冬小麦生物量及氮积累量的植被指数动态模型研究
|
吴亚鹏,贺利,王洋洋,刘北城,王永华,郭天财,冯伟
|
Dynamic model of vegetation indices for biomass and nitrogen accumulation in winter wheat
|
Ya-Peng WU,Li HE,Yang-Yang WANG,Bei-Cheng LIU,Yong-Hua WANG,Tian-Cai GUO,Wei FENG
|
|
表3 不同产量水平下植被指数的双Logistic模型参数
|
Table 3 Double Logistic model parameters of vegetation indices under different yield levels
|
|
产量水平 Yield level | 植被指数 Vegetation index | y0 | a1 | a2 | t1 (℃ d) | t2 (℃ d) | b1 (℃ d) | b2 (℃ d) | R2 | RMSE | 低产 Low yield | mRER | 1.018 | 0.103 | 0.073 | 497.99 | 1560.38 | 207.55 | 266.55 | 0.608 | 0.024 | CIred-edge | 0.105 | 0.541 | 0.570 | 650.37 | 1818.35 | 218.81 | 258.45 | 0.736 | 0.110 | NDSI | 0.015 | 0.010 | 0.010 | 856.32 | 1817.99 | 211.89 | 242.12 | 0.637 | 0.003 | SAVI (825, 735) | 0.067 | 0.078 | 0.107 | 762.94 | 1870.95 | 156.52 | 327.55 | 0.700 | 0.023 | 中产 Medium yield | mRER | 1.029 | 0.269 | 0.249 | 766.34 | 1854.98 | 142.29 | 148.59 | 0.788 | 0.051 | CIred-edge | 0.165 | 1.401 | 1.580 | 792.61 | 1881.39 | 124.23 | 169.07 | 0.822 | 0.293 | NDSI | 0.015 | 0.032 | 0.036 | 911.92 | 1973.14 | 134.91 | 185.07 | 0.735 | 0.008 | SAVI (825, 735) | 0.064 | 0.223 | 0.250 | 797.02 | 1940.42 | 149.19 | 191.40 | 0.862 | 0.036 | 高产 High yield | mRER | 1.026 | 0.354 | 0.356 | 778.57 | 1905.52 | 143.95 | 161.59 | 0.878 | 0.048 | CIred-edge | 0.175 | 2.003 | 2.324 | 814.39 | 1908.69 | 136.04 | 192.63 | 0.891 | 0.268 | NDSI | 0.016 | 0.044 | 0.051 | 919.84 | 2024.15 | 119.12 | 186.65 | 0.827 | 0.007 | SAVI (825, 735) | 0.074 | 0.265 | 0.328 | 811.25 | 1995.09 | 124.05 | 183.68 | 0.917 | 0.034 | 超高产 Super high yield | mRER | 1.021 | 0.415 | 0.430 | 815.03 | 1900.98 | 160.16 | 167.94 | 0.957 | 0.037 | CIred-edge | 0.186 | 2.246 | 2.493 | 815.88 | 1890.37 | 144.05 | 170.35 | 0.954 | 0.202 | NDSI | 0.017 | 0.048 | 0.055 | 917.39 | 1996.33 | 90.17 | 160.00 | 0.882 | 0.006 | SAVI (825, 735) | 0.092 | 0.270 | 0.327 | 809.89 | 1950.72 | 86.97 | 153.58 | 0.950 | 0.023 |
|
|
|