high-oleic cottonseed oils produced by hairpin RNA-mediated post-transcriptional gene silencing. Plant Physiol, 2002,129:1732-1743.
[20] Liu Z J, Zhao Y P, Liang W, Cui Y P, Hua J P. Over-expression of transcription factor GhWRI1 in upland cotton. Biol Plant, 2018,62:335-342.
[21] Song X L, Zhang T Z. Identification of quantitative trait loci controlling seed physical and nutrient traits in cotton. Seed Sci Res, 2007,17:243-251.
[22] Yu J W, Yu S X, Fan S L Song M Z, Zhai H H, Li X L, Zhang J F. Mapping quantitative trait loci for cottonseed oil, protein and gossypol content in a Gossypium hirsutum × Gossypium barbadense backcross inbred line population. Euphytica, 2012,187:191-201.
[23] 刘小芳, 李俊文, 余学科, 石玉真, 贾菲, 孙福鼎, 刘爱英, 龚举武, 商海红, 巩万奎, 王涛, 邓化冰, 袁有禄. 利用重组自交系进行陆地棉(Gossypium hirsutum L.)棉籽油分含量和蛋白质含量的QTL定位. 分子植物育种, 2013,11:520-528.
Liu X F, Li J W, Yu X K, Shi Y Z, Jia F, Sun F D, Liu A Y, Gong J W, Shang H H, Gong W K, Wang T, Deng H B, Yuan Y L. Identification of QTL for cottonseed oil and protein content in upland cotton (Gossypium hirsutum L.) based on a RIL population. Mol Plant Breed, 2013,11:520-528 (in Chinese with English abstract).
[24] Liu G Z, Hong X M, Wang S, Li X H, Zhu X F, Zhang T Z. Association mapping of seed oil and protein contents in upland cotton. Euphytica, 2015,205:637-645.
[25] 刘欣欣. 棉花含油量候选基因GhA05KASI的鉴定及表达分析. 华中农业大学硕士学位论文, 湖北武汉, 2018.
Liu X X. Identification and Expression Analysis of Candid Genes GhA05KASI for Oil Content in Cotton. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2018 (in Chinese with English abstract).
[26] Yuan Y C, Wang X L, Wang L Y, Xing H X, Wang Q K, Saeed M, Tao J C, Feng W, Zhang G H, Song X L, Sun X Z. Genome-Wide association study identifies candidate genes related to seed oil composition and protein content in Gossypium hirsutum L. Front Plant Sci, 2018,9:871.
[27] Ma J J, Liu J, Pei W F, Ma Q F, Wang N H, Zhang X, Cui Y P, Li D, Liu G Y, Wu M, Zang X S, Song J K, Zhang J F, Yu S X, Yu J W. Genome-wide association study of the oil content in upland cotton (Gossypium hirsutum L.) and identification of GhPRXR1, a candidate gene for a stable QTL qOC-Dt5-1. Plant Sci, 2019,286:89-97.
[28] Zhao W X, Kong X H, Yang Y, Nie X H, Lin Z X. Association mapping seed kernel oil content in upland cotton using genome-wide SSRs and SNPs. Mol Breed, 2019,39:105.
[29] Quampah A, Huang Z R, Wu J G, Liu H Y, Li J R, Zhu S J, Shi C H. Estimation of oil content and fatty acid composition in cottonseed kernel powder using near infrared reflectance spectroscopy. J Am Oil Chem Soc, 2012,89:567-575.
[30] 孔广超. 陆地棉RIL群体遗传图谱构建及产量与纤维品质QTL定位. 浙江大学博士学位论文, 浙江杭州, 2009.
Kong G C. Construction of Genetic Linkage Map Based on RIL Population of Upland Cotton (G. hirsutum L.) and QTL Mapping for Yield and Fiber Quality. PhD Dissertation of Zhejiang University, Hangzhou, Zhejiang, China, 2009 (in Chinese with English abstract).
[31] Zhu Z H, Hayart Y, Yang J, Cao L Y, Lou X Y, Xu H M. Statistical method for mapping QTLs for complex traits based on two backcross populations. Chin Sci Bull, 2012,57:2645-2654.
[32] Qi T, Jiang B, Zhu Z, Wei C, Gao Y, Zhu S, Xu H, Lou X. Mixed linear model approach for mapping quantitative trait loci underlying crop seed traits. Heredity, 2014,113:224-232.
[33] McCouch S R, Cho Y G, Yano M, Paul E, Blinstrub M, Morishima H, McCouch S, Cho Y. Report on QTL nomenclature. Rice Genet Newsl, 1997,14:11-13.
[34] Ye Z H, Lu Z Z, Zhu J. Genetic analysis for developmental behavior of some seed quality traits in Upland cotton (Gossypum hirsutum L.). Euphytica, 2003,129:183-191.
[35] Tanksley S D. Mapping polygenes. Annu Rev Genet, 1993,27:205-233.
[36] Guo W Z, Zhang T Z, Ding Y Z Zhu Y C, Shen X L, Zhu X F. Molecular marker assisted selection and pyramiding of two QTLs for fiber strength in upland cotton. Acta Genet Sin, 2006,32:1275-1285.
[37] Shi Y Z, Liu A Y, Li J W, Shao Y H, Yuan Y L. The major QTLs linked to fiber strength for cotton breeding program by molecular marker assisted selection. Mol Plant Breed, 2007,5:521-527.
[38] Liu D X, Liu F, Shan X R, Zhang J, Tang S Y, Fang X M, Liu X Y, Wang W W, Tan Z Y, Teng Z H, Zhang Z S, Liu D J. Construction of a high-density genetic map and lint percentage and cottonseed nutrient trait QTL identification in upland cotton (Gossypium hirsutum L.). Mol Genet Genomics, 2015,290:1683-1700.
[39] Wang W W, Sun Y, Yang P, Cai X Y, Yang L, Ma J R, Ou Y C, Liu T P, Ali I, Liu D J, Zhang J, Teng Z H, Guo K, Liu D X, Liu F, Zhang Z S. A high density SLAF-seq SNP genetic map and QTL for seed size, oil and protein content in upland cotton. BMC Genomics, 2019,20:599.
[40] Park Y, Alabady M, Ulloa M, Sickler B, Wilkins T, Yu J, Stelly D, Kohel R, El-Shihy O, Cantrell R. Genetic mapping of new cotton fiber loci using EST-derived microsatellites in an interspecific recombinant inbred line cotton population. Mol Genet Genomics, 2005,274:428-441.
[41] Han Z G, Guo W Z, Song X L, Zhang T Z. Genetic mapping of EST-derived microsatellites from the diploid Gossypium arboreum in allotetraploid cotton. Mol Genet Genomics, 2004,272:308-327.
[42] Han Z G, Wang C B, Song X L, Guo W Z, Gou J Y, Li C H, Chen X Y, Zhang T Z. Characteristics, development and mapping of Gossypium hirsutum derived EST-SSRs in allotetraploid cotton. Theor Appl Genet, 2006,112:430-439.
[43] Reddy O U K, Pepper A E, Abdurakhmonov I, Saha S, Jenkins JN, Brooks T, Bolek Y, El-Zik K M. New dinucleotide and trinucleotide microsatellite marker resources for cotton genome research. J Cotton Sci, 2001,5:103-113.
[44] Nguyen T B, Giband M, Brottier P, Risterucci A M, Lacape J M. Wide coverage of the tetraploid cotton genome using newly developed microsatellite markers. Theor Appl Genet, 2004,109:167-175.
[45] Yu J Z, Kohel R J, Fang D D, Cho J, Van Deynze A, Ulloa M, Hoffman S M, Pepper A E, Stelly D M, Jenkins J N, Saha S, Kumpatla S P, Shah M R, Hugie W V, Percy R G. A high-density simple sequence repeat and single nucleotide polymorphism genetic map of the tetraploid cotton genome. G3: Genes Genet Genom(Bethesda), 2012,2:43-58.
[1] ZHOU Jing-Yuan, KONG Xiang-Qiang, ZHANG Yan-Jun, LI Xue-Yuan, ZHANG Dong-Mei, DONG He-Zhong. Mechanism and technology of stand establishment improvements through regulating the apical hook formation and hypocotyl growth during seed germination and emergence in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1051-1058.
[2] SUN Si-Min, HAN Bei, CHEN Lin, SUN Wei-Nan, ZHANG Xian-Long, YANG Xi-Yan. Root system architecture analysis and genome-wide association study of root system architecture related traits in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1081-1090.
[3] YAN Xiao-Yu, GUO Wen-Jun, QIN Du-Lin, WANG Shuang-Lei, NIE Jun-Jun, ZHAO Na, QI Jie, SONG Xian-Liang, MAO Li-Li, SUN Xue-Zhen. Effects of cotton stubble return and subsoiling on dry matter accumulation, nutrient uptake, and yield of cotton in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(5): 1235-1247.
[4] ZHENG Shu-Feng, LIU Xiao-Ling, WANG Wei, XU Dao-Qing, KAN Hua-Chun, CHEN Min, LI Shu-Ying. On the green and light-simplified and mechanized cultivation of cotton in a cotton-based double cropping system [J]. Acta Agronomica Sinica, 2022, 48(3): 541-552.
[5] ZHANG Te, WANG Mi-Feng, ZHAO Qiang. Effects of DPC and nitrogen fertilizer through drip irrigation on growth and yield in cotton [J]. Acta Agronomica Sinica, 2022, 48(2): 396-409.
[6] ER Chen, LIN Tao, XIA Wen, ZHANG Hao, XU Gao-Yu, TANG Qiu-Xiang. Coupling effects of irrigation and nitrogen levels on yield, water distribution and nitrate nitrogen residue of machine-harvested cotton [J]. Acta Agronomica Sinica, 2022, 48(2): 497-510.
[7] ZHAO Wen-Qing, XU Wen-Zheng, YANG Liu-Yan, LIU Yu, ZHOU Zhi-Guo, WANG You-Hua. Different response of cotton leaves to heat stress is closely related to the night starch degradation [J]. Acta Agronomica Sinica, 2021, 47(9): 1680-1689.
[8] SHI Lei, MIAO Li-Juan, HUANG Bing-Yan, GAO Wei, ZHANG Zong-Xin, QI Fei-Yan, LIU Juan, DONG Wen-Zhao, ZHANG Xin-You. Characterization of the promoter and 5'-UTR intron in AhFAD2-1 genes from peanut and their responses to cold stress [J]. Acta Agronomica Sinica, 2021, 47(9): 1703-1711.
[9] XUE Xiao-Meng, WU JIE, WANG Xin, BAI Dong-Mei, HU Mei-Ling, YAN Li-Ying, CHEN Yu-Ning, KANG Yan-Ping, WANG Zhi-Hui, HUAI Dong-Xin, LEI Yong, LIAO Bo-Shou. Effects of cold stress on germination in peanut cultivars with normal and high content of oleic acid [J]. Acta Agronomica Sinica, 2021, 47(9): 1768-1778.
[10] YUE Dan-Dan, HAN Bei, Abid Ullah, ZHANG Xian-Long, YANG Xi-Yan. Fungi diversity analysis of rhizosphere under drought conditions in cotton [J]. Acta Agronomica Sinica, 2021, 47(9): 1806-1815.
[11] ZENG Zi-Jun, ZENG Yu, YAN Lei, CHENG Jin, JIANG Cun-Cang. Effects of boron deficiency/toxicity on the growth and proline metabolism of cotton seedlings [J]. Acta Agronomica Sinica, 2021, 47(8): 1616-1623.
[12] GAO Lu, XU Wen-Liang. GhP4H2 encoding a prolyl-4-hydroxylase is involved in regulating cotton fiber development [J]. Acta Agronomica Sinica, 2021, 47(7): 1239-1247.
[13] MA Huan-Huan, FANG Qi-Di, DING Yuan-Hao, CHI Hua-Bin, ZHANG Xian-Long, MIN Ling. GhMADS7 positively regulates petal development in cotton [J]. Acta Agronomica Sinica, 2021, 47(5): 814-826.
[14] XU Nai-Yin, ZHAO Su-Qin, ZHANG Fang, FU Xiao-Qiong, YANG Xiao-Ni, QIAO Yin-Tao, SUN Shi-Xian. Retrospective evaluation of cotton varieties nationally registered for the Northwest Inland cotton growing regions based on GYT biplot analysis [J]. Acta Agronomica Sinica, 2021, 47(4): 660-671.
[15] TANG Jing-Quan, WANG Nan, GAO Jie, LIU Ting-Ting, WEN Jing, YI Bin, TU Jin-Xing, FU Ting-Dong, SHEN Jin-Xiong. Bioinformatics analysis of SnRK gene family and its relation with seed oil content of Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(3): 416-426.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!