小麦旗叶衰老过程不同数学模型拟合比较及衰老特征分析
吕国锋,范金平,张伯桥,高德荣,王慧,刘业宇,吴素兰,程凯,王秀娥

Comparison of different mathematical models describing flag leaf senescence process of wheat and characteristics of leaf senescence process
Guo-Feng LYU,Jin-Ping FAN,Bo-Qiao ZHANG,De-Rong GAO,Hui WANG,Ye-Yu LIU,Su-Lan WU,Kai CHENG,Xiu-E WANG
表3 Logistic、Gompertz和Richards模型对不同延绿类型品种拟合结果
Table 3 Curve fitting of Logistic, Gompertz, and Richards models for the flag leaf senescence process of varieties tested
类型
Type
品种数
No. of varieties
模型
Model
方程
Equation
方程系数Coefficients 模型适合性
Fitness of model
a b c d R2 RMSE
2011
延绿
Stay green
10 Logistic $y=a/1+{{\text{e}}^{-b(x-c)}}$ 98.40 -3.67 1.35 0.9536 4.149
Gompertz $y=a{{\text{e}}^{-{{\text{e}}^{-b(x-c)}}}}$ 98.53 -3.15 1.48 0.9577 3.961
Richards $y=a/{{[1+{{\text{e}}^{-b(x-c)}}]}^{\frac{1}{d}}}$ 99.20 -1.97 6.30 1.57×10-4 0.9426 4.662
中等延绿
Moderately stay green
21 Logistic $y=a/1+{{\text{e}}^{-b(x-c)}}$ 95.59 -4.93 0.93 0.9646 6.436
Gompertz $y=a{{\text{e}}^{-{{\text{e}}^{-b(x-c)}}}}$ 96.71 -2.95 1.09 0.9710 5.798
Richards $y=a/{{[1+{{\text{e}}^{-b(x-c)}}]}^{\frac{1}{d}}}$ 97.05 -2.62 7.40 6.85×10-8 0.9713 5.858
中等早衰
Moderately non-stay green
28 Logistic $y=a/1+{{\text{e}}^{-b(x-c)}}$ 95.43 -5.39 0.72 0.9846 4.760
Gompertz $y=a{{\text{e}}^{-{{\text{e}}^{-b(x-c)}}}}$ 96.91 -3.12 0.86 0.9893 3.976
Richards $y=a/{{[1+{{\text{e}}^{-b(x-c)}}]}^{\frac{1}{d}}}$ 97.10 -3.07 5.76 2.98×10-7 0.9887 4.098
早衰
Non-stay green
32 Logistic $y=a/1+{{\text{e}}^{-b(x-c)}}$ 97.39 -7.58 0.33 0.9948 3.167
Gompertz $y=a{{\text{e}}^{-{{\text{e}}^{-b(x-c)}}}}$ 97.47 -5.07 0.50 0.9949 3.124
Richards $y=a/{{[1+{{\text{e}}^{-b(x-c)}}]}^{\frac{1}{d}}}$ 97.36 -3.86 3.54 8.40×10-6 0.9880 4.832
2012
延绿
Stay green
22 Logistic $y=a/1+{{\text{e}}^{-b(x-c)}}$ 94.31 -2.84 0.78 0.9516 7.150
Gompertz $y=a{{\text{e}}^{-{{\text{e}}^{-b(x-c)}}}}$ 96.29 -1.95 0.98 0.9609 6.424
Richards $y=a/{{[1+{{\text{e}}^{-b(x-c)}}]}^{\frac{1}{d}}}$ 96.29 -2.04 6.01 3.62×10-5 0.9596 6.564
中等延绿
Moderately stay green
32 Logistic $y=a/1+{{\text{e}}^{-b(x-c)}}$ 94.81 -2.79 0.52 0.9735 5.808
Gompertz $y=a{{\text{e}}^{-{{\text{e}}^{-b(x-c)}}}}$ 98.08 -1.78 0.73 0.9797 5.075
Richards $y=a/{{[1+{{\text{e}}^{-b(x-c)}}]}^{\frac{1}{d}}}$ 98.07 -1.78 3.52 7.01×10-3 0.9795 5.118
类型
Type
品种数
No. of varieties
模型
Model
方程
Equation
方程系数Coefficients 模型适合性
Fitness of model
a b c d R2 RMSE
中等早衰
Moderately non-stay green
40 Logistic $y=a/1+{{\text{e}}^{-b(x-c)}}$ 93.31 -3.42 0.20 0.9809 5.367
Gompertz $y=a{{\text{e}}^{-{{\text{e}}^{-b(x-c)}}}}$ 96.30 -2.12 0.39 0.9840 4.917
Richards $y=a/{{[1+{{\text{e}}^{-b(x-c)}}]}^{\frac{1}{d}}}$ 95.96 -2.16 4.57 1.17×10-4 0.9836 4.992
早衰
Non-stay green
11 Logistic $y=a/1+{{\text{e}}^{-b(x-c)}}$ 93.46 -4.30 -0.23 0.9916 3.783
Gompertz $y=a{{\text{e}}^{-{{\text{e}}^{-b(x-c)}}}}$ 94.44 -3.17 -0.08 0.9917 3.768
Richards $y=a/{{[1+{{\text{e}}^{-b(x-c)}}]}^{\frac{1}{d}}}$ 94.03 -3.65 0.02 0.50 0.9898 4.216