Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2018, Vol. 44 ›› Issue (03): 332-342.doi: 10.3724/SP.J.1006.2018.00332

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Identification and Gene Mapping of a Lesion Mimic Mutant spl34 in Rice (Oryza sativa L.)

Bao-Yu LIU(), Jun-Hua LIU, Dan DU, Meng YAN, Li-Yuan ZHENG, Xue WU, Xian-Chun SANG, Chang-Wei ZHANG*()   

  1. Rice Research Institute of Southwest University / Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crop, Chongqing 400716, China
  • Received:2017-05-22 Accepted:2017-11-21 Online:2018-03-12 Published:2017-12-04
  • Contact: Chang-Wei ZHANG E-mail:673325435@qq.com;603519375@qq.com
  • Supported by:
    This study was supported by the National Major Project for Developing New GM Crops (2016ZX08001002-002).

Abstract:

A mutant spotted leaf 34 (spl34) was screened from the progeny of indica restorer line Jinhui 10 treated with ethyl methane sulfonate (EMS). Brown lesions in spl34 exhibit on the sheath of lower leaves at the late tillering stage, then spred from the midrib to entire leaf and finally throughout the whole plant at maturity stage. Compared with the wild type, the plant height, ear length, grain number per panicle, seed setting rate and thousand-grain weight as well as the activities of protective enzymes (CAT, POD, and T-SOD) were all significantly decreased while the content of reactive oxygen species (ROS) increased in spl34. The shading assay showed that the formation of lesions in spl34 was induced by light. Histochemical analysis showed that spl34 had excessive hydrogen peroxide (H2O2) deposition and programmed cell death in the position of lesions. In addition, the chlorophyll fluorescence was weaker in spl34 than in the wild type under the fluorescence microscopy. There was no significant difference in blast resistance between spl34 and the wild type. Genetic analysis suggested that the phenotype of spl34 was controlled by a single recessive nuclear gene, which was mapped between InDel markers LR49 and LR52 on chromosome 4 with an interval of 200 kb. Sequencing analysis revealed that a single base substitution (G to T) occurred at 3449 bp in the DNA sequence of LOC_Os04g56480, resulting in an amino acid change from tryptophane to cysteine. The qRT-PCR results showed that the transcriptional level of LOC_Os04g56480 was down-regulated in spl34, while that of some pathogenesis-related genes was highly up-regulated when compared with the wild type.

Key words: rice, lesion mimic mutant, spl34, gene, fine mapping

Fig. 1

Phenotype of the wild type (WT) and the spl34 mutant at tillering stage and mature period A: plants of the wild type (WT) and the spl34 mutant at tillering stage; B: plants of the wild type (WT) and the spl34 mutant at mature period; C: leaves of the wild type (WT) and the spl34 mutant at mature period."

Table 1

Agronomic traits of the wild type (WT) and spl34 mutant"

材料
Material
株高
Plant height
(cm)
有效穗数
Effective panicle
穗长
Panicle length (cm)
每穗粒数
Grain number per panicle
结实率
Seed-setting rate (%)
千粒重
1000-grain weight (g)
WT 107.12±3.35 8.60±1.20 25.26±1.40 180.90±12.48 78.41±4.45 25.57±0.81
Spl34 100.32±3.59* 8.80±0.82 22.34±1.22* 135.42±8.66** 53.65±3.96** 22.68±0.30**

Fig. 2

Effects of shading on the wild type and the spl34 mutant leaves A: leaf of the wild type after shading; B: leaf of wild type regained normal light for one week after shading; C: leaf of spl34 after shading; D: leaf of spl34 regained normal light for one week after shading."

Fig. 3

Photosynthetic pigments contents of the wild type and the spl34 mutant at heading stage A-C: photosynthetic pigments contents of the flag leaves, second leaves, third leaves respectively in the wild type and the spl34 mutant at heading stage. * Significantly different at P<0.05; ** significantly different at P<0.01."

Fig. 4

Autofluorescence of the wild type and the spl34 mutant A, B: microstructure in cross section of wild type under natural light and UV light; C, D: microstructure in cross section of spl34 mutant under natural light and UV light; Bar=100 μm. The positions pointed by white arrows are the lesion formation sites, those with yellow arrows are the sites without lesion mimic."

Fig. 5

Histochemical analysis of the wild type and the spl34 mutant A, B: leaves of the wild type (WT) and the spl34 mutant stained by trypan blue; C, D: leaves of the wild type (WT) and the spl34 mutant stained by DAB."

Fig. 6

Physiological indices of the wild type (WT) and the spl34 mutant at heading stage * Significantly different at P<0.05; ** significantly different at P<0.01."

Table 2

Resistance spectrum of the wild type (WT) and the spl34 mutant to rice blast (%)"

材料
Material
对稻瘟病各生理群的抗病频率
Resistance frequency to each physiological group
总群抗病频率
Resistance frequency to total
population
ZA ZB ZC ZD ZE ZG
WT 39.39±5.25 74.75±1.76 0 100 100 100 70.37±1.85
spl34 45.45±5.45 72.04±4.10 0 100 100 100 70.37±3.20

Table 3

Disease indices of the wild type and the spl34 mutant to rice blast (%)"

材料
Material
苗瘟病情指数
Disease indexes of leaf blast
at seedling stage
叶瘟病情指数
Disease indexes of leaf blast
at tillering stage
穗颈瘟发病率
Disease incidence of neck blast
WT 32.00±2.23 71.43±3.31 3.94±0.61
spl34 36.56±2.01 77.14±2.22 4.19±0.52

Table 4

Newly designed InDel markers"

标记
Marker
正向引物
Forward primer (5°-3°)
反向引物
Reverse primer (5°-3°)
LR7 TTCCTACACGGTCGAAGATCAT TCAAGTACCGGATTGAGTTTGAG
LR14 GAGATTATCCTGCGGTCTTAATC TTGATGATACGATGACCAAGTTC
LR25 ATATTCACATGCGCCGTTTG CTCCAACAGATCCATCTCAACC
LR31 GATCCAATGCGATGCTACTCC GCGATTAACTGGAGACATCACG
LR33 TTCAATGTGCTGCATTTAGAAAT AAAGATGGTTCAAGTCTTGAGGA
LR49 GCCAAACAGATTGGTTAGCG TTAGCGTAGCTGGCATAACATC
LR52 TTGATCTCGACTTCGATCACTAG GATGTCTGGACGTACACACACG

Fig. 7

Gene mapping of the spl34 mutant"

Fig. 8

Relative expression analysis of the target gene spl34"

Fig. 9

Relative expression analysis of the pathogenesis-related genes and the rice blast resistance genes The pathogenesis-related genes: PAL, PR1a, PR1b, POX22.3, PR5, NPR1, POC1; the rice blast resistance genes: Pi-d3, Pish, Pi9, Pit, Pi5, Pia."

[1] Hu G, Richter T E, Hulbert S H, Pryor T.Disease lesion mimicry caused by mutations in the rust resistance generp1. Plant Cell, 1996, 8: 1367-1376
[2] 黄奇娜, 杨杨, 施勇烽, 陈洁, 吴建利. 水稻斑点叶变异研究进展. 中国水稻科学, 2010, 24: 108-115
Huang Q N, Yang Y, Shi Y F, Chen J, Wu J L.Recent advances in research on spotted-leaf mutants of rice (Oryza sativa). Chin J Rice Sci, 2010, 24: 108-115 (in Chinese with English abstract)
[3] Lorrain S, Vailleau F, Balagué C, Roby D.Lesion mimic mutants: keys for deciphering cell death and defense pathways in plants. Trends Plant Sci, 2003, 8: 263-271
[4] 孙惠敏, 张春娇, 李保同, 潘晓华. 水稻类病斑突变体的研究进展. 上海农业学报, 2014, 30(03): 142-147
Sun H M, Zhang C J, Li B T, Pan X H.Advances of study on rice lesion mimic mutants.Acta Agric Shanghai, 2014, 30(03): 142-147 (in Chinese with English abstract)
[5] Walbot V, Hoisington D A, Neuffer M G.Disease lesion mimic mutations. In: Kosuge T, Meredith C, eds. Genetic Engineering of Plants. Plenum, New York, 1983. pp 431-442
[6] Dietrich R A, Richberg M H, Schmidt R, Dean C, Dangl J L.A novel zinc finger protein is encoded by the Arabidopsis LSD1 gene and functions as a negative regulator of plant cell death. Cell, 1997, 88: 685-694
[7] Shi L Y, Lv X L, Weng J F, Zhu H Y, Liu C L, Hao Z F, Zhou Y, Zhang D G, Li M S, Ci X K, Li X H, Zhang S H.Genetic characterization and linkage disequilibrium mapping of resistance to gray leaf spot in maize (Zea mays L.). Acta Agron Sin, 2014, 2: 132-143
[8] Spassieva S, Hille J.A lesion mimic phenotype in tomato obtained by isolating and silencing an Lls1, homologue. Plant Sci, 2002, 162: 543-549
[9] Xiao G Q, Zhang H W, Lu X Y, Huang R F.Characterization and mapping of a novel light-dependent lesion mimic mutant lmm6 in rice(Oryza sativa L.).J Integr Agric, 2015, 14: 1687-1696
[10] 潘璐琪, 陆雯, 李小白, 吴殿星, 王雪艳. 籼稻93-11类病斑突变体的特征研究. 核农学报, 2015, 29: 413-420
Pan L Q, Lu W, Li X B, Wu D X, Wang X Y.Characteristics of lesion mimic mutants from indica rice 93-11. J Nucl Agric Sci, 2015, 29: 413-420 (in Chinese with English abstract)
[11] Yin Z, Chen J, Zeng L, Goh M, Leung H, Khush G S, Wang G L.Characterizing rice lesion mimic mutants and identifying a mutant with broad-spectrum resistance to rice blast and bacterial blight. Mol Plant-Microbe Interact, 2000, 13: 869-876
[12] Chen X F, Hao L, Pan J W, Zheng X X, Jiang G H, Jin Y, Gu Z M, Qian Q, Zhai W X, Ma B J.SPL5, a cell death and defense-related gene, encodes a putative splicing factor 3b subunit 3 (SF3b3) in rice. Mol Breed, 2012, 30: 939-949
[13] Zeng L R, Qu S H, Bordeos A, Yang C W, Baraoidan M, Yan H Y, Xie Q, Nahm B H, Leung H, Wang G L.Spotted leaf 11, a negative regulator of plant cell death and defense, encodes a U-box/armadillo repeat protein endowed with E3 ubiquitin ligase activity. Plant Cell, 2004, 16: 2795-2808
[14] Mori M, Tomita C, Sugimoto K, Hasegawa M, Hayashi N, Dubouzet J G, Ochiai H, Sekimoto H, Hirochika H, Kikuchi S.Isolation and molecular characterization of aSpotted leaf 18 mutant by modified activation-tagging in rice. Plant Mol Biol, 2007, 63: 847-860
[15] Qiao Y, Jiang W, Lee J H, Park B S, Choi M S, Piao R, Woo M O, Roh J H, Han L, Paek N C, Seo H S, Koh H J.SPL28 encodes a clathrin-associated adaptor protein complex 1, medium subunit μ1 (AP1M1) and is responsible for spotted leaf and early senescence in rice(Oryza sativa). New Phytol, 2010, 185: 258-274
[16] Wang L J, Pei Z Y, Tian Y C, He C Z.OsLSD1, a rice zinc finger protein, regulates programmed cell death and callus differentiation.Mol Plant-Microbe Interact, 2005, 18: 375-384
[17] 陈红霖, 向阳海, 赵纪莹, 尹德东, 梁国华, 翟文学, 江光怀. 水稻类病变突变体c5的遗传分析与目标基因的精细定位. 作物学报, 2013, 39: 1148-1154
Chen H L, Xiang Y H, Zhao J Y, Yin D D, Liang G H, Zhai W X, Jiang G H.Genetic analysis and gene fine mapping of rice lesion mimic mutant c5. Acta Agron Sin, 2013, 39: 1148-1154 (in Chinese with English abstract)
[18] 钟振泉, 罗文龙, 刘永柱, 王慧, 陈志强, 郭涛. 一份新的水稻斑点叶突变体spl32的鉴定和基因定位. 作物学报, 2015, 41: 861-871
Zhong Z Q, Luo W L, Liu Y Z, Wang H, Chen Z Q, Guo T.Characterization of a novel spotted leaf mutantspl32 and mapping of Spl32(t) gene in rice(Oryza sativa). Acta Agron Sin, 2015, 41: 861-871 (in Chinese with English abstract)
[19] Yamanouchi U, Yano M, Lin H, Ashikari M, Yamada K.A rice spotted leaf gene,Spl7, encodes a heat stress transcription factor protein. Proc Natl Acad Sci USA, 2002, 99: 7530-7535
[20] Jiao B B, Wang J J, Zhu X D, Zeng L Z, Li Q, He Z H.A novel protein RLS1 with NB-ARM domains is involved in chloroplast degradation during leaf senescence in rice.Mol Plant, 2012, 5: 205-217
[21] Tong X H, Qi J F, Zhu X D, Mao B Z, Zeng L J, Wang B H, Li Q, Zhou G X, Xu X J, Lou Y G, He Z H.The rice hydroperoxide lyase OsHPL3 functions in defense responses by modulating the oxylipin pathway.Plant J, 2012, 71: 763-775
[22] Undan J R, Tamiru M, Abe A, Yoshida K, Kosugi S, Takagi H, Yoshida K, Kanzaki H, Saitoh H, Fekih R, Sharma S, Undan J, Yano M, Terauchi R.Mutation in OsLMS, a gene encoding a protein with two double-stranded RNA binding motifs, causes lesion mimic phenotype and early senescence in rice(Oryza sativa L.). Genes Genet Syst, 2012, 87: 169-179
[23] Kim J A, Cho K, Singh R, Jung Y H, Jeong S H, Kim S H, Lee J, Cho Y S, Agrawal G K, Rakwal R, Tamogami S, Kersten B, Jeon J S, An G, Jwa N S.Rice OsACDR1 (Oryza sativa, accelerated cell death and resistance 1) is a potential positive regulator of fungal disease resistance. Mol Cells, 2009, 28: 431-439
[24] Lin A H, Wang Y Q, Tang J Y, Xue P, Li C L, Liu L C, Hu B, Yang F Q, Loake G J, Chu C C.Nitric oxide and protein S-nitrosylation are integral to hydrogen peroxide-induced leaf cell death in rice.Plant Physiol, 2012, 158: 451-464
[25] Sun C H, Liu L C, Tang J Y, Lin A H, Zhang F T, Fang J, Zhang G F, Chu C C.RLIN1, encoding a putative coproporphyrinogen III oxidase, is involved in lesion initiation in rice. J Genet Genomics, 2011, 38: 29-37
[26] Takahashi A, Agrawal G K, Yamazaki M, Onosato K, Miyao A, Kawasaki T, Shimamoto S, Hirochika H.Rice Pti1a negatively regulatesRAR1-dependent defense responses. Plant Cell, 2007, 19: 2940-2951
[27] Fekih R, Tamiru M, Kanzaki H, Abe A, Yoshida K, Kanzaki E, Saitoh H, Takagi H, Natsume S, Undanet J R, Undan J, Terauchi R.The rice (Oryza sativa L.) LESION MIMIC RESEMBLING, which encodes an AAA-type ATPase, is implicated in defense response. Mol Genet Genomics, 2015, 290: 611-622
[28] Sakuraba Y, Rahman M L, Cho S H, Kim Y S, Koh H J, Yoo S C, Paek N C.The rice faded green leaf locus encodes protochlorophyllide oxidoreductase B and is essential for chlorophyll synthesis under high light conditions.Plant J, 2013, 74: 122-133
[29] Tang J Y, Zhu X D, Wang Y Q, Liu L C, Xu B, Li F, Fang J, Chu C C.Semi-dominant mutations in the CC-NB-LRR-type R, gene,NLS1, lead to constitutive activation of defense responses in rice. Plant J, 2011, 66: 996-1007
[30] Fujiwara T, Maisonneuve S, Isshiki M, Mizutani M, Chen L T, Wong H L, Kawasaki T, Shimamoto K.Sekiguchi lesion gene encodes a cytochrome P450 monooxygenase that catalyzes conversion of tryptamine to serotonin in rice.J Biol Chem, 2010, 285: 11308-11313
[31] Chern M, Fitzgerald H A, Canlas P E, Navarre D A, Ronald P C.Overexpression of a rice NPR1 homolog leads to constitutive activation of defense response and hypersensitivity to light. Mol Plant Microbe Interact, 2005, 18: 511-520
[32] Zhao J Y, Liu P C, Li C R, Wang Y Y, Guo L Q, Jiang G H, Zhai W X.LMM5.1 and LMM5.4, two eukaryotic translation elongation factor 1A-like gene family members, negatively affect cell death and disease resistance in rice. J Genet Genomics, 2017, 44: 107-118
[33] Wang S, Lei C L, Wang J L, Ma J, Tang S, Wang C L, Zhao K J, Tian P, Zhang H, Qi C Y, Cheng Z J, Zhang X, Guo X P, Liu L L, Wu C Y, Wan J M.SPL33, encoding an eEF1A-like protein, negatively regulates cell death and defense responses in rice. J Exp Bot, 2017, 68: 899-913
[34] Lichtenthaler H K.Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods Enzymol, 1987, 148: 350-382
[35] Bowling S A, Clarke J D, Liu Y D, Klessig D F, Dong X N.The cpr5 mutant of Arabidopsis expresses both NPR1-dependent and NPR1-independent resistance. Plant Cell, 1997, 9: 1573-1584
[36] Thordal-Christensen H, Zhang Z G, Wei Y D, Collinge D B.Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction.Plant J, 1997, 11: 1187-1194
[37] 黄富, 程开禄, 彭国亮, 罗庆明, 陈国华, 朱永昌. 四川省水稻品种抗稻瘟病性规范化鉴定评价体系. 中国农业大学学报, 1998, 3(增刊-1): 23-26
Huang F, Cheng K L, Peng G L, Luo Q M, Chen G H, Zhu Y C.The standard evaluating system of rice resistance to blast in Sichuan province.J China Agric Univ, 1998, 3(suppl-1): 23-26 (in Chinese with English abstract)
[38] 张长伟, 凌英华, 桑贤春, 李平, 赵芳明, 杨正林, 李云峰, 方立魁, 何光华. 转苦瓜几丁质酶基因McCHIT1水稻及其稻瘟病抗性. 作物学报, 2011, 37: 1991-2000
Zhang C W, Ling Y H, Sang X C, Li P, Zhao F M, Yang Z L, Li Y F, Fang L K, He G H.Transgenic rice lines harboring McCHIT1 gene from Balsam Pear(Momordica charantia L.) and their blast resistance. Acta Agron Sin, 2011, 37: 1991-2000 (in Chinese with English abstract)
[39] 全国稻瘟病菌生理小种联合试验组. 我国稻瘟病菌生理小种研究. 植物病理学报, 1980, 10: 71-82
All China Coorporation of Research on Physiological Races of Pyricularia oryzae. Research on physiological races of rice blast fungus in China. Acta Phytopathol Sin, 1980, 10: 71-82 (in Chinese with English abstract)
[40] International Rice Research Institute. Standard Evaluation System for Rice (SES). Los Baños,Philippines: IRRI, 2002. pp 14-18
[41] Rogers S O, Bendich A J.Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues.Plant Mol Biol, 1985, 5: 69-76
[42] Feng B H, Yang Y, Shi Y F, Shen H C, Wang H M, Huang Q N, Xu X, Lu X G, Wu J L.Characterization and genetic analysis of a novel rice spotted-leaf mutant HM47 with broad-spectrum resistance to Xanthomonas oryzae pv. oryzae. J Integr Plant Biol, 2013, 55: 473-483
[43] Noutoshi Y, Ito T, Seki M, Nakashita H, Yoshida S, Marco Y, Shirasu K, Shinozaki K.A single amino acid insertion in the WRKY domain of the Arabidopsis TIR-NBS-LRR-WRKY-type disease resistance protein SLH1 (sensitive to low humidity 1) causes activation of defense responses and hypersensitive cell death.Plant J, 2005, 43: 873-888
[44] Arase S, Zhao C M, Akimitsu K, Yamamoto M, Ichii M.A recessive lesion mimic mutant of rice with elevated resistance to fungal pathogens.J Gen Plant Pathol, 2000, 66: 109-116
[45] 邱结华, 马宁, 蒋汉伟, 圣忠华, 邵高能, 唐绍清, 魏祥进, 胡培松. 水稻类病斑突变体lmm4的鉴定及其基因定位. 中国水稻科学, 2014, 28: 367-376
Qiu J H, Ma N, Jiang H W, Sheng Z H, Shao G N, Tang S Q, Wei X J, Hu P S.Identification and gene mapping of a lesion mimic mutantlmm4 in rice. Chin J Rice Sci, 2014, 28: 367-376 (in Chinese with English abstract)
[46] Liu G, Wang L, Zhou Z, Leung H, Wang G L, He C.Physical mapping of a rice lesion mimic gene,Spl1, to a 70-kb segment of rice chromosome 12. Mol Gen Genomics, 2004, 272: 108-115
[1] XIAO Ying-Ni, YU Yong-Tao, XIE Li-Hua, QI Xi-Tao, LI Chun-Yan, WEN Tian-Xiang, LI Gao-Ke, HU Jian-Guang. Genetic diversity analysis of Chinese fresh corn hybrids using SNP Chips [J]. Acta Agronomica Sinica, 2022, 48(6): 1301-1311.
[2] CUI Lian-Hua, ZHAN Wei-Min, YANG Lu-Hao, WANG Shao-Ci, MA Wen-Qi, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping, YANG Qing-Hua. Molecular cloning of two maize (Zea mays) ZmCOP1 genes and their transcription abundances in response to different light treatments [J]. Acta Agronomica Sinica, 2022, 48(6): 1312-1324.
[3] ZHANG Yu-Kun, LU Ying, CUI Kan, XIA Shi-Tou, LIU Zhong-Song. Allelic variation and geographical distribution of TT8 for seed color in Brassica juncea Czern. et Coss. [J]. Acta Agronomica Sinica, 2022, 48(6): 1325-1332.
[4] CHEN Song-Yu, DING Yi-Juan, SUN Jun-Ming, HUANG Deng-Wen, YANG Nan, DAI Yu-Han, WAN Hua-Fang, QIAN Wei. Genome-wide identification of BnCNGC and the gene expression analysis in Brassica napus challenged with Sclerotinia sclerotiorum and PEG-simulated drought [J]. Acta Agronomica Sinica, 2022, 48(6): 1357-1371.
[5] TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388.
[6] ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400.
[7] ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415.
[8] WANG Jing-Tian, ZHANG Ya-Wen, DU Ying-Wen, REN Wen-Long, LI Hong-Fu, SUN Wen-Xian, GE Chao, ZHANG Yuan-Ming. SEA v2.0: an R software package for mixed major genes plus polygenes inheritance analysis of quantitative traits [J]. Acta Agronomica Sinica, 2022, 48(6): 1416-1424.
[9] ZHENG Xiao-Long, ZHOU Jing-Qing, BAI Yang, SHAO Ya-Fang, ZHANG Lin-Ping, HU Pei-Song, WEI Xiang-Jin. Difference and molecular mechanism of soluble sugar metabolism and quality of different rice panicle in japonica rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1425-1436.
[10] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[11] LI Hai-Fen, WEI Hao, WEN Shi-Jie, LU Qing, LIU Hao, LI Shao-Xiong, HONG Yan-Bin, CHEN Xiao-Ping, LIANG Xuan-Qiang. Cloning and expression analysis of voltage dependent anion channel (AhVDAC) gene in the geotropism response of the peanut gynophores [J]. Acta Agronomica Sinica, 2022, 48(6): 1558-1565.
[12] YANG Jian-Chang, LI Chao-Qing, JIANG Yi. Contents and compositions of amino acids in rice grains and their regulation: a review [J]. Acta Agronomica Sinica, 2022, 48(5): 1037-1050.
[13] SHAN Lu-Ying, LI Jun, LI Liang, ZHANG Li, WANG Hao-Qian, GAO Jia-Qi, WU Gang, WU Yu-Hua, ZHANG Xiu-Jie. Development of genetically modified maize (Zea mays L.) NK603 matrix reference materials [J]. Acta Agronomica Sinica, 2022, 48(5): 1059-1070.
[14] DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080.
[15] YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!